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Abstract: This narrative review describes the public health importance of four most common bacterial
meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalac-
tiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the
nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalac-
tiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns,
but also causes invasive infections in infants or adults. These four bacteria have polysaccharide
capsules that protect them against the host complement defense. Currently licensed conjugate vac-
cines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce
protective serum antibodies in infants as young as two months old offering protection to the most
vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vacci-
nated subjects lending further protection to those not vaccinated through herd immunity. However,
the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that
affect the capsule antigens through either capsule switching or capsule replacement in addition to
the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine
molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings
obtained with newer genomic laboratory surveillance methods.

Keywords: bacterial meningitis; S. pneumoniae; N. meningitidis; H. influenzae; S. agalactiae; conjugate
vaccines; post-vaccine surveillance

1. Introduction

Pyogenic bacterial meningitis is a life threatening condition that can progress rapidly
leading to death. When the disease happens in infants, children, and young adults, it may
instill fear due to the contagious and potentially deadly nature of the disease especially
in outbreak situation. The three most common causes of acute bacterial meningitis are
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae [1]. This group
of bacterial meningitis agents can cause disease in all ages of life from newborn to the
elderly. The global burden of meningitis disease in 2016 was estimated to be 2.82 million
cases, and 318,400 deaths were attributed to meningitis. The three most common pathogens
(S. pneumoniae, N. meningitidis, and H. influenzae) were responsible for 55.7% and 57.2% of
the meningitis cases and deaths, respectively [2]. Besides meningitis, S. pneumoniae, H. in-
fluenzae, and N. meningitidis can cause other forms of invasive diseases such as bacteremic
pneumonia, septicemia, septic arthritis, pericarditis, etc. The risk of developing a major
(such as hearing loss, seizures, motor deficit, cognitive impairment, hydrocephalus, and vi-
sual disturbance) or a minor (learning difficulties, language impairment, developmental de-
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lay) sequela from bacterial meningitis was estimated to be 12.8% and 8.6%, respectively [3].
Meningitis caused by S. pneumoniae carried the highest risk with a major sequela (24.7%),
followed by H. influenzae (9.5%) and N. meningitidis (7.2%) [3]. Using meningococcal disease
(which carries the lowest risk of developing a major sequela) as an example, the cost to
care for a case who developed a major sequela was estimated to be £160,000 (US$214,096)
to £200,000 (US$267,620) for the first year alone; and the corresponding figure over the
lifetime of a case may be as high as £590,000 (US$789,479) to £1,090,000 (US$1,458,529) [4].
Since the incidence of meningitis and the risk of developing sequela are much higher in
low- and middle-income countries, and the resources to care for those meningitis patients
who develop severe sequela are often lacking in these countries, vaccines are probably the
most cost-effective strategy for the control and potentially elimination of this devastating
and fearful disease.

Although a number of other bacterial agents can cause meningitis, such as Listeria
monocytogenes, Escherichia coli, and other enteric bacteria, group B Streptococcus (S. agalactiae)
is gaining attention as a frequent cause of either early or late onset of invasive diseases
such as pneumonia, sepsis, or meningitis in the newborn [5,6] as well as various forms of
invasive diseases in pregnant women and non-pregnant adults [5,7]. The World Health
Organization (WHO) has also identified group B Streptococcus together with S. pneumoniae,
N. meningitidis, and H. influenzae as the four major bacterial meningitis agents to be included
in its work plan and global vision to defeat meningitis by 2030 [8].

Capsule-based protein-conjugate vaccines that target the major serogroups of N. menin-
gitidis and serotypes of H. influenzae and S. pneumoniae causing invasive diseases are now
available and implemented in vaccination programs in many countries [9–11]. As a result,
the epidemiology of bacterial meningitis has changed with the number of cases caused by
strains covered by the vaccine decreased dramatically but at the same time disease due
to serogroups or serotypes of the pathogens not included in the vaccine has emerged [12].
Since disease surveillance has been described by the WHO as one of the five major pillars on
the road map to defeat meningitis [8], the objectives of this report are to describe (i) features
of S. pneumoniae, N. meningitidis, H. influenzae, and S. agalactiae that may have implications
for vaccination and surveillance; (ii) currently licensed vaccines against S. pneumoniae,
N. meningitidis, and H. influenzae; (iii) changes in the epidemiology of invasive diseases
caused by these three pathogens; (iv) traditional and newer laboratory surveillance meth-
ods; and (v) how lessons learned from surveillance of the three most common bacterial
meningitis agents can inform the pre- and post-vaccine licensure surveillance of inva-
sive group B Streptococcus (GBS) disease when capsule polysaccharide conjugate vaccines
against GBS have been developed and are in clinical trials [5,13].

2. Characteristics of S. pneumoniae, N. meningitidis, H. influenzae, and S. agalactiae
Important for Vaccination and Surveillance

S. pneumoniae, N. meningitidis, and H. influenzae are respiratory pathogens that normally
colonize the human respiratory tract where they serve as a reservoir of infection [14–16].
Another common characteristic of these three invasive bacterial agents is the polysaccha-
ride capsules on their cell surface, which serve as serotyping antigens. The serotypes are
traditionally identified by anti-capsular antibodies using agglutination methods (or the
Quellung reaction for S. pneumoniae). The capsules also serve as protective antigens shield-
ing the bacteria from the human host defense like phagocytosis and complement activa-
tion [17,18]. As the protective antigen, vaccines based on the capsule have been developed
to target the most common serotypes of H. influenzae, N. meningitidis, and S. pneumoniae
causing invasive infections [9–11]. Another feature that makes these bacteria successful
pathogens is the plasticity of their genome and their recombinant nature [19–21].

