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Abstract 

Background: Periventricular nodular heterotopia (PNH) is a malformation of cortical development characterized 
by nodules of abnormally migrated neurons. The cause of posteriorly placed PNH is not well characterised and we 
present a case that provides insights into the cause of posterior PNH.

Case presentation: We report a fetus with extensive posterior PNH in association with biallelic variants in LAMC3. 
LAMC3 mutations have previously been shown to cause polymicrogyria and pachygyria in the occipital cortex, but 
not PNH. The occipital location of PNH in our case and the proposed function of LAMC3 in cortical development sug‑
gest that the identified LAMC3 variants may be causal of PNH in this fetus.

Conclusion: We hypothesise that this finding extends the cortical phenotype associated with LAMC3 and provides 
valuable insight into genetic cause of posterior PNH.
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Background
Malformations of cortical development (MCD) are 
a group of disorders encompassing macroscopic and 
microscopic abnormalities of the cerebral cortex that 
have arisen during prenatal development [1]. The spec-
trum of MCD includes periventricular nodular heteroto-
pia (PNH), where nodules of mis-localised neurons are 
abnormally arrested in their migration to the developing 
cerebral cortex. These ectopic neurons instead collect 
in the periventricular white matter, the location of the 

embryonic ventricular zone (VZ) [1, 2]. Peak neuronal 
migration occurs predominantly between the 12th to 
24th weeks of gestation, meaning PNH can potentially be 
identified on ultrasound and magnetic resonance imag-
ing (MRI) in pregnancy, but is difficult to diagnose before 
the third trimester [3].

Classical bilateral, symmetric PNH is associated with 
mutations affecting FLNA at Xq28 [4]. In the majority 
of individuals with PNH secondary to FLNA mutations, 
the nodules are located in the anterior bodies and fron-
tal horns of the lateral ventricles (fronto-parietal) [4]. 
Individuals with classical PNH are typically female, and 
usually present with seizures and normal to borderline 
intelligence [4]. In addition to classical PNH, multiple 
chromosomal abnormalities as well as variants affect-
ing 9 genes (ARF1, ARFGEF2, DCHS1, ERMARD, FAT4, 
INTS8, MAP1B, MCPH1, and NEDD4L) have been 
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linked to PNH, indicating the genetic heterogeneity of 
the disorder [5–13].

Considerable heterogeneity is also observed in clini-
cal presentation, with multiple subtypes of PNH having 
been described [2]. Bilateral posterior PNH, involving 
the occipital cortex, accounts for ~ 25% of all PNH cases, 
and differs from fronto-parietal, FLNA-associated PNH 
not only in the location of the nodules, but also in the 
increased likelihood of associated cortical malforma-
tions [14]. The genetic cause of many posterior PNH 
cases remains unknown, with mutations in only 3 genes 
(ARFGEF2, ERMARD and NEDD4L) being implicated as 
causal [6, 8, 12].

Here we report a male fetus with a severe presenta-
tion of isolated posterior PNH in which we identified 
compound heterozygous missense variants affecting the 
LAMC3 gene (MIM 604349), which encodes the laminin 
subunit ɣ3. To our knowledge, this is the earliest identi-
fication of PNH by morphology ultrasound and the first 
report of LAMC3 variants in a case of posterior PNH. 
Since mutations in LAMC3 have previously been associ-
ated with other occipital MCD, it was an ideal candidate 
for the abnormalities identified in this fetus.

Case presentation
Study subjects
Written informed consent was provided by both par-
ents for inclusion in the the Genomic Autopsy Study, 
an National Health and Medical Research Council 
(NHMRC) funded trio exome research study, approved 
by the Women’s and Children’s Health Network Human 
Research Ethics Committee (HREC/15/WCHN/35). All 
procedures performed were in accordance with the ethi-
cal standards of the 1964 Helsinki declaration and its 
later amendments.

Case description
The parents of the male proband were non-consanguine-
ous and healthy, with no known medical conditions. They 
have had 5 pregnancies; two healthy males, the proband, 
a healthy pregnancy currently in progress, and a history 
of one previous early miscarriage (Fig. 1a).

The proband pregnancy was conceived naturally and 
there were no early exposures to teratogens. Mater-
nal health was good, although there was one episode of 
minimal vaginal bleeding at 6 weeks. The 12-week nuchal 
translucency scan was normal (NT 2.3 mm) and first tri-
mester biochemical screening was low risk for trisomies 
13, 18 and 21. The 19-week morphology ultrasound dem-
onstrated unilateral ventricular dilatation and irregularity 
of the cerebral ventricular wall, suggestive of a possi-
ble diagnosis of PNH (Fig. 1b). The femur and humerus 
measured at the 10th centile, whilst the remainder of the 

long bones measured normal. No other abnormalities 
were seen. A fetal MRI performed at 20 + 0  weeks ges-
tation showed left sided colpocephaly and irregularity of 
the fetal ependymal lining in the lateral ventricles, repre-
sentative of subependymal nodular heterotopia (Fig. 1c). 
No other brain abnormalities were identified. Following 
the abnormal ultrasound results, a microarray (Illumina 
Infinium Global Screening Array-24v1.0, Illumina Inc, 
San Diego, CA, USA.) was performed on amniotic fluid 
cells. This confirmed a male fetus but no copy number 
variants (CNVs) were identified.

