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a b s t r a c t

The quality of pork determines consumers' purchase intention, which directly affects the economic value
of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate
goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy
expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat
color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that di-
etary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and
fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have
shown that modulating muscle energy metabolism and lipid accumulation through nutritional ap-
proaches could effectively improve meat quality. This article reviews the progress and development in
this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut
microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and
meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for
improving meat quality.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Pork is the most consumed meat in most areas of the World.
China is the largest meat producer, accounting for about 25% of the
world's meat output and giving rise tomore than 40% of theworld's
pork yield for most of the time since 1995 (Fig. 1). Along with the
increasing public concern about environmental pollution and the
shortage of feed resource, more emphasis is placed on developing
efficient and environmentally friendly pig industry strategies and
technologies. Considering the considerable proportion of inferior
quality pork available, such as pale, soft, exudative (PSE) meat and
acid meat, minimizing inferior quality pork and improving pork
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quality will increase pork economic value and lead to a sustainable
pig industry with more efficient production and better environ-
ment outcomes.

Skeletal muscle, accounting to about 40% of the total body mass
in adult mammals, not only performs normal body mechanical
movements, but also plays an important role in regulating protein
synthesis, energy metabolism, and glucose and lipid metabolic
homeostasis via the interaction of myokines and the insulin
signaling pathway, and the mechanism in turn underpins meat
quality in farm animals (Rai and Demontis, 2016; Yang et al., 2019).
In particular, some special nutrients and their supply status exert a
critical role in regulation of skeletal muscle insulin sensitivity, en-
ergy metabolism and lipid accumulation, which has been well
reviewed previously (Zhang et al., 2021a,b). In pig production,
intramuscular fat content is a key factor influencing pork eating
quality, such as taste and juiciness, while excess subcutaneous and
visceral fat depositionwill undermine the lean percentage and feed
efficiency of finishing pigs. Therefore, it is desirable to increase
intramuscular fat accumulation without increasing fat deposition
in subcutaneous and visceral adipose tissues in pigs (Huang et al.,
2022; Zhou et al., 2007).
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Production of meat and pork in the 1978e2021 in the world and in China. (A) Meat production in the world and in China, and proportion of the world's meat produced in
China. (B) Pork production in the world and in China, and proportion of the world's pork produced in China. Source: https://ourworldindata.org/.

E. Yan, J. Guo and J. Yin Animal Nutrition 14 (2023) 185e192
Dietary levels of crude protein and available amino acids, the
ratio of available energy to lysine, dietary fatty acid composition,
gut microbiota and maternal nutrition regulate lipid accumula-
tion, body composition and meat quality of finishing pigs.
Numerous studies showed that nutritional regulation significantly
affects body lipid accumulation, carcass and meat quality char-
acteristics (Heng et al., 2020; Li et al., 2016; Wang et al., 2022).
Pork eating quality and processing attributes, including meat co-
lor, flavor, tenderness, juiciness and water holding capacity, are
mainly determined by two interactive biological features during
muscle growth, namely muscle fiber type composition and
intramuscular fat accumulation, affected by muscle energy
metabolism and storage. Muscle energy metabolism mainly refers
to the ATP production process by which muscle mitochondria use
energy substrates, such as glucose/glycogen, lactate, fatty acids,
and branched amino acids. According to oxidation types of gly-
cogens, muscle fibers are classified into oxidative myofibers (I, IIa),
glycolytic myofibers (IIb) and the intermediate (IIx). The muscle
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dominant with oxidative myofibers is generally superior in both
color and intramuscular fat content than that dominant with
glycolytic myofibers (Yan et al., 2022; Zhou et al., 2021). Therefore,
in this review, we focus on advances in nutritional improvement
of meat quality from the view of muscle energy metabolism in
pigs over the recent ten years.

