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Symptom improvement in children with autism
spectrum disorder following bumetanide
administration is associated with decreased GABA/
glutamate ratios
Lingli Zhang1,2, Chu-Chung Huang3,4, Yuan Dai1,2, Qiang Luo3,4,5, Yiting Ji1,2, Kai Wang1, Shining Deng1, Juehua Yu1,
Mingyu Xu1, Xiujuan Du1,2, Yun Tang1, Chun Shen1,3, Jianfeng Feng3, Barbara J Sahakian1,3,5, Ching-Po Lin 3,6 and
Fei Li1,2

Abstract
Bumetanide has been reported to alter synaptic excitation–inhibition (E-I) balance by potentiating the action of
γ-aminobutyric acid (GABA), thereby attenuating the severity of autism spectrum disorder (ASD) in animal models.
However, clinical evidence of its efficacy in young patients with ASD is limited. This was investigated in the present
clinical trial of 83 patients, randomised to the bumetanide group (bumetanide treatment, 0.5 mg twice daily) or the
control group (no bumetanide treatment). Primary [Children Autism Rating Scale (CARS)], secondary [Clinical Global
Impressions (CGI)], and exploratory [inhibitory (γ-aminobutyric acid, GABA) and excitatory (glutamate, Glx)
neurotransmitter concentrations measured in the insular cortex (IC) and visual cortex (VC) by magnetic resonance
spectroscopy (MRS)] outcome measures were evaluated at baseline and at the 3-month follow-up. Side effects were
monitored throughout the treatment course. Compared with the control group, the bumetanide group showed
significant reduction in symptom severity, as indicated by both total CARS score and number of items assigned a
score ≥ 3. The improvement in clinical symptoms was confirmed by CGI. GABA/Glx ratio in both the IC and VC
decreased more rapidly over the 3-month period in the bumetanide group than that in the control group. This
decrease in the IC was associated with the symptom improvement in the bumetanide group. Our study confirmed the
clinical efficacy of bumetanide on alleviating the core symptoms of ASD in young children and it is the first
demonstration that the improvement is associated with reduction in GABA/Glx ratios. This study suggests that the
GABA/Glx ratio measured by MRS may provide a neuroimaging biomarker for assessing treatment efficacy for
bumetanide.

Introduction
Autism spectrum disorder (ASD) is a neurodevelop-

mental disorder with an increasing global prevalence
ranging from 42.6/10,000 in China to 1/58 in the United
States1,2. ASD can be reliably diagnosed at 24 months or
even as early as 18 months of age3, and is a life-long
condition. Although the molecular and neural mechan-
isms underlying ASD remain largely unknown, a previous
study suggested that ASD may result from alteration in
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brain development during early life, such as the
excitatory-inhibitory (E-I) imbalance in the autistic brain
can affect the sensory, memory and emotional systems4,
indicating the necessity of early intervention. Without
directly monitoring the neuronal E-I balance, current
behavioural interventions for ASD at preschool age are
mainly behavioural intervention, including parents-
mediate Early Start Denver Model and the Applied
Behaviour Analysis5. These intervention resources vary
greatly between countries and within regions, for exam-
ple, less well-educated families in Europe may not receive
behavioural intervention for ASD children for a year fol-
lowing diagnosis6. Furthermore, this failure to receive
behavioural treatment is even worse in developing coun-
tries7. Therefore, a pharmacological treatment remains an
alternative approach, which could be used globally where
other behavioural treatments are not readily available.
However, risperidone and aripiprazole, the only medica-
tions for ASD approved by the U.S. Food and Drug
Administration, do not attenuate ASD core symptoms,
and have considerable adverse side effects5. Therefore,
there is a need for treatment strategies focused on the
atypical early development of the autistic brain that can
mitigate ASD symptoms, including impairments in social
and emotional cognition.
The E-I imbalance has been hypothesized to be caused