Unlike S. pneumoniae, N. meningitidis, and H. influenzae, S. agalactiae colonizes the
human genito-gastrointestinal tract. Not only does it cause meningitis in the newborn and
various forms of invasive diseases in infants and adults, S. agalactiae is also known to cause
disease in cattle [22,23] and may have the potential to transmit to human as a zoonotic
pathogen [24]. Similar to S. pneumoniae, N. meningitidis, and H. influenzae, S. agalactiae
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also has a surface polysaccharide capsule that acts as virulence factor and protective
antigen [5,13]. Its genome is also prone to participate in recombination events [25].

3. Currently Licensed Vaccines for Control of Bacterial Meningitis

Currently there are 6 serotypes of H. influenzae recognized [26], 10 serotypes of S. agalac-
tiae [5,13], 12 serogroups for N. meningitidis [27], and 100 serotypes for S. pneumoniae [28,29]
(Table 1). Non-encapsulated strains also exist in all three species, and are termed non-
typeable (for H. influenzae and S. pneumoniae) or non-groupable (for N. meningitidis). Cur-
rently licensed vaccines to control some strains of S. pneumoniae, N. meningitidis, and H. in-
fluenzae are listed in Table 2, while vaccines for protection against S. agalactiae are not
licensed yet but are in advanced stages of clinical trials for maternal immunization [30,31].

Table 1. Capsular antigens of Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae,
and S. pneumoniae.

Organism Capsular Serotype/Serogroup Antigens Reference

H. influenzae Serotypes a, b, c, d, e, and f, Pittman, 1931 [26]

N. meningitidis Serogroups A, B, C, E, H, I, K, L, W, X, Y, and Z Harrison et al., 2013 [27]

S. agalactiae Serotypes Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX Song et al., 2018 [5];
Lin et al., 2018 [13]

S. pneumonia *

100 serotypes have been identified and only a
few are listed here; Serotypes 1, 2, 3, 4, 5, 6A, 6B,
6C, . . . . . . 11E, 20B, . . . 35D, 7D, 10D (complete

list can be found in the references provided)

Geno et al., 2015 [28];
Ganaie et al., 2020 [29]

* 100 different serotypes identified, please see references for full list.

Table 2. Licensed vaccines * against Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae.

Origanism Vaccine Type Serotype/Serogroup Targets Protein Carrier † Year First Licensed

H. influenzae Hib conjugate b TT, OMP 1987

N. meningitidis tetravalent
polysaccharide A, C, Y and W None 1974

N. meningitidis monovalent C
conjugate C CRM197, TT 1999

N. meningitidis monovalent A
conjugate A TT 2010

N. meningitidis tetravalent conjugate A, C, Y and W CRM197, DT, TT 2005

N. meningitidis 4 component MenB B protein base vaccine 2013

N. meningitidis factor H
binding protein B protein base vaccine 2018

S. pneumoniae PCV7 conjugate 4, 6B, 9V, 14, 18C, 19F, 23F CRM197 2000

S. pneumoniae PCV10 conjugate 1, 4, 5, 6B, 7F, 9V, 14, 18C,
19F, 23F CRM197, TT, DT 2009

S. pneumoniae PCV13 conjugate 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14,
18C, 19A, 19F, 23F CRM197 2011

S. pneumoniae PPV23 plain
polysaccharide

1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V,
10A, 11A, 12F, 14, 15B, 17F,

18C, 19A, 19F, 20, 22F,
23F, 33F

None 1983

* Except for the 4 component MenB and the factor H binding protein vaccines, all the other vaccines described in this Table are polysac-
charide based vaccines. † protein carriers include TT (tetanus toxoid), DT (diphtheria toxoid), CRM197 (mutant diphtheria toxoid),
OMP (outer membrane protein of N. meningitides).
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The first bacterial meningitis vaccine developed was solely polysaccharide-based
vaccine against serotype b H. influenzae (Hib) but it was soon discovered that plain polysac-
charide vaccines are T-cell-independent antigens and do not induce protective antibodies
in infants less than two years old [32], the most vulnerable age group for developing menin-
gitis and invasive disease [33,34]. Coupling of the capsular polysaccharide to a protein
carrier converts the vaccine to a T-cell dependent antigen that induces protective antibodies
in infants as young as two months of age [10]. Another characteristic of the capsular
polysaccharide vaccines is they are serotype-specific and offer protection against infection
by the homologous serotype and do not offer protection against heterologous serotypes.
Besides preventing invasive infections, the conjugate vaccines also reduce or eliminate
respiratory carriage of and hence offer herd immunity to the larger community for the
serotypes of these pathogens included in the vaccines [35–37]. The fact that conjugate
vaccines are serotype-specific and can eliminate nasopharyngeal carriage of the homolo-
gous serotypes means their protective coverage is limited to the serotypes included in the
vaccine and they can also alter the bacterial flora in the nasopharynx of vaccinated subjects.