2. Dietary supply of amino acids influences lipid deposition in
skeletal muscle

2.1. Lysine level and available energy of diets

Low levels of dietary crude protein/amino acids enhance lipid
deposition in subcutaneous fat, visceral fat and intramuscular fat,
and resultantly decrease the lean percentage, which due mainly to
lysine limitation and unbalanced essential amino acids in diets
(Madeira et al., 2013a; Qin et al., 2015; Xu et al., 2020). Two very
different dietary protein sources, soybean meal and cotton seed
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meal, and two crude protein levels (12% vs. 14%) did not adversely
affect growth, carcass traits and meat quality characteristics in
finishing pigs when the essential amino acid levels were met (Qin
et al., 2015). As shown in Table 1, a low-protein and lysine-
deficient diet (13.0% crude protein, 0.35% lysine) promoted intra-
muscular fat accumulation in finishing pigs accompanied by shift-
ing metabolic properties of muscle fibers from glycolysis to
oxidation (Pires et al., 2016). Interestingly, it provides an insight
that links muscle fiber type and intramuscular fat deposition
through muscular energy metabolism. A deficient dietary lysine
level will decrease the lean percentage of pigs but increase intra-
muscular fat content (Zhang et al., 2008). Indeed, dietary lysine
deficiency increased intramuscular fat content without affecting fat
deposition in the adipose tissue in finishing pigs (Su�arez-Belloch
et al., 2015). Relative to the control (0.51% lysine and 16% crude
protein), the ingestion of the lysine-deficient diet (0.35% lysine and
13.0% crude protein) increased intramuscular fat content by 25%
and pork juiciness by 12% (Madeira et al., 2015, Table 1). Moreover,
increased intramuscular fat content in pigs by lysine deficiencymay
also be related to the type of pigs. It was showed that the ingestion
of a lysine-deficient diet (0.40% lysine, 13% crude protein) increased
intramuscular fat deposition in lean pigs but not in obese pigs
(Madeira et al., 2013b, Table 1). It might be due to different re-
quirements for lysine in different types of pigs. Therefore,
compared with obese-type pigs, the protein synthesis in a lean
genotype was more readily restrained in response to lysine defi-
ciency, which in turn promoted fat accumulation. In response to
reduced dietary protein to carbohydrate ratio, intramuscular fat
content was increased with increasing levels of stearoyl-CoA
desaturase (SCD) and peroxisome proliferator-activated receptor g
(PPARg) mRNA in lean-type pigs (Guo et al., 2011).

Dietary available energy to lysine ratios greatly impact growth,
carcass traits and meat quality characteristics, as well as the rate of
protein synthesis and lipid deposition in finishing pigs. The con-
sumption of diets with high ratios of digestible energy (DE) to
protein (amino acids) resulted in an increase in intramuscular fat
levels in pigs. Szab�o et al. (2001) showed that reduced dietary
apparent ileal digestible lysine to DE ratio from 0.50:0.42 to
0.36:0.30 g lysine/MJ DE decreased body weight gain and the
contents of protein and muscle in the body from 30 to 60 kg and
from 60 to 105 kg BW, while increased crude fat and fatty tissue
content. Reducing lysine:DE did not modify meat quality traits but
Table 1
Effects of dietary protein and amino acids on meat quality.

Dietary levels of protein and amino acids Feeding stage, kg BW

Lys
13% CP; 0.35% Lys1 60e93
13% CP; 0.40% Lys2 60e93
13% CP; 0.35% Lys3 61e94

BCAA
12% CP; 0.53% SID Ile4 77e105
11% CP; 0.53% SID Ile5 74e105
12% CP; Leu:Ile:Val ratio of 2:1:1 or 2:1:26 59e95

Met, Gly and Ser
18% CP; 0.25% Met7 6e14
12% CP; Ser:Gly ratio of 1:28 60e100

CP ¼ crude protein; Lys ¼ lysine; IMF ¼ intramuscular fat; BCAA ¼ branched chain am
Ser ¼ serine; [ ¼ increased; Y ¼ decreased.

1 Control diet: 16% CP; 0.51% Lys.
2 Control diet: 17% CP; 0.7% Lys.
3 Control diet: 16% CP; 0.51% Lys.
4 Control diet: 12% CP; 0.39% SID Ile.
5 Control diet: 11% CP; 0.25% SID Ile.
6 Control diet: 16% CP; Leu:Ile:Val ratio of 2:1:1.
7 Control diet: 18% CP; 0.49% Met.
8 Control diet: 16% CP; Ser:Gly ratio of 1.18:1.
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the high lysine:DE ratio was associated with a high lean meat
percentage.