by an unsuccessful excitatory-to-inhibitory shift of the
GABA (γ-aminobutyric acid) activity in neurons, known
as the GABA switch8, and this switch may depend on a
reduction of intracellular chloride concentration ([Cl–]i)
mediated by a sequential expression of the main chloride
transporters, especially the importer Na-K-Cl cotran-
sporter 1 (NKCC1)9. The regulation of the intracellular
neuronal chloride levels determines the efficacy of
GABAergic inhibition and high levels can hinder the
polarity from excitation to inhibition10. In animal models
of autism, notably rats with intrauterine valproic acid
injection11,12 or maternal immune activation13, rats car-
rying the fragile X11 or MECP2 mutation14, acute
maternal administration of bumetanide, a NKCC1
chloride-importer inhibitor, before delivery switched the
action of GABA from excitatory to inhibitory in the off-
spring, restoring both electrophysiological profile of the
CA3 area of hippocampus, cerebellar purkinje cells or
normal cerebral volumes.
Recent clinical trials have shown that bumetanide can

reduce the severity of autism with effect sizes ranging from
0.33 to 0.64 and only bring few adverse events10,15–17.
Similar clinical improvement as well as EEG alterations,
have been observed in an ASD girl with 15q11.2 duplica-
tion after bumetanide treatment18. A more recent report
revealed that bumetanide could reduce amygdala activa-
tion in adolescents with ASD, in which authors hypothe-
sized that bumetanide restores the E-I balance of brain19.

However, no studies to date have directly tested whether
bumetanide regulate E-I balance by facilitating the GABA
switch in autistic brain, especially in young children with
ASD. Magnetic resonance spectroscopy (MRS) is a pro-
mising tool for addressing this question. One study
reported a correlation between GABA concentration in
the visual cortex (VC) and the degree of perceptual sup-
pression during binocular rivalry in adolescents with
typical development, whereas the correlation was sig-
nificantly lower in autistic patients20. Another study
reported increased cortical and striatal GABA/glutamate
ratios in a neurofibromatosis type 1 mouse model of
autism21. Hence, the main aim of the current study using
MRS is to determine whether bumetanide could regulate
GABA/glutamate ratio in the brain and reduce the severity
of the autistic symptoms in young children with ASD.
In DSM-5, sensory symptoms are the core diagnostic

feature of ASD, which has focused increasing attention on
these symptoms. Atypical sensory experience occurs in
almost 90% of autistic individuals and affects every sensory
modality22,23. More broadly, studies have shown that
sensory symptoms not only precede but also are predictive
of social-communication deficits in childhood, as well as
eventual diagnostic status, indicating impaired sensory
traits may serve as early biomarkers of autism24–26. E-I
imbalance has been posited to be the neurobiology of
autistic sensory impairment27,28. VC is the crucial region
involved in visual detection, while MRS studies have been
shown to link disruptions in autistic visual processing to
GABA concentration in VC 20,29. Insular cortex (IC) is well
known for its function in sensory integration, which
reflects GABA circuit maturation30. Impaired multi-
sensory integration was common across four ASD rodent
models with autistic behavioural phenotypes and
GABAergic circuit abnormalities30. Therefore, we chose
the VC and IC as the candidate brain regions during MRS
scanning, to investigate the effect of bumetanide on
“sensory brain”, as well as their relationships with ASD’s
core symptoms.
Here, we carried out a pilot open-label trial in which

one group of children with ASD aged 3–6 years was
administered 1mg of bumetanide daily for 3 months;
matched group of children with ASD that did not receive
such treatment served as the control group. We first
evaluated the efficacy and safety of bumetanide treatment,
then examined the effect on neurotransmitter levels in the
brain and the association between the latter and changes
in symptoms.

Materials and methods
Ethics statement and patients
The observational study was designed to assess the

efficacy, safety, and possible neuropharmacological
mechanisms of bumetanide in young children with ASD
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to whom behavioural therapies are not available. The
study was conducted in accordance with the provisions of
the Declaration of Helsinki and Good Clinical Practice
guidelines, and was approved by the Ethics Committee of
Xinhua Hospital affiliated to Shanghai Jiao Tong Uni-
versity School of Medicine. The study was registered at
the Chinese Clinical Trial Registry (ChiCTR-OPC-
16008336). Written informed consent was obtