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The role of adipose tissue (AT) inflammation in obesity and its multiple related-
complications is a rapidly expanding area of scientific interest. Within the last 30 years,
the role of the adipocyte as an endocrine and immunologic cell has been progressively
established. Like the macrophage, the adipocyte is capable of linking the innate and
adaptive immune system through the secretion of adipokines and cytokines; exosome
release of lipids, hormones, and microRNAs; and contact interaction with other immune
cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and
innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting
adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells
also play important roles in contributing to AT inflammation and are discussed in this series
in the chapter on adaptive immunity.
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INTRODUCTION

Obesity is a growing healthcare problem in the United States and globally. It is a leading cause of
preventable death and currently impacts more than 35% of the US population (1). This number is
estimated to rise with a projected 42% of the US adult population being obese by 2030 (2). Obesity
adversely impacts the entire body leading to increased Type 2 diabetes and associated
complications, Alzheimer’s disease, vascular dementia, obstructive sleep-apnea, accelerated
atherosclerosis, heart failure, fatty liver disease, nonalcoholic steatohepatitis, osteoarthritis,
altered immune system, impaired response to vaccines, and increased susceptibility to cancer
compared to aged-matched lean individuals (3). Obesity is characterized by an expansion of both
visceral and subcutaneous adipose tissue (AT) in the setting of chronic over-nutrition. The ensuing
chronic low-grade inflammation sets the stage for many of the extensive complications. Thus,
understanding mechanisms that mediate the immunological changes in obesity may unlock new
therapeutic strategies. This review places a special emphasis on the innate immune system and
the adipocyte.
INNATE AND ADAPTIVE IMMUNITY

The role of the immune system is to identify self- versus non-self to eliminate potential toxins,
allergens, and pathogens without destroying the host tissue. The immune system is composed of two
key functional responses, innate and adaptive immunity. The innate immune response is the initial
org June 2021 | Volume 12 | Article 6507681
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line of defense after the host’s external barrier. This immune
response is not antigen-specific, but rather recognizes molecular
patterns that are inherent to the toxin, allergen, or pathogen.
This allows for the rapid activation of an immune response
which is followed by the development of an antigen-specific
immune response. The adaptive immune system upon the first
encounter of a toxin, allergen, or pathogen undergoes expansion
to aid the innate immune response. Upon resolution, a subset of
these adaptive immune cells persists and creates a distinct
population of memory immune cells. Memory cells are faster
to respond to future encounters with the same pathogen,
allergen, or toxin. The cellular component of both immune
responses arises from the hematopoietic stem cell. This
pluripotent cell further differentiates within the bone marrow
to generate either the common lymphoid progenitor or the
common myeloid progenitor. The common myeloid progenitor
gives rise to lineage-specific colony-forming cells which then
further develop into a majority of the innate immune cells as well
as megakaryocytes (platelets) and erythrocytes (red blood cells).
The cellular components of the innate immune response include
the granulocytes including monocytes, macrophages,
neutrophils, basophils, eosinophils, mast cells, and dendritic
cells, as well as adipocytes. While the adipocyte is not
traditionally viewed as an immune cell, recent research has
demonstrated that the adipocyte releases adipokines,
microRNAs and lipids to influence the innate immune
response (4–7). The adipocyte also expresses MHCII molecules
during high-fat diet feeding allowing the adipocyte to interact
with naïve T cells resulting in T cell differentiation and activation
(8, 9). The common lymphoid progenitor gives rise to the key
immune cells within the adaptive immune response including B
cells and T cells as well, as more recently discovered innate
immune cells including the NK cell and the innate lymphoid cell
types 1, 2, and 3 (10, 11). The key link between the innate and
adaptive immune system is antigen presentation.
INFLAMMATION IN ADIPOSE TISSUE;
CONTRIBUTION OF INNATE IMMUNITY