2.2. Branched chain amino acids (BCAA)

Skeletal muscle is the major site for BCAA transamination in
bodies. As essential amino acids of mammals, BCAA including
leucine, isoleucine and valine, play critical roles in energy homeo-
stasis and lipidmetabolism in addition to the role of building blocks
in protein synthesis. It has been accepted that leucine supple-
mentation enhanced protein synthesis in skeletal muscle in a
mammalian target of rapamycin complex 1 (mTORC1)-dependent
mechanism in both animals and humans. We also demonstrated
that increasing levels of dietary isoleucine led to elevated intra-
muscular fat content accompanied by heightened activity of SCD
and mRNA expression levels of adipose-specific genes including
adipocyte determination and differentiation factor 1 (ADD1), fatty
acid synthase (FAS), and SCD in pigs (Luo et al., 2018). Dietary
supplementation of isoleucine increased lipid accumulation and
decreased the drip loss and shear force in the skeletal muscle of
pigs (Luo et al., 2018, Table 1). Valine supplementation did not
change lipid deposition in subcutaneous backfat and intramuscular
fat tissues, however, valine metabolite 3-hydroxyisobutyrate (3-
HIB) promoted fatty acid uptake and lipid accumulation in skel-
etal muscle by activating endothelial fatty acid transport (Zhang
et al., 2021b). A high level of isoleucine supplementation (0.53%
standardized ileal digestibility [SID] Ile) increased pH24 h value and
tended to decreased drip loss in longissimus dorsi muscle (Xu et al.,
2020, Table 1).

With respect to the ratio among BCAA, Leu:Ile:Val ratio of
1:0.75:0.75 in a low (17% crude protein) protein-diet increased
intramuscular fat content of the biceps femoris muscle in growing
pigs compared with the control (the normal protein diet, crude
protein 20%). Meanwhile, the ratio of n-6:n-3 polyunsaturated fatty
acids (PUFA) in the longissimus dorsi muscle, biceps femoris
muscle and psoas major muscle was decreased, accompanied by
increased mRNA expression levels of acetyl-CoA carboxylase, lipo-
protein lipase, fatty acid transporter and fatty acid binding protein
4, compared with the control (Duan et al., 2016). Various leuci-
ne:isoleucine:valine ratios of 2:1:1 or 2:1:2 in a low protein diet
(12% crude protein) accelerated the secretion of adipokines and
fatty acid oxidation in adipose tissue (Zhang et al., 2021a, Table 1). It
Meat quality References

IMF [, meat juiciness [ Madeira et al. (2015)
IMF (lean-type pig) [ Madeira et al. (2013b)
IMF [, oxidative muscle fiber proportion [ Pires et al. (2016)

IMF [, drip lossY, shear forceY Luo et al. (2018)
pH24 h value[, drip lossY Xu et al. (2020)
fat in adipose tissue Y Zhang et al. (2021a)

IMF [ Wu et al. (2019)
IMF [, oxidative muscle fiber proportion [ Zhou et al. (2021)

ino acids; SID ¼ standardized ileal digestibility; Met ¼ methionine; Gly ¼ glycine;
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was supposed to be related to the regulation of branched-chain
amino acids on the adipokineseadenosine monophosphate-
activated protein kinase (AMPK)esirtuin 1 (SIRT1)ePPARg axis.

2.3. Methionine, glycine and serine

Dietary methionine restriction is shown to decrease contents of
liver triglyceride and total cholesterol, inhibit hepatic steatosis, and
induce adiposity resistance (Ables et al., 2016). It has been shown
that S-adenosylmethionine, serving as an active form of methio-
nine in vivo and a major methyl donor, might initiate adipogenesis
of adipose precursor cells derived from both adipose and muscle
tissues through suppressing Wnt/b-catenin and Hedgehog path-
ways (Liu et al., 2013). Methionine limitation can alter skeletal
muscle composition in piglets. For example, reducing dietary
methionine level by 48% improved the mitochondrial function, the
formation of slow-twitch muscle fibers, and then enhanced the
energy metabolism of skeletal muscle in piglets (Wu et al., 2019,
Table 1). Meanwhile, methionine limitation promoted lipid depo-
sition in skeletal muscle and increased intramuscular fat content
during the fattening period. It is hypothesized that effect of dietary
methionine limitation on skeletal muscle composition and function
might be via enhancing AMPKePPARg coactivator 1a (PGC1a)
signaling.