Based on the ultrasound findings, the couple elected 
for a termination of pregnancy at 21 + 5  weeks gesta-
tion and a perinatal autopsy was undertaken. The fetus 
weighed 440  g and growth parameters were consist-
ent with a 21-week gestational age. Subtle dysmorphic 
features were apparent with a triangular face, widened 
anterior fontanelle and prominent heels. The remainder 
of the external examination was normal and there was 
no histological abnormality of the placenta. The internal 
thoracic and abdominal organs were normally formed 
and sited, and a radiological skeletal survey was normal. 
A post mortem MRI confirmed extensive PNH, predomi-
nantly involving the occipital horns of the lateral ventri-
cles (Fig.  1d). The PNH was visible macroscopically at 
autopsy (Fig. 1e) and histology of affected tissue showed 
nodules of circumscribed glioneuronal tissue with disor-
ganised, moderately dense aggregates of NeuN positive, 
primitive neurons (Fig. 1f, Additional file 1: Figure S1a). 
Some heterotopic nodules were also noted adjacent to 
the germinal matrix (Additional file  1: Figure S1b). No 
abnormalities of the corpus callosum were identified. The 
remainder of the cortex, brainstem and cerebellum were 
also macroscopically and histologically normal, with no 
evidence of polymicrogyria or pachygyria (Fig. 1e, Addi-
tional file 1: Figure S1c).

Genetic analysis
Genomic DNA was isolated from whole blood (parents) 
or lung tissue (proband) and sequenced at the Broad 
Institute of MIT and Harvard’s Genomics Platform (Bos-
ton, MA, USA). Exonic regions were enriched using an 
Illumina exome capture (38  Mb target) and sequenced 
(150  bp paired reads) on an Illumina HiSeq (Illumina 
Inc, San Diego, CA, USA). Sequencing reads were 
aligned to the hg19 reference genome using BWA ver-
sion 0.7.12, duplicate reads were removed and variants 
called using GATK HaplotypeCaller version 3.8.0. CNV’s 
were detected using an in-house (unpublished) algo-
rithm, which partitions read depth signals into bin sizes 
optimal for the exome capture. CNV calling for the trio 
was performed in conjunction with 98 unrelated samples 
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sequenced in the same batch, used to normalise read 
depth signals and remove sequencing-induced errors.

Single nucleotide variants (SNVs) were retained 
for being rare, with rare defined as ≤ 1% population 
frequency and ≤ 3 homozygous individual in gno-
mAD for autosomal or X-linked recessive inheritance, 

and ≤ 0.001% population frequency for autosomal 
dominant de novo inheritance [15]. Subsequent filter-
ing selected for missense, truncating or canonical splice 
site protein-altering variants which were either called 
‘de novo’ or inherited in an X-linked or autosomal reces-
sive manner from the unaffected parents. Using the same 

Fig. 1 Neurological phenotype of a family with biallelic missense variants in LAMC3. a Pedigree of the non‑consanguineous family. b Morphology 
ultrasound at 19 + 4 weeks gestation showing unilateral ventricular dilatation and irregularity of the cerebral ventricular wall (indicated by arrows). 
c Fetal MRI at 20 + 0 weeks gestation showing multiple foci of periventricular nodular heterotopia in the occipital lobes (indicated by arrows) [Axial 
T2 weighted image, 4 mm thick slices]. d Post mortem MRI at 21 + 5 weeks gestation shows extensive bilateral posterior periventricular heterotopia 
(indicated by arrows) [Coronal T2 weighted image, 2 mm thick slices]. e Coronal sections of the cerebrum (frontal top left to occipital bottom 
right). Macroscopically the brain shows normal gyration for gestation, with no evidence of polymicrogyria or loss of sulci usually visible at 21 weeks 
gestation to suggest early pachygyria. Subependymal nodularity is present within the occipital horns of the lateral ventricles (indicated by arrows). 
No further structural malformations of the brain are evident. f Microscopic image of a subependymal periventricular nodular heterotopia within 
the occipital horn of the lateral ventricle. The well circumscribed nodule is composed of disorganised primitive neurons within glioneuronal tissue. 
(Scale = 500 µm)
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inheritance models, candidate CNVs were selected based 
on having no reciprocal overlap with known benign 
CNVs ≥ 70% in gnomAD, 1000G, or DGV, and being pre-
sent in ≤ 2 unrelated samples from in-house data (n = 98). 
SNVs and CNVs were then prioritised based on the bio-
logical relevance of the affected gene to a neurological 
phenotype (OMIM, Ensembl).