The choice of which serotypes or serogroups to be included in the vaccines are based
on the fact that not all serotypes or serogroups are equally virulent nor have the same
prevalence in causing invasive diseases. For example, animal infection with isogenic
mutants of H. influenzae that expressed different capsule serotype antigens has shown that
serotype b is the most virulent, followed by serotype a [38]. In addition, most N. meningitidis
isolates recovered from normally sterile body sites of invasive meningococcal disease
(IMD) patients belong to six of the 12 recognized serogroups (A, B, C, W, X, and Y) [39,40].
Before the introduction of pneumococcal conjugate vaccines (PCVs), 10 serotypes (1, 4,
5, 6A 6B, 14, 18C, 19A, 19F, and 23F) were responsible for at least 50% of all invasive
pneumococcal disease isolates from six different parts of the world; and in one region,
they were responsible for over 80% of their invasive pneumococci [41].

Even before vaccine introduction, temporal and geographical variations in the serogroups
of N. meningitidis responsible for IMD is well documented [39,40]. Differences in the
serotypes involved in invasive pneumococcal disease (IPD) have also been reported from
different parts of the world [42,43]. Before Hib conjugate vaccines were introduced, most in-
vasive H. influenzae diseases were caused by Hib [33,34].

4. Effects of Vaccine Pressure, and Immune and/or Antibiotic Selection

Since currently licensed conjugate vaccines against S. pneumoniae, N. meningitidis,
and H. influenzae do not offer universal coverage for all the serotypes or serogroups,
immune pressure and selection against these pathogens can be expected to happen in their
natural habitat as well as in the serotypes and serogroups that will cause invasive disease
in the post-vaccine period.

In the presence of vaccine pressure, these bacterial pathogens may evolve to adapt by
mainly two mechanisms that affect their capsule antigens (the vaccine targets): Capsule or
serotype switching, and capsule or serotype replacement. Capsule switching involves two
strains of a species exchanging their capsule polysaccharide synthesis (cps) genes resulting
in a swap of their capsule antigens. For example, as shown in Figure 1a, a strain of genetic
linage 1 and with a vaccine type capsule (depicted in green) exchanges its cps genes with a
strain of genetic lineage 2 and with a non-vaccine capsule type (depicted in red). The end
result will be the genetic linage 1 strain now carries cps genes for non-vaccine capsule
type and expresses the non-vaccine capsule (red); while conversely the genetic linage 2
strain now expresses vaccine type capsule (green). Both S. pneumoniae and N. meningitidis
have been reported to have capsule switching occurring spontaneously in the absence
of vaccine pressure or, i.e., such capsule switching events have been reported prior to
conjugate vaccine introduction [44,45]. Capsule switched strains can also be selected
for by vaccine induced immune pressure and/or by wide spread antibiotic use if the
capsule switched strain carries antibiotic resistance genes [41]. After capsule switching,
the recipient strain will retain its original genetic background (usually determined by multi-
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locus sequence typing) [46] but expresses a different, e.g., non-vaccine type of capsule.
Frequent capsule switch in N. meningitidis from serogroup C to serogroup B, if it happens
in a hypervirulent clone like ST-11, may be problematic since there are no capsule-based
serogroup B meningococcal vaccines and protein-based meningococcal vaccines against
serogroup B may not provide universal coverage against all serogroup B strains [47].
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Figure 1. (a) Depiction of capsule switching between a genetic lineage 1* strain with a vaccine-type
capsule (colored green) and a genetic lineage 2* strain with a non-vaccine type capsule (colored red).
Diagram based on information from Swartley et al. [48]. (b) Illustration of capsule replacement when
the vaccine capsule type (colored green) strain of genetic lineage 1* is removed by the vaccine, leaving
the strain of genetic lineage 2* with non-vaccine capsule (colored red) to remain and proliferate.
Diagram based on information from Lipstich M [49]. (c) Another scenario of capsule replacement
when strain of genetic lineage 1* with both vaccine (colored green) and non-vaccine (colored red)
capsule types are present before vaccine introduction and after vaccine use, only the non-vaccine
capsule type of genetic lineage 1* strain remains. Diagram based on information from Lipstich M [49].

Capsule replacement happens when strains with vaccine capsule types that used to
inhabit the nasopharynx have been eliminated by the conjugate vaccines and are now being
replaced by strains expressing the non-vaccine capsule types. As a result, strains of non-
vaccine capsule types may increase in prevalence and eventually cause disease. Strains with
vaccine capsule type (depicted as green) and non-vaccine capsule type (depicted as red)
can co-exist prior to the use of conjugate vaccines and the two capsule types may be of
the different (Figure 1b) or the same (Figure 1c) genetic lineage. After selection by vaccine
pressure, only strains of the non-vaccine capsule type (red) remain and expand to fill the
void that used to be occupied by strains of the vaccine type (Figure 1b). If strains of the
same genetic lineage that expressed both vaccine and non-vaccine capsule types exist prior
to vaccine use, then strains of the same genetic lineage still persist after vaccine use but
they only carry the non-vaccine capsule type (Figure 1c). The phenomenon illustrated in
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Figure 1b,c is sometimes referred to as “unmasking” versus true replacement when only
the vaccine capsule type exists in the nasopharynx before vaccine use, and after vaccine
use, the vaccine capsule type strain is removed and the void in the nasopharynx is being
replaced by a non-vaccine capsule type strain. Strains of non-vaccine capsule types can also
be further selected by widespread antibiotic use if they carry the corresponding antibiotic
resistance genes [41].