Dietary supply of non-essential amino acids may be one of the
limiting factors for growth performance of pigs fed low-protein
diets. While pigs are feeding on low-protein diets, glycine and
serine in vivo may be decreased, and resultantly, the endogenous
metabolic processes would slow down in the absence of sufficient
metabolic precursors, which in turn could affect the energy meta-
bolism of pigs (Powell et al., 2011). A recent study showed that a
serine:glycine ratio at 1:2 in low protein-diets (12% crude protein)
not only increased the proportion of oxidizedmuscle fibers through
AMPKePGC1a and calcineurinemyocyte enhancer factor 2 (MEF2)/
nuclear factor of activated T cells (NFAT) pathways, but also
increased intramuscular fat content of growing finishing pigs (Zhou
et al., 2021, Table 1).

3. Impact of dietary fatty acids on energy metabolism, lipid
accumulation in skeletal muscle

3.1. Ratios of n-6 to n-3 PUFA

Dietary fatty acids are incorporated in lipogenesis and energy
metabolism in skeletal muscle and adipose tissue of pigs. Dietary
supplementation of PUFA increased the expression of key genes
involved in mitochondrial energy metabolism (SIRT1, PGC-1a and
protein kinase AMP-activated catalytic subunit a1 [Prkaa1]),
enhanced energy metabolism in myocytes, and exerted an impor-
tant role in regulating skeletal muscle development (Du et al.,
2020; Risha et al., 2021). Moreover, dietary supplemental PUFA
increased intramuscular fat content of finishing pigs, thereby
improving meat quality (Wang et al., 2022). Appropriate fatty acid
composition increased intramuscular fat content while reduced fat
accumulation in adipose tissues (Dannenberger et al., 2012;
Sobotka et al., 2012). Thus, it is proposed that appropriate ratio of
unsaturated fatty acids (UFA) to saturated fatty acids (SFA) might
improve meat quality. While finishing pigs were offered with diets
with UFA:SFA ratio of 1:1, 2:1 and 3:1, respectively, the proportion
of C18:2n-6, C20:4n-6 and PUFA in the M. longissimus thoracis was
increased linearly with the ratio of dietary UFA to SFA. Drip loss and
cooking loss also increased linearly, but backfat thickness was
decreased linearly (Chen et al., 2021).

Essential fatty acids n-6 and n-3 PUFA cannot be mutually
converted in vivo. The ratio of n-6:n-3 PUFA is critical for regulating
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muscle energy metabolism, lipid accumulation and improving
meat quality. Diets rich in n-3 PUFA can promote hypertrophy in the
M. longissimus thoracis, quadriceps femoris muscle and semite-
ndinosus muscle of pigs, indicating that n-3 PUFA have a positive
effect on muscle proteins anabolism (Huang et al., 2008). It is
shown that dietary flaxseed oil increases pork n-3 fatty acid content
and decreases n-6:n-3 PUFA ratio, which is beneficial to human
health (Dannenberger et al., 2012). PUFA enhanced the proliferation
and differentiation of skeletal muscle cells by activating extracel-
lular signal-regulated kinase 1/2 (ERK1/2) mediated signaling
pathway, whichmay enhancemuscle energymetabolism (Lee et al.,
2009). It has been shown that optimum dietary n-6:n-3 PUFA ratio
is 1:1 for increasing muscle mass and decreasing adipose tissue
mass in pigs relative to ratios of 2.5:1, 5:1 and 10:1, indicating that
appropriate n-6:n-3 PUFA ratio could reduce body fat deposition
and improve the lean percentage of pigs (Duan et al., 2014).