The AT immune cell microenvironment in the lean state is a
well-balanced crosstalk between the adipocyte and the stromal
vascular fraction (SVF) or the cellular compartment of AT. In
lean mice, the SVF is comprised of mesenchymal stem cells (12),
endothelial progenitor cells (13–16) as well as numerous
immune cells including anti-inflammatory immunoregulatory
T cells, Tregs (17), innate lymphoid type 2 cells (ILC2) (18),
alternatively activated macrophages (19, 20), and eosinophils (21).
These cells work in concert to ensure the maintenance of
homeostasis within AT including maintaining systemic insulin
sensitivity. However, upon high-fat diet (HFD) feeding, there is a
disruption of the anti-inflammatory milieu with increased
differentiation and recruitment of pro-inflammatory immune
cells creating a chronic, low-grade inflammatory state. In
murine obesity, AT is characterized by the early, transient
infiltration of neutrophils (22) followed by the accumulation of
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pro-inflammatory CD8+ T cells (23), CD4 Th1 cells (8) and M1
macrophages (19, 20) all of which surround the dying adipocyte
forming a crown-like structure. Innate immunity is an early and
key component in sustaining AT inflammation.

Adipocyte
The adipocyte, unlike most traditional immune cells, links the
innate and adaptive immune systems through adipokine, lipid
and exosome release and through antigen presentation. While
the adipocyte is the primary site of energy storage for the body
and performs multiple metabolic activities, it can assume the role
of a highly functional immune cell, releasing anti- and pro-
inflammatory cytokines and hormones (adipokines), as well as
lipids, which also act as signaling molecules (24). Since its
discovery as an endocrine cell, the adipocyte has been
identified to secrete more than 50 adipokines/cytokines
including adiponectin (4, 25), leptin (5), TNFa (26–29),
visfatin (30), and resistin (31) among many others (32) which
impact local and systemic metabolism and inflammation.

The first adipokine described was leptin which revolutionized
our understanding of the critical role that adipocytes play in
whole-body energy homeostasis (33). Mutations in the leptin
gene in the ob/ob mouse model led not only to hyperphagia and
weight gain but also disruptions in fertility and body temperature
regulation (34). Treatment of ob/ob mice with recombinant
leptin, but not db/db (leptin receptor-deficient) mice, led to
improved body weight and decreased food intake (35). However,
contrary to what was initially hypothesized, leptin is found in
higher levels in obese patients as compared to lean controls (36)
suggesting the presence of leptin resistance (37). Increasing
evidence supports an immunologic role of leptin. Leptin
deficiency is associated with greater susceptibility to death after
administration of LPS or TNFa which is partially corrected with
leptin administration (38, 39). Macrophages from leptin-
deficient mice have impaired phagocytosis and altered cytokine
production (40, 41). In neutrophils, leptin appears to increase
ROS production (42), inhibit apoptosis (43), and affect
neutrophil migration (44) suggesting that leptin impacts cells
that mediate the innate immune response. More recently,
Scherer and colleagues (45) demonstrated that hyperleptinemia
is a driving force for metabolic disorders. Interestingly, a partial
decrease of circulating leptin in obesity reestablishes
hypothalamic leptin sensitivity and effectively reduces weight
gain and enhances insulin sensitivity.

Unlike leptin, adiponectin, a key adipokine involved in energy
homeostasis, is reduced in obese subjects and has anti-
inflammatory effects. Adiponectin is found in higher levels in
AT and blood of lean subjects (46). Ob/ob mice with adiponectin
overexpression have an increased ability to expand their
subcutaneous AT associated with in a reduction of systemic
and local AT inflammation. These mice also develop less ectopic
lipid deposition in the liver and skeletal muscle leading to
improvements in insulin sensitivity despite greater amounts of
AT (47). Within the innate immune system, adiponectin acts
primarily on macrophages resulting in a greater polarization of
M2-like macrophages, decreased M1-like macrophages, and a
reduction in ROS production (48). In neutrophils, adiponectin
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functions to decrease the production of the neutrophil chemokine
CXCL8 (49) and ROS via modulation of NADPH oxidase (50).
These observations highlight the yin-yang relationship of leptin
and adiponectin, which functions as an anti-inflammatory
regulator of the innate immune response. These hormones are
the most well-known adipokines, but as discussed above,
numerous other have been identified. Consistently obese versus
lean humans and mice reveal increased proinflammatory and
extracellular matrix gene expression, but the function of many
adipokines remains unknown (51, 52).