5. Molecular Epidemiology of Invasive Pneumococcal Disease (IPD),
Invasive Meningococcal Disease (IMD), and Invasive H. influenzae Disease in the Post
Conjugate Vaccine Era
5.1. IPD in the Post PCV Era

Although PCVs are very effective in reducing the burden of IPD caused by vaccine
serotypes in many countries, IPD due to non-vaccine serotypes is still a concern. The emer-
gence of IPD due to non-vaccine serotypes may be due to either unmasking effect when
vaccine serotypes are removed from their natural habitat of the human nasopharynx, allow-
ing non-vaccine serotypes (which already exist) to expand and occupy the nasopharynx;
or by replacement due to the non-vaccine serotypes which do not exist in the nasopharynx
prior to PCV introduction but emerge to fill the void in the nasopharynx left behind by the
vaccine type [50]. For example, prior to PCV7 introduction, serotypes 19A (a non-PCV7
vaccine serotype) existed at a level of about 7.5% in 2001 and increased to 16% in 2007
after PCV7 was introduced in 2000, before declining to about 3% in 2014 after PCV13 was
introduced in 2010 [51]. The other mechanism responsible for the emergence of non-vaccine
serotypes is genetic recombination between strains leading to capsule switching. This was
illustrated in the emergence of some serotype 19A strains after PCV7 introduction by a ge-
netic recombination between a vaccine covered serotype 4, sequence type (ST)-595 recipient
strain with a donor strain of non-vaccine serotype 19 ST-199, providing the recipient ST-595
strain with the non-vaccine capsule serotype 19A [52]. Another study also demonstrated
that serotype 19A may again escape the PCV13 selection by a further switch to serotype
15B [53]. Although in this later study the genetic recombination occurred in strains from
pre-PCV7 period; nevertheless the mechanism of genetic recombination with a non-vaccine
capsule type is present in pneumococci. The pneumococcal capsule locus is a hotspot for
mutation including exhibiting a higher rate of genetic recombination compared to the rest
of the pneumococcal genome [54]. However, pneumococcal capsule locus recombination
that leads to capsule serotype switch does not appear to be random. For example, cap-
sule switch between strains within a serogroup occurred more often than serotype switch
involving strains between different serogroups [55]. Since many factors may govern the
pneumococcal population structure and the associated serotypes, some have suggested
the existence of epistatic factor contributing to the dynamic of the pneumococcal capsule
genetics [55,56].

Another mechanism may explain the persistence of some vaccine serotype in the
post PCV period. For example, serotype 3 (included in the PCV13 vaccine) persisted in
the nasopharyngeal samples as well as in specimens from IPD patients despite PCV13
usage [51,57,58]. Genome sequencing of serotype 3 isolates obtained prior to and after
introduction of PCV13 showed a different clade of serotype 3 has emerged in the post
PCV13 period despite the fact that both pre- and post-PCV13 isolates were typed by MLST
to belong to the same ST-180 clonal complex (CC). However, the new clade has been shown
to have sub-capsular protein antigen changes, which could explain strains of the new clade
have adapted to exist despite the presence of immunity induced by PCV13 [57].

Regardless of the vaccine escape mechanism, various non-PCV serotypes have emerged
in places where PCV immunization programs have been implemented reflecting geograph-
ical differences in serotype prevalence and distribution [59]. Non-PCV serotypes like
serotype 2, 8, 10A, 11A, 12F, 15A, 15B/C. 16F, 22F, 24F, 33F, and 35B/D, have been described
as causes of IPD [41,59–63]. To deal with this increase in non-PCV serotypes, 15-valent and
20-valent PCVs have been developed and are now in early clinical trials [64,65]. However,
in the post PCV era, predominance by a single or a few serotypes as causes of IPD was not
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observed. Instead, increase serotype diversity of invasive pneumococci recovered from
IPD cases has been observed [66], which may challenge the usefulness of increasing the
valency of PCVs. Two editorials in 2007, “Invasive pneumococcal disease, the target is
moving” [67] and “Serotype replacement in invasive pneumococcal disease: where do
we go from here?” [68] appear to be just as relevant today after two decades of PCV use.
Indeed, expert comments in 2021 still wrestle with the changing epidemiology of IPD due
to shifting serotypes, and identify continuous surveillance as an important function in
the control of IPD [69,70]. Ideally, a pan-pneumococcal universal vaccine would solve the
problem of chasing after the emergence of non-vaccine serotypes as causes of IPD.

5.2. IMD in the Post Conjugate Vaccine Era

In the US, quadrivalent (A, C, W, Y) meningococcal conjugate vaccine was licensed in
2005 and recommended for the 11 to 18 years age group [71]. In the post-quadrivalent con-
jugate vaccine period of 2006-2010, no capsule or serogroup replacement was detected [72].
In the Canadian province of Quebec, outbreak due to a serogroup B strain of ST-269 ap-
peared in 2013 [73] after two rounds of province wide vaccination against serogroup C
meningococci (MenC) (first with plain polysaccharide vaccine in 1992-1993 and then with
the MenC-conjugate vaccine in 2011) for control of outbreaks due to the hyper-virulent
strain of ET-15 (ST-11) [74,75].