3.2. Conjugated linoleic acids (CLA)

Conjugated linoleic acid supplementation significantly reduces
body fat deposition across humans, rodents and pigs (House et al.,
2005). Interestingly, CLA supplementation increases intramuscular
fat deposition in pigs. It has also been shown that skeletal muscle
contains a high proportion of preadipocytes that can be induced by
CLA to differentiate andmature, ultimately leading to an increase in
intramuscular fat content (Meadus et al., 2002). Zhou et al. (2007)
demonstrated that CLA differently regulates adipogenesis in stro-
mal vascular cells from porcine subcutaneous adipose and the
skeletal muscle. In particular, t10,c12-CLA specifically promotes the
adipogenesis of fat precursor cells in the skeletal muscle while
restrains adipogenesis in the subcutaneous adipose tissue. In
addition, t10,c12-CLA could enter fetal tissue through umbilical
cord blood (Peng et al., 2010). These results suggest that maternal
t10,c12-CLA may specifically mediating the distribution of fat and
improve carcass traits and intramuscular fat deposition in pigs.
Accordingly, in growing-finishing pigs (56 to 133.5 kg body weight)
fed diets containing 1% and 2% CLA, the fat content in the M. Log-
issimus thoracis was increased (Cordero et al., 2010). In addition,
dietary CLA (25 g CLA/kg diet) significantly affected the abundance
of proteins related to energy metabolism, fatty acid oxidation and
synthesis, and amino acid metabolism whilst increasing the con-
tent of intramuscular fat in finishing pigs (Zhong et al., 2011).

4. Gut microbiota and muscle fiber profiles and
intramuscular lipid accumulation

The gutemuscle axis exerts an important regulatory role in the
body (Chen et al., 2022), and phenotype of the animal and meta-
bolism of the skeletal muscle are closely associated with gut mi-
croorganisms via maintaining intestinal integrity and the
modulation of redox homeostasis, inflammation reaction and gut-
brain peptide secretion (Chen et al., 2020; Wang et al., 2017). As
shown in Fig. 2, we summarized the interaction between gut
microbiota-skeletal muscle and its possible impacts on meat
quality. Gut microecology balance can be disturbed by environ-
mental factors, damaged intestinal integrity, presence of patho-
genic microorganisms and antibiotic administration. It is usually
restored through fecal microbiota transplantation and dietary in-
terventions, such as oral administration of probiotics, prebiotics,
synbiotics and eubiotics as well as postbiotics (Cheng et al., 2019;
Koyun et al., 2022).

It is established that fecal microbiota transplantation favors gut
microbiota restoration and intestinal health, and probably im-
provesmeat quality in pigs. Transplanting sow fecal microbiota into
newborn piglets sped up the establishment of gut microecology of



Fig. 2. A schematic diagram regarding role of gut microbiota in improving meat quality. FMT ¼ faecal microbiota transplantation; IL-1b ¼ interleukin-1b; IL-10 ¼ interleukin 10;
IMF ¼ intramuscular fat; Keap1 ¼ Kelch-like ECH-associated protein l; LPS ¼ lipopolysaccharide; MDA ¼ malonaldehyde; NFkB ¼ nuclear factor kappa B; Nrf2 ¼ nuclear factor
erythroid 2-related factor 2; SCFA ¼ short chain fatty acid; SOD ¼ superoxide dismutase; TLR4 ¼ toll like receptor 4.
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piglets in terms of the composition and metabolism of gut micro-
biota, thereby influencing muscle energy metabolism and later
lipid accumulation in pigs (Cheng et al., 2019). The functional
prediction of microbiota showed that fatty acid synthesis of the gut
microbiota was stronger in obese-type pigs relative to lean-type
pigs (Xiao et al., 2018). Accordingly, gut microbiota of obese-type
pigs might deposit more energy and then convert more fat distri-
bution in skeletal muscle (Yang, 2018).

It was showed that microbial metabolites could transform
muscle fiber types and mediate skeletal muscle energy metabolism
(Qi et al., 2021). Short chain fatty acids (SCFA) are important mi-
crobial metabolites that can regulate host glucose and lipid meta-
bolism. For example, SCFA promoted glucose uptake and glycogen
synthesis in skeletal muscle (Han et al., 2022; Koh et al., 2016). The
direct ingestion of SCFA also increased the proportion of type I
muscle fibers and enhanced muscle aerobic metabolism in rodents
(Henagan et al., 2015; Pan et al., 2015). In addition, dietary sup-
plementation of SCFA is shown to regulate the synthesis and
metabolism of fatty acids in the skeletal muscle and adipose tissue
of growing-finishing pigs to improvemeat quality (Jiao et al., 2021).

As the in-feed use of antibiotics are banned in the pig industry in
most countries and regions, nutritional alternatives such as pro-
biotics and synbiotics have received great attention. Several cecal
microbial taxa are significantly correlated with backfat thickness
Table 2
Effects of maternal nutrition on offspring muscle fiber type composition and adipose dis

Nutrition treatments Muscle fiber types

Slow-twitch Fast-twitch

Resveratrol1 [ Y

High-energy diet2 No change Y

Low-protein diet3 / /
Low-protein diet4 / /
High-fat diet5 / /

DE ¼ digestible energy; CP ¼ crude protein; / ¼ the corresponding indexes were not me
1 Resveratrol is at 300 mg/kg diet.
2 Normal-energy diet (30.96 MJ DE/day), High-energy diet (34.15 MJ DE/day).
3 Adequate-protein diet (12.1% CP), Low-protein diet (6.5% CP).
4 Standard-protein diet (15% and 18% CP), Low-protein diet (7.5% and 9% CP).
5 High-fat diet (8% corn oil).

189
and abdominal lipid deposition in pigs (He et al., 2016). The result of
a 16S rRNA gene-based association analysis indicated that some
microorganisms such as Coriobacteriaceae, Bifidobacterium and
Roseburia contributed to intramuscular fat accumulation in finish-
ing pigs (Fang et al., 2017). It was suggested that dietary supple-
mental probiotics significantly improved the function of intestinal
flora, fresh meat color score, marbling score and redness value
(Meng et al., 2010), as well as meat flavor of finishing pigs (Cheng
et al., 2019). The mechanism underlying the beneficial effect of
dietary supplemental probiotics or synbiotics on muscle energy
metabolism and lipid deposition remains unclear. It might be
associated with gut microbial metabolites, for example, dietary
supplemental synbiotics could increase the fecal content of SCFA in
pigs (�Sli _zewska and Chlebicz, 2019).

5. Maternal nutrition and regulation of offspring skeletal
muscle fiber type profiles, intramuscular fat accumulation

5.1. Maternal nutrition influences energy metabolism and muscle
fiber type of offspring skeletal muscle

Muscle phenotypes, such as the proportion of muscle fiber types
and corresponding features of energy metabolism, are significantly
influenced by embryonic, fetal and subsequent neonatal
tribution.

Fat accumulation References

Adipose tissue Skeletal muscle

[ [ Meng et al. (2020)
/ / Zou et al. (2016)
[ / Rehfeldt et al. (2012)
Y / Pan et al. (2018)
/ [ Ci et al. (2014)

asured; [ ¼ increased; Y ¼ decreased.
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development, which are the narrow windows where mediate
muscle development occurs. Known as the sole source of nutrition
for offspring muscle development in pregnancy, maternal nutrition
plays a key role in regulating skeletal muscle development during
the window periods. Meanwhile, muscle features of the offspring
are more responsive to nutritional regulation during these stages.

As shown in Table 2, maternal nutrition altered muscle fiber
type composition in the offspring and resulted in long-term effects
on offspring muscular energy metabolism and subsequent meat
quality characteristics. For example, maternal dietary supplemen-
tation with 300 mg/kg resveratrol during pregnancy and lactation
increased the proportion of type I fibers, but decreased the pro-
portion of muscle type II fibers, thereby promoting aerobic meta-
bolism in skeletal muscle (Meng et al., 2020).