Lipid release is another important mechanism by which
adipocytes can impact immune cells in the AT microenvironment.
Lipids such palmitate and other unsaturated fatty acids can bind to
toll-like receptors (TLRs) on the surface of immune cells, such as
macrophages, and are converted to ceramides and diacylglycerols
during states of lipid overabundance as occurs in obesity. These toxic
lipids enhance proinflammatory signaling (7). More recently,
branched-chain fatty acid esters of hydroxyl fatty acids (FAHFAs)
produced by adipocytes were shown to bind to G-protein coupled
receptors (GPRs) 40 and 120 to inhibit inflammation and improve
insulin secretion and sensitivity (53). Within the blood and
subcutaneous adipose tissue of insulin-resistant humans and mice,
there is a reduction of several FAHFAs most notably palmitic acid
esters of hydroxyl stearic acids. Supplementation of these via oral
ingestion or subcutaneous administration improves glucose and
insulin handling (53). These observations indicate adipocytes
release both pro- and anti-inflammatory lipids as a mechanism to
modulate the immune system.

Adipocytes are composed of large unilocular lipid droplets
containing triacylglycerols and neutral free fatty acids (FFAs),
which are a major mechanism for energy storage and release.
Adipocytes not only release lipids and secrete adipokines, but they
can also employ exosomes- extracellular vesicles (40-150 nm in
size) of endosomal origin to participate in this process. Exosomes
are increasingly recognized as a novel mechanism by which
adipocytes communicate with other cells and target tissues.
Their cargo contains adipokines, lipids, and microRNAs. Release
is dependent on nutritional status and degrees of adiposity:
increased release in obesity and decreased release with caloric
restriction or lipodystrophy. Exosomes can be taken up by
endocytosis, pinocytosis, or phagocytosis, and can be directed to
target cells by adhesion molecules on the exosomal surface (6).
Recently, Flaherty, et al. reported that adipocytes of mice release
1% of their lipid content daily ex vivo via exosomes, which was
increased in obese mice. This release of exosomes contributed to
macrophage foam cell formation, suggesting that exosomes
contribute to the orchestration of AT immune cells (54).
MicroRNAs, which regulate protein translation, are another
important component of adipocyte-derived exosomes.
Adipocytes are a major source of microRNAs in the circulation
with greater than 55 differentially expressed microRNAs between
lean and obese individuals. Adipocyte microRNAs contribute to
the regulation of metabolism, inflammation, and multiple biologic
processes locally and systemically (55). However, controversy
exists as to whether adipocyte exosomes represent a minority or
majority of circulating exosomes (54, 56).
Frontiers in Immunology | www.frontiersin.org 3
Finally, one of the most unique features of the adipocyte is its
ability to function as an antigen-presenting cell, which is
described in detail in Chapter XX of this series by Deng et al.
The adipocyte can present antigen to promote differentiation and
activation of interferon gamma-producing CD4 Th1 cells. This
activity is increased early in obesity, after only 2 weeks HFD in
mice, before the AT macrophage increase, suggesting adipocytes
both instigate and maintain AT inflammation (8). Adipocytes
provide a critical link between the innate and adaptive
immune systems.

Neutrophils
Neutrophils are one of the initial inflammatory cells recruited to
sites of host injury. As a component of the innate immune
system, neutrophils have four primary activities including,
phagocytosis, degranulation, reactive oxygen species (ROS)
production, and neutrophil extracellular trap (NET) formation
(57). Within mouse peripheral blood, neutrophils comprise 10-
25% of the circulating immune cells (58), whereas in humans
they compromise 50-70% of circulating immune cells.
Furthermore, unlike humans, mouse neutrophils do not have
defensins (anti-microbial peptides). While there are several
differences between mouse and human neutrophils, mouse
models are still routinely used for genetic manipulation (59).