Results
A next-generation sequencing-based panel test, covering 
ARFGE2, ERMARD, NEDD4L and FLNA was performed 
in the clinical setting but no mutations were identified.

Identification of candidate variants
Trio exome sequencing resulted in an average coverage 
of 83.56, with 89% of the exome target bases covered at 
least 20-fold (Additional file  4: Table  S1). Variant call-
ing provided 169,615 variants with an allele depth ≥ 5. 
Filtering for rare, protein altering variants revealed 7 
variants in 4 genes considering autosomal recessive 
inheritance and 3 potential de novo variants (Addi-
tional file  4: Table  S1). No significant copy number 
variants were identified. Further prioritisation of vari-
ants affecting genes associated with brain development 
indicated compound heterozygous variants in LAMC3: 
p.Arg356Cys (paternal; Chr9(GRCh37):g.133914340C>T, 
NM_006059.3:c.1066C>T,) and p.Gln909Arg 
(maternal; Chr9(GRCh37):g.133943597A>G, 
NM_006059.3:c.2726A>G,). Both LAMC3 variants were 
confirmed by Sanger sequencing in the proband and par-
ents, with further co-segregation analysis in the family 
revealing that an unaffected male sibling carried only the 
paternal variant (Fig. 1a, Additional file 2: Figure S2).

Prenatal diagnosis
Following identification of the LAMC3 variants, the par-
ents elected for prenatal diagnostic testing, via chorionic 
villus sampling at 10-weeks gestation, in their two subse-
quent pregnancies. The first male pregnancy was found 
to not carry either variant, consistent with the normal 
16-week ultrasound and normal morphology scan at 
20-weeks. At birth there was no evidence of PNH and 
at 1  year the child is developing normally. The second 
pregnancy, currently at 28-weeks gestation, carries only 
the maternal variant, consistent with a normal 16-week 
ultrasound and normal morphology scans (Fig. 1a, Addi-
tional file 2: Figure S2).

Discussion and conclusions
Here we present a 21-week-old male fetus with posterior 
PNH located in the occipital horns of the lateral ventri-
cles, associated with colpocephaly, in which compound 
heterozygous LAMC3 variants were identified.

LAMC3 is located on chromosome 9 and encodes the 
laminin subunit ɣ3. Laminins are extracellular matrix 
glycoproteins required for cell adhesion, differentia-
tion and migration. They are made of an alpha, beta and 
gamma chain, with different combinations of the subunit 
variants combining to form the various laminin isoforms 
[16]. The laminin ɣ3 subunit is utilised in 3 laminin 
isoforms, two of which have only been observed to be 
expressed in the central nervous system [16].

In the developing human fetal brain, LAMC3 is 
expressed in both the VZ and throughout the corti-
cal plate, with greatest expression in the region of the 
temporal and occipital lobes. At the subcellular level, 
LAMC3 expression is localized to the cell bodies and 
dendrites of pyramidal neurons [17]. This expression 
is similar to that observed in known PNH genes, FLNA 
and ARFGEF2, although LAMC3 does not seem to show 
the same localisation within the VZ to neuroependymal 
progenitors [18]. The spatial and temporal expression 
pattern of LAMC3 is therefore consistent with muta-
tions in the gene potentially causing a PNH phenotype. 
The expression pattern of human LAMC3 is however in 
contrast to that of mice, where expression is localized to 
the pial basement membrane and cerebral vasculature, as 
well as to the intermediate zone, and the marginal zone 
of the cortical plate [17, 19].