In Europe, serogroup B N. meningitidis was responsible for most IMD (73.6% in
2011) while an increase in serogroup Y IMD has been reported in a number of European
countries [40]. Beginning in 2013, an increase in IMD due to serogroup W meningococci
(MenW) has been reported from across Europe with both incidence rates of disease and the
proportion of IMD isolates due to serogroup W showing yearly increase [76]. This increase
in MenW disease in Europe was due to the introduction of a new ST-11 strain (different from
the Hajj strain, which emerged during the 2000 Hajj pilgrimage in Saudi Arabia) from
South America into the UK with further diversification to the 2013 UK strain, which spread
through Europe [76,77]. This new MenW strain has also been reported to cause an increase
in IMD in both Australia and Canada [78,79]. Expansion of a penicillin-resistant MenW
ST-11 clone has also been described [80].

Before introduction of the monovalent meningococcal serogroup A conjugate vac-
cine, MenAfriVac, in 2010 [81], most meningococcal epidemics in Africa were mostly
caused by serogroup A N. meningitidis (MenA). However, a serogroup X meningococcus
(MenX) epidemic was reported from southwest Niger in 2004-2006 [82], and subsequently
MenX outbreaks had occurred in Burkina Faso, Niger, Togo, and Uganda [83]. The MenX
outbreak strain has been characterized as ST-181 CC with high experimental animal
pathogenicity [84]. After introduction of the MenAfriVac, epidemics due to serogroups C,
W, and X meningococci have been reported in the African meningitis belt countries. [85,86].
The MenC strain appeared to be a new strain typed as ST-10217, which has been shown to
have arisen from a nongroupable strain recovered from a healthy carrier in Burkina Faso
in 2012 prior to the emergence of the MenC ST-10217 and the MenC outbreak in 2013 [87].
The MenW strain causing outbreaks in Africa has been studied, and it appeared to be
related to, and to have diversified from the 2000 Hajj strain [88].

Longitudinal carriage studies have been carried out in Africa to understand the
epidemic nature of meningococcal meningitis in recent years both before and after the
introduction of MenAfriVac in 2010. In the study carried out in one district of northern
Ghana over the period of 1998 to 2005 before MenAfriVac was introduced, it was found
that the colonized meningococcal population changed with time and matched temporally
with the strain causing epidemics in the region [89]. Three successive waves of colonized
meningococci were observed with ST-5 MenA, followed by ST-751 MenX, and ST-7 MenA.
In the study to assess the effect of immunization with MenAfriVac, the carriage study has
shown that the vaccine was both effective in control of MenA disease and in elimination of
MenA from the respiratory tract of healthy carriers up to six or seven years after vaccine
introduction. Like the other longitudinal carriage study in Ghana, a small percentage of
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oropharyngeal samples contained MenW of ST-11 CC (0.48%) and MenC of ST-10217 CC
(0.10%) [90]. These studies certainly pointed to the importance of meningococci in healthy
carriers as contributors of infection and potential sources of epidemics; and that conjugate
vaccination may further change the population of meningococci in the normal habitat of
the human upper respiratory tract.

5.3. Invasive H. influenzae Disease in the Post Hib Conjugate Vaccine Era

Following introduction of the Hib conjugate vaccine in the early 1990s, the epidemi-
ology of invasive H. influenzae disease in those countries with Hib vaccination programs
have changed substantially in the past three decades. Non-typeable or non-encapsulated
H. influenzae (NT-Hi) is now the most frequent cause of invasive H. influenzae disease
worldwide [91]. In Europe, during the period of 2007 to 2014, NT-Hi was the most com-
mon type identified but 74.1% of their invasive encapsulated H. influenzae were typed as
serotype f, followed by serotype e (21.4%) [92]. In contrast, in the U.S., although NT-Hi is
also the most common cause of invasive H. influenzae disease, the incidence of serotype
a invasive H. influenzae disease has increased by 13% annually during the period of 2002
to 2015 [93].The incidence of invasive disease caused by NT-Hi has increased by 3% an-
nually while incidence of invasive H. influenzae disease due to other serotypes was either
stable or decreasing. The global presence of serotype a H. influenzae (Hia) has been docu-
mented [94,95], and the severity of invasive Hia disease has been described [96–98] which
called for a Hia vaccine development [99].

Genetic analysis of Hia has revealed a population biology very similar to Hib, i.e.,
(a) with two phylogenetic populations similar to the clonal divisions I and II descried for
Hib; and (b) with most invasive Hia isolates clustered together in a phylogenetic population
(named clonal division I as for the majority of invasive Hib strains), represented by isolates
typed by MLST as ST-23 and many STs related to ST-23 as single, double, or triple locus
variants [100,101]. Another clone within this larger genetic population of clonal division
I and identified by MLST as ST-4 has been reported in Brazil to be associated with more
severe disease and higher case fatality rate [102]. In contrast to clonal division I Hia,
clonal division II Hia is rarely isolated from invasive disease cases in Canada [101] and has
not been found associated with invasive disease in Alaska [100]. However, clonal division
II Hia identified by MLST as ST-62 has been found in 75% (21/28) of the Hia invasive
disease case isolates from children < 18 years old in Utah, United States [103]. This may
suggest unique geographical distribution of Hia genotypes.