Early studies in mice observed the transient infiltration of
neutrophils into the AT after the start of HFD resulting in
maximal levels by day 3 and undetectable levels by day 28 (22).
However, others have suggested a more prolonged presence,
contributing to about 2% of the SVF (60). Despite the early and
relatively small contribution of the neutrophil in obese mice, loss
of neutrophil elastase (60) or myeloperoxidase (61) leads to a
decrease in AT inflammation and macrophage recruitment and
promotes resolution of insulin resistance. However, loss of
neutrophil NET formation does not impact obesity-related
inflammation or insulin resistance in HFD-fed mice (62).

Within human AT, there have been fewer studies. One
identified the presence of neutrophils within subcutaneous AT
and reported that neutrophils were contained within the
vasculature with no or limited infiltration into the tissue similar
to vascular pools of neutrophils found in the liver (63). Another
study showed limited infiltration in obesity in both visceral and
subcutaneous AT (64); however, the quantity, cause of
recruitment, and function of these cells within human AT
remains unknown. Despite this, inflammatory lipids such as
leukotrienes are known to attract and activate neutrophils.
Under inflammatory conditions adipocyte and macrophages
produce increased IL-8, a powerful neutrophil chemoattractant
(65, 66). Additionally neutrophils can self-recruit via increased
production of CXCL2, another known neutrophil chemoattractant
(67). Using a mouse peritonitis model, Tynan et al. demonstrated
that lipids extracted from human adipocytes promoted migration
and accumulation of neutrophils and macrophages, and activated
these cells to produce cytokines (68). These effects were similar
whether the adipocytes were obtained from lean or obese subjects,
as fatty acid profiles, analyzed by gas chromatography, were not
different. Oleic acid was also shown to recruit neutrophils in a
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similar mouse model (69). Additionally, adipocyte lipolysis has
been shown to attract neutrophils and enhance their production of
IL-1b leading to the activation of adipocytes and other immune
cells (70). Further studies will be useful to determine the types of
adipocyte lipids and other factors that attract and activate
neutrophils into AT.

Macrophages
One of the most well-studied immune cells in AT and a key
component of the innate immune response is the macrophage.
Within mouse models of obesity, macrophages comprise up to
40% of the SVF (71) and are shown to be involved in the
development of insulin resistance (72), atherosclerosis
progression (73), and other obesity-related complications. In
mice, macrophages have been classified into the relatively
simplistic M1 and M2 phenotypes with obesity increasing the
prevalence of pro-inflammatory M1-like macrophages (19).
Ablation of these CD11c+ proinflammatory macrophages
decreases AT inflammation and interferes with the
development of insulin resistance, suggesting that macrophages
are key mediators of insulin sensitivity (72). Furthermore
inhibiting macrophage recruitment through the genetic
depletion of CCR2 (74) or MCP-1 (75) also leads to the
repression of AT inflammation and insulin resistance during
HFD feeding. In contrast, accumulation of anti-inflammatory
PPARg positive macrophages (M2 macrophages) leads to
Frontiers in Immunology | www.frontiersin.org 4
improvements in AT inflammation and insulin sensitivity (76),
while loss of macrophage PPARg increases AT inflammation and
insulin resistance (77). The balance between the pro and anti-
inflammatory macrophage subtypes is much less defined within
human AT with most AT macrophages expressing both common
M1 and M2 markers (78, 79). Although there is still some debate
on this topic with others suggesting a greater abundance of
CD206 macrophages after weight loss (80). Further research on
human adipose tissue macrophage subsets still needs to be done.
The interaction between adipocytes and ATMs begins with the
formation of crown-like structures characterized by macrophage
accumulation surrounding dying adipocytes. This process is
mediated by the adipocyte secretion of MCP-1 resulting in
macrophage accumulation and activation (81). Once
accumulated, these macrophages release TNFa which increases
adipocyte release of FFAs (82). FFAs are capable of binding TLR4
on both the adipocyte and the macrophage resulting in NFkB
activation and release of IL1b by macrophages (83). Adipocyte
turnover occurs with approximately 10% of adipocytes
undergoing apoptosis annually (84). These dying adipocytes are
removed via trogocytosis by ATMs (85). Adipokine secretion by
adipocytes also alters macrophage function. Increased leptin in
obesity increases the phagocytic function of ATMs and is
associated with an increase in circulating C-reactive protein (41,
86). Adiponectin secretion is thought to be inhibited by TNF-
alpha secretion which is increased in obesity. In the lean state,
FIGURE 1 | The earliest changes in adipose tissue inflammation include adipocyte hypertrophy with direct secretion/exosome release of key adipokines (increased
leptin/decreased adiponectin) which in combination with increased adipocyte MHCII expression result in the differentiation of pro-inflammatory Thelper type 1 cells
(Th1) resulting in decreased regulatory T cells (Tregs). Adipocytes during this time frame also increase IL-8 production resulting in neutrophil accumulation. Later in
the time course (around 8 weeks), macrophage infiltration is stimulated by toxic lipid production and increased MCP-1 secretion which inhibits innate lymphoid cell
type 2 (ILC2) differentiation.
June 2021 | Volume 12 | Article 650768
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adiponectin is known to inhibit the development of foam cells
from macrophages and decreases endothelial cell activation and
monocyte adhesion (87). The interaction between adipocytes and
ATMs is a key contributor to the chronic low-grade inflammation
of obesity (88).