The functional importance of Lamc3 is suggested by a 
homozygous knockout mouse model which shows corti-
cal lamination defects and reduced brain size compared 
to wild-type [19]. Lamb2-Lamc3 double null mice show 
profoundly abnormal lamination, likely resulting from 
a combination of disruptions to the integrity of the pial 
basement membrane, altered radial glial cell morphol-
ogy and aberrant distribution of Cajal-Retzius cells [19]. 
While the double null mouse has a phenotype that is 
more severe than either single null alone, it is currently 
unclear what the individual contribution of Lamb2 and 
Lamc3 is to these functions. Additional insight into the 
function of LAMC3, comes from Lamc3 knockout mice 
which demonstrate significantly delayed retinal astro-
cyte migration before later resolution to wild-type-like 
distribution [20]. Lamb2-Lamc3 double null mice show 
severely halted migration which does not resolve, and 
is again more severe than observed in either null indi-
vidually [20]. Further support for a functional role of 
LAMC3 in migration is given by a knockdown zebrafish 
model which demonstrates defects in rostral primary 
motor neuron migration [21]. This proposed function of 
LAMC3 in migration and cortical development is con-
sistent with mutations in the gene resulting in a PNH 
phenotype through failed migration and subsequent ter-
minal differentiation of a subset of progenitor cells within 
the VZ.
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In humans, biallelic mutations in LAMC3 are respon-
sible for a rare autosomal recessive condition character-
ized by pachygyria and polymicrogyria restricted to the 
occipital lobes (MIM 614,115) [17]. To date, 11 individu-
als from 5 consanguineous families have been described, 
with both truncating mutations and missense mutations 
reported [17, 22, 23]. In addition to the occipital corti-
cal gyration abnormalities, affected individuals typically 
present with seizures (11/11 reported cases, all child-
hood onset where noted), and mild to moderate devel-
opmental delay (8/10 reported cases, not specified in 1 
case) [17, 22, 23]. In one individual, while the pachygyria 
remained confined to the occipital lobe, the polymicro-
gyria extended to the frontal, parietal and temporal lobes 
of both hemispheres [23]. Although PNH has not been 
observed in any of the reported LAMC3-related cases, 
the predominantly occipital location of their MCD is 
consistent with the variants identified in our proband 
being the cause of the occipital restricted PNH.

Both of the LAMC3 variants identified in our proband, 
p.Arg356Cys (94 alleles, 0.03%) and p.Gln909Arg (1 
allele, 0.0004%), are rare in the population database 
gnomAD and have never been observed in homozy-
gosity [15]. An alternate variant at amino acid 356, 
p.Arg356His, has been observed in homozygosity once, 
but the physicochemical properties of histidine are more 
similar to arginine than cysteine. Both variants are highly 
conserved (Additional file 3: Figure S3a and b) and com-
putational pathogenicity prediction tools suggest the var-
iants to have a deleterious effect (CADD: p.Arg356Cys: 
26; p.Gln909Arg: 23). One pathogenic LAMC3 mis-
sense variant has been previously reported, p.Gly350Arg 
(VCV000030419.1), which is located only 6 amino acids 
upstream from the p.Arg356Cys variant in our individual 
and within the same laminin-type EGF-like (LE) domain 
[20]. The introduction of a new cysteine at amino acid 
356 may alter the disulfide bonding pattern, interfering 
with the highly conserved structure of the region and 
potentially affecting laminin-laminin interactions (Addi-
tional file  2: Figure S2) [24]. The p.Gln909Arg variant 
is also located in a LE domain in a region shown to be 
involved in nitrogen binding, an interaction important 
for basement membrane assembly [25].

This is the first report of biallelic LAMC3 variants in 
a non-consanguineous family, and the first clinical asso-
ciation with posterior PNH, potentially broadening the 
phenotype of LAMC3-related disease. To our knowl-
edge, this case is also the first to identify PNH on mor-
phology ultrasound and MRI at such an early gestation. 
Our observation of this early phenotype should help in 
further elucidating the function of LAMC3 and its role in 
cortical development. For this family, exploratory exome 
analysis and the identification of likely causative variants 

facilitated prenatal diagnostic testing which provided 
reassurance in their two subsequent pregnancies.
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Additional file 1: Figure S1. Post mortem neurological findings. a NeuN 
positive nuclear labelling of primitive neurons within the heterotopic 
nodules. (Scale = 100 µm) b Thickening of the richly vascular germinal 
matrix with an adjacent heterotopic nodule. (Scale = 500 µm) c Corti‑
cal mantle showing normal layering and normal overlying meninges. 
(Scale = 500 µm).

Additional file 2: Figure S2. Family pedigree and segregation of the 
LAMC3 variants by Sanger sequencing. Both LAMC3 variants were con‑
firmed to be present in compound heterozygosity in the proband. The 
paternal variant, p.Arg356Cys, and the maternal variant, p.Gln909Arg, were 
confirmed as heterozygous. Only the paternal variant was present in unaf‑
fected sibling 1, and only the maternal variant was present in the current 
unaffected pregnancy. The third unaffected sibling carries neither variant.

Additional file 3: Figure S3. Conservation of the LAMC3 variants. a The 
arginine residue at the location of the p.Arg356Cys variant (red box) is 
highly conserved across 100 species. The introduction of a cysteine at 
amino acid 356 may disrupt the completely conserved disulphide binding 
pattern of cysteines (blue boxes) in the region. b The glutamine residue 
at the location of the p.Gln909Arg variant (red box) is highly conserved 
across 100 species.

Additional file 4: Table 1. Exome sequencing results and variant filtering 
outcomes.
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