Creatine kinase (CK) and lactate dehydrogenase (LDH) play key
roles in skeletal muscle energy metabolism (Lefaucheur et al.,
2003; Rehfeldt et al., 2001). Correspondingly, feeding pregnant
sows with the high energy diet decreased the activities of CK and
LDH enzymes in fetal skeletal muscle (Zou et al., 2016, Table 2).

The decrease in the number of fetal muscle fibers limits the
potential for skeletal muscle development in life, resulting in
lowered growth performance and reduced lean meat percentage
and increased intramuscular fat accumulation. It was shown that
excess protein supply to sows during gestation had little effect on
fetal phenotypic programming in growing-finishing pigs, while
maternal low protein intake impaired prenatal myogenesis and
myofiber formation, and consequently reduced the potential of
postnatal lean growth in the offspring (Rehfeldt et al., 2012,
Table 2). It was thought to be associated with the myogenic pro-
liferation and function of insulin growth factor 2 (IGF2).

Maternal nutrition is involved in epigenetic regulation, such as
methylation of DNA and chromatin, and genomic imprinting of the
metabolic process of fetal skeletal muscle. For example, deficiency or
excessive intake of methyl-donor micronutrients during pregnancy
impacted the normal growth and development of the fetus (Hoile
et al., 2012; Shaw et al., 1995). Supplementation with an appropriate
amount of methylated micronutrients, such as methionine, folate,
choline, vitamin B6 and vitamin B12 as well as zinc in pregnant sows
increases IGF2 levels in fetuses, which may affect insulin sensitivity
and energy metabolism in fetal skeletal muscle (Oster et al., 2016).
Maternal supplementation of methyl-donor micronutrients during
gestation promoted skeletal muscle differentiation, maturity and
improve skeletal muscle mass of the piglets (He et al., 2020).
5.2. Effects of maternal nutrition on lipid accumulation and meat
quality of the offspring

Maternal nutrition during pregnancy and lactation plays an
important role in regulation of lipid deposition in the offspring. As
shown in Table 2, the dietary supply of the diet containing 300 mg/
kg resveratrol to sows during pregnancy and lactation promoted
offspring fat development, and increased back fat thickness and
intramuscular fat content of the offspring during the subsequent
finishing-period (Meng et al., 2020). Feeding sows with a low-
protein diet (reduced 6.5% crude protein level) increased fat accu-
mulation in the perirenal and subcutaneous adipose tissues in adult
offspring especially born in large litters (Rehfeldt et al., 2012).
However, it was also showed that maternal ingestion of low-
protein diets (7.5% and 9% protein content) during gestation and
lactation decreased fat synthesis and increased lipolysis in offspring
piglets (Pan et al., 2018, Table 2). The authors thought that maternal
feeding low protein diets might activate the autophagy lysosomal
pathway leading to autophagy in adipose tissue and a reduction of
subcutaneous fat deposition.
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Maternal nutrition may exert a programming role in regulation
of offspring fatty acid composition. It has been reported that
feeding sows with a diet containing 8% corn oil during lactationwill
not only alter the fatty acid composition of offspring, but also
improve offspring meat quality (Ci et al., 2014, Table 2). In addition,
these authors noticed that feeding lactating sows on the high-fat
diet increased muscular content of PUFA and n-6 fatty acids
together with the pH24 value of the M. Longissimus thoracis muscle
in the offspring, thereby improving offspring meat quality.

6. Conclusion

Skeletal muscle energy metabolism is not only associated with
muscle fiber type, but also influence intramuscular fat accumula-
tion in finishing pigs. This review reviewed advances in nutritional
approaches to improve meat quality, including the directly dietary
supply of amino acids, fatty acids, and probiotics and synbiotics as
well as through maternal nutrition. To the best of our knowledge,
this review is the first to specifically discuss nutritional regulation
of muscle energy metabolism, lipid accumulation and meat quality
and the relationship among them in pigs. However, the mechanism
underlying synergetic regulation of energy metabolism, fatty acid
synthesis and lipid accumulation in skeletal muscle as well as all
the factors determining pork quality are not yet fully understood. In
particular, to date, the extent to which nutritional strategies
improve meat quality remain controversial, especially under vague
quantitative relationships among meat quality traits.
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