To understand the emergence of NT-Hi as a cause of invasive disease in the post Hib
conjugate vaccine era, comparative genome studies have revealed that NT-Hi showed much
higher genetic diversity when compared to Hib or other serotypes that have been regarded
as more genetically conserved or clonal [104,105]. Non-encapsulated S. pneumoniaae have
also been reported to have higher genetic diversity probably as a result of higher rates of
genetic recombination as the capsule may serve as a barrier for foreign DNA uptake [21,106].
The higher genetic diversity of non-encapsulated H. influenzae may offer better adaptation
to the host, e.g., by evading host immunity.

6. Laboratory Surveillance of S. pneumoniae, N. meningitidis, and H. influenzae

It is with this background of a changing microbial ecology in the nasopharynx of the
human host as the bacterial pathogens are adapting to the vaccine pressure that laboratory
surveillance of invasive bacterial meningitis pathogens are becoming increasingly impor-
tant as well as challenging. The molecular typing methods for outbreak detection and
surveillance of IMD, IPD, and invasive H. influenzae disease have been reviewed a decade
ago with a focus on DNA sequencing methods [107]. They can be briefly summarized
below as:

(1) Serogrouping and serotyping by the conventional method of using antisera to
detect the capsular antigens, through either bacterial agglutination or Quelling reactions,
has the value of detecting expression of the capsule antigens albeit the method may
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sometimes be inaccurate [108]. Molecular method like PCR has been introduced to improve
the detection and identification of serotypes, including that for S. agalactiae [109–112].

(2) Clonal analysis by multilocus sequence typing (MLST) is available for S. pneumoniae,
N. meningitidis, and H. influenzae [46,113,114]. Strains are typed as STs and related STs are
grouped together to form a CC.

(3) Target gene sequencing for fine typing:
The following genes have been proposed for typing of meningococci: fetA, which en-

codes an iron-regulated outer membrane protein; porA, which encodes the class 1 outer
membrane protein PorA; porB, which encodes the class 2/3 outer membrane protein
PorB [107]; and the newer protein-based MenB vaccine target genes, fHbp, nhba, and nadA,
which encode for factor H binding protein, Neisseria heparin binding antigen, and the
Neisseria adhesion A, respectively [115,116].

For S. pneumoniae, the ply and lytA genes, which encode for the pneumolysin and
the autolysin, respectively; as well as the pspA gene, which encodes for the pneumococ-
cal surface protein A, have been proposed as targets for potential typing purposes [107].
PspA has been reported to be associated with virulence and invasiveness of pneumo-
cocci [117]. Other gene markers associated with virulence have been suggested, includ-
ing pspC, which encodes for the pneumococcal choline-binding protein C (PspC), for asso-
ciation with invasiveness of strains [117]. The slaA gene, which encodes for phospholipase
A2, and four contiguous genes, one of which predicted as pblB that encodes a prophage tail
protein, were either associated with the clinical disease of meningitis, or 30-day mortality
rate, respectively [118].

The following genes have been proposed for typing of H. influenzae: ompP2, ompP5,
hmw1, and hmw2 [107]. The omp2 and omp5 genes encode for two different outer membrane
proteins, a porin and a OmpA family protein, respectively. The hmw1 and hmw2 encode for
HMW1 and HMW2, which are surface adhesion proteins (HMW stands for high molecular
weight). A number of potential vaccine candidates have also been identified and they may
have potential as further typing targets [119].

(4) Antibiotic susceptibility profile: Antibiogram can serve as a typing tool but more
usefully in direct patient care as well as for surveillance purpose. Testing can be done by
the disk diffusion method or quantitatively by the dilution assays (broth or agar dilution
methods). Guidelines for the testing methods including the culture media, classes of
antibiotics to be tested, as well as the interpretation of results have been published by
both The European Committee on Antimicrobial Susceptibility Testing (EUCAST) [120]
and the Clinical Laboratory Standards Institute’s (CLSI’s) Subcommittee on Antimicrobial
Susceptibility Testing (AST) [121].

Besides the phenotypic methods, genetic prediction of antibiotic susceptibility has
also been described by Harrison et al. [107]. Of the genes associated with decreased
susceptibility or resistance to different types of antibiotics, the penicillin binding protein
genes of S. pneumoniae that determines susceptibility towards penicillin are of special
interest. The cps locus of S. pneumoniae is flanked by two of the penicillin binding protein
genes, pbp1a and pbp2x; their juxtaposition sometimes allow capsule switching and transfer
of the penicillin resistant genes to occur in a single recombination event.

7. Whole Genome Sequencing (WGS) for Molecular Epidemiology and Genomic
Surveillance of Vaccine-Preventable Bacterial Meningitis Agents

For quite some years, MLST has been proven useful to classify isolates into clonal
types and it has been applied to identify hypervirulent clones [122,123] and capsule switch-
ing events between serogroups or serotypes [44,45]. However, intra-clonal variations
have been described, which may have implications in our understanding of the changing
epidemiology of these vaccine-preventable diseases [57,117,124].