Innate Lymphoid Cells Type 2
Another key innate immune cell that is not well-defined within AT
is the innate lymphoid cell type 2 (ILC2). ILC2 cells are important
in the maintenance of insulin sensitivity and are decreased in the
setting of HFD. Innate lymphoid cells express CD4+ related
cytokines, mirror Th1, Th2, and Th3 expression profiles (89),
but differ in that they do not express B or T cell receptors despite
arising from the common lymphoid progenitor cell (90). The ILC2
cell is similar to Th2 cells in that it contains the transcription factor
GATA3 (91) and secretes IL5 and IL13. Within mouse models of
obesity, the administration of IL25 leads to improvements in
glucose tolerance and weight loss and is associated with the
infiltration of ILC2 cells, alternatively activated macrophages,
and eosinophils. Depletion of ILC2 cells in obese Rag1-/- mice
leads to worsening insulin sensitivity and weight gain, while
repletion of ILC2 cells reverses these negative metabolic
consequences (18). Furthermore, in murine models, ILC2 cells
appear to be the primary source of IL-5 and IL-13 and are
necessary for the maintenance of alternatively activated
macrophages and eosinophils, two key cells implicated in the
anti-inflammatory state of lean AT (92). These cells are thought to
contribute to an improved metabolic phenotype through the
beiging of WAT characterized by increased expression of Ucp1
leading to an increase in caloric expenditure and attenuation of
weight (93, 94). These researchers also confirmed that ILC2 cells
Frontiers in Immunology | www.frontiersin.org 5
are markedly decreased in the SAT of obese compared to lean
humans (93); thus highlighting a key role for ILC2 cells in AT (95).

CONCLUSIONS

Multiple changes in the innate immune system are key contributors
to inflammation in obese AT resulting in the development of
obesity-related diseases as summarized in Figure 1. Despite the
greater understanding of the immunologic role of AT, further
investigation should seek to answer the following questions:
(1) what are the causes of AT immune cell infiltration and
activation, (2) how does the adipocyte contribute to these changes
and interact with AT immune cells, (3) is there a role of the gut
microbiota in alteration of AT inflammation and (4) how do AT
immune cells change during weight-loss. Through the elucidation of
the answers to these key questions, immunologic therapies,
potentially targeting the adipocyte, for the treatment of obesity
and its inflammatory complications can be developed.
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