With the first bacterial genome sequenced and published in 1995 [125], there has
been a very rapid development over the last two decades in sequencing technologies that
include cost reduction as well as web-based bioinformatics platforms and pipelines to
assemble and analyze genome sequences. As such, genome sequencing has now become
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a standard laboratory tool to study microbes. Many of our current understanding of the
molecular epidemiology of a number of infectious diseases, including the common bacterial
meningitis agents of S. pneumoniae, N. meningitidis, H. influenzae, and S, agalactiae are based
on data obtained by whole-genome sequencing projects.

However, to make WGS a routine laboratory tool for the global surveillance of
vaccine-preventable bacterial meningitis, additional work may still be required on stan-
dardization and harmonization of methodology, data analysis and nomenclature on top
of the issues of data ownership, and confidentiality. A global partnership to study the
genomes of S. pneumoniae has published an international definition of pneumococcal
lineage [126]. For N. meninigitidis, nomenclature is currently based on historical conven-
tion [127] and an international committee is responsible for naming clonal complexes (
https://pubmlst.org/organisms/neisseria-spp/further-info (accessed on 15 December
2020)). Similar development for H. influenzae appears to be lacking for now. Traditional anal-
ysis of the population biology of encapsulated H. influenzae divided them into two clonal
divisions [128], and WGS analysis of the recently emerged serotype a H. influenzae also
revealed two populations [101] like the two clonal divisions described using multilocus
enzyme electrophoresis of Hib [128]. However, the definition of lineages of non-typeable
H. influenzae may need further study and discussion because their genetic background
appear to be much more diverse than the encapsulated or serotypeable strains of H. influen-
zae [129].

WGS data can be used to predict results obtained by the traditional surveillance
methods. Use of WGS to predict serotype of S. pneumoniae [130] and H. influenzae [131]
as well as serogroup of N. meningitidis [132] have been described. A platform that uses
WGS data for determination of MLST ST and clonal analysis has also been developed [133].
Use of WGS data to identify genetic typing markers and virulence factors has also been
published [105,118]. Pipelines to apply WGS to predict antibiotic susceptibility of bacterial
pathogens have been developed [134,135]. Improved sequencing technology has allowed
direct non-culture genome sequencing from clinical specimens to identify the cause of
culture negative fulminant fever [136]. This metagenomics approach has been applied
to investigate a meningococcal outbreak in Liberia and the genome data identified the
outbreak strain as identical to the unique serogroup C meningococcal strain causing
outbreaks in West Africa [137]. The experience gained from WGS studies of S. pneumoniae,
N. meningitidis, and to a lesser extent H. influenzae, would help to inform and prepare for
the pre- and post-vaccine introduction surveillance of S. agalactiae. The platforms built for
S. pneumoniae, N. meningitidis, and H. influenzae will likely shorten the deployment of these
technologies to study S. agalactiae.

To enable a whole genome nucleotide sequence-based surveillance tool to comple-
ment conjugate vaccines in the global effort to defeat meningitis, a WHO-led partnership
called Global Meningitis Genome Partnership (GMGP) was formed to coordinate, assist,
and develop guidelines for using WGS data to identify and track the global epidemiology
of common bacterial meningitis agents of S. pneumoniae, N. meningitidis, H. influenzae,
and S. agalactiae [138]. This collaborative approach has the potential of building synergy
between the international partners to achieve the goal of defeating vaccine-preventable
bacterial meningitis by 2030.

8. Chemoprophylaxis, Corticosteroids, and Experimental Immune Modulating
Approaches for Prevention and as Adjuvant Therapeutic Agents of
Bacterial Meningitis

Although vaccines remain the primary tool to offer active protection against infections,
chemoprophylaxis can prevent secondary cases by offering protection to close contacts and
household members of index cases. Chemoprophylaxis can also offer protection to those
immunized subjects before adequate level of adaptive immunity can be developed. Guide-
lines that define household members and close contacts of index cases of Hib and IMD as
well as the choice and dosage of prophylactic antibiotics have been published [139,140].
For those requiring chemoprophylaxis to prevent IMD, a single dose of ciprofloxacin is

https://pubmlst.org/organisms/neisseria-spp/further-info
https://pubmlst.org/organisms/neisseria-spp/further-info
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recommended, or rifampicin given twice daily for two days as an alternative. Other pro-
phylactic antibiotics may include ceftriaxone, cefixime, and azithromycin. IMD patients
treated with benzylpenicillin (which may not eliminate pharyngeal meningococci) are
recommended to receive chemoprophylaxis that can eliminate nasopharyngeal carriage
of meningococci before hospital discharge to prevent potential transmission to household
members. Rifampicin once a day for four days or ciprofloxacin twice a day for five days are
recommended prophylactic antibiotics for contacts of index cases of Hib. Other effective
antibiotics may include ceftriaxone and azithromycin. Chemoprophylaxis is generally not
recommended for close contacts of IPD patients. However, children with increased risk
of IPD such as those with asplenia or sickle cell disease should receive daily prophylaxis
with oral penicillin [141]. Public Health England also has guidelines of infection control,
vaccination, and chemoprophylaxis (with rifampicin, penicillin, or azithromycin) for high
risk individuals living in closed settings when outbreak or cluster of severe pneumo-
coccal disease occur [142]. To prevent early onset of GBS in neonates, pregnant women
should be offered screening for GBS and intrapartum antibiotic prophylaxis in indicated
situations [143]. Besides chemoprophylaxis, immunization with the recommended vac-
cines for IMD, Hib, and IPD should be the primary tool for prevention of these vaccine
preventable diseases.

Early treatment with dexamethasone reduced mortality and improved the outcome
of adult patients with acute meningitis [144]. However, in a Cochrane review to study
corticosteroids as an adjuvant therapy of bacterial meningitis, the authors found that
corticosteroids did not reduce the overall mortality in meningitis patients but can reduce
hearing loss and neurological sequelae [145]. The effect of corticosteroids on meningitis
mortality and sequelae varied according to the bacterial agent causing meningitis [145].
Benefits of corticosteroids in treatment of meningitis patients have led to hypothesis and
experimental approaches to modulate the immune response in order to decrease the
harmful effects of inflammation and to improve the outcome of bacterial meningitis [146].
In one study, the benefit of prophylactic palmitoylethanolamide (a natural fatty acid
amide) was demonstrated in a mouse model of E. coli meningitis to prolong survival and
reduce symptoms by reducing inflammation and slowing the progression of infection [147].
Despite success as immunomodulation therapy for a number of auto-immune diseases such
as arthritis and psoriasis, this approach, other than the use of dexamethasone, as adjuvant
therapy of bacterial meningitis remain elusive and at the pre-clinical stages of development.

9. Looking Ahead and What to Expect in the Post-Genomic Era of Meningitis Control

The conjugate vaccines currently in use to control S. pneumoniae, N. meningitidis,
and H. influenzae invasive infections have undoubtedly saved tens of thousands of lives [148]
but there is no room for complacency because these vaccines do not offer universal coverage
against all serotypes or serogroups of these pathogens. Therefore, laboratory surveillance
couples with good epidemiological work remain important to monitor the trends of vaccine-
preventable bacterial meningitis. We need to stay vigilant for diseases due to strains arising
from the phenomenon of capsule switching and capsule replacement. For H. influenzae,
the most common invasive strains now are non-encapsulated [91]. An increase in the de-
tection of non-encapsulated S. pneumoniae has recently been reported [149]. Although most
non-encapsulated S. pneumoniae do not cause IPD, their increase in prevalence may be
concerning since they may serve as reservoirs of gene pools, including antibiotic resistance
genes, for transfer into encapsulated S. pneumoniae. Another concern is the finding of hy-
brid capsules [150,151] including new capsule types due to recombination with a different
Streptococcus species, for example, S. mitis [29]. Transfer of a S. pneumoniae capsule into
a normally non-pathogenic or non-invasive S. mitis strain has also been reported [152].
With a large repertoire of capsule genes in S pneumoniae, and related Streptococcus species,
there may be endless combinations for the organisms to take advantage of to evade vac-
cine immunity.
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The genomic era seems to have opened up new opportunities like “reverse vacci-
nology” to quickly identify potential vaccine candidates [153]. Machine-learning and
artificial intelligence have also been proposed to mine genomes for useful data and genes
for potential applications [154].

10. Conclusions

Nowadays, we have powerful conjugate vaccines that target the most common bacte-
rial meningitis agents (at least the most common invasive serotypes or serogroups) to not
only prevent infections in the vulnerable age group, but also by eliminating nasopharyngeal
carriage, to provide herd immunity to the non-vaccinated individuals. Conjugate vaccines
have prevented millions of deaths from bacterial meningitis over the last two decades [2].
We now also have genomic tools that can read the complete coding sequences of bacte-
ria for a never-before-seen gene-by-gene comparison at the nucleotide sequence level to
identify and track the movement of strains (including new strains) and infections glob-
ally [76,84,97,133] in order to either quickly deploy vaccines or to develop newer vaccines
for control. Nevertheless, we cannot be complacent as we have witnessed changes in
the three bacterial meningitis agents after vaccine introduction. The significant increase
of invasive H. influenzae disease due to non-encapsulated or non-typeable strains or the
increase in Hia in some population in recent years are of concern [94–98]. The epidemiology
of IMD in Africa has changed with much success in the deployment of the monovalent
MenAfriVac leading to dramatic decreases in incidences of serogroup A diseases [81]. How-
ever, other vaccine-preventable serorgroups like W and C still continue to cause significant
amount of disease when vaccines against these serogroups have not been deployed yet.
The most problematic may be related to IPD due to non-vaccine serotypes emerging to
cause disease after the sequential introduction of PCV7, PCV10 and PCV13 [50,52,53,57,58].
Whether this is related to the large number of serotypes of S. pneumoniae in contrast
to the much smaller number of serotypes of H. influenzae or serogroups of N. meningi-
tidis is unknown, but mathematical modelling suggested the number of serotypes might
have an effect on strain replacement in nasopharyngeal carriage after vaccination [49].
Even though only 10 serotypes of S. agalactiae have been identified, its different ecology
(genito-gastrointestinal colonizer versus pharyngeal colonizer) may make the effect of
conjugate vaccines on the subsequent epidemiology difficult to predict.

In summary, we are in a much better position to control bacterial meningitis than ever
before and surveillance continues to have a key role to play [69,70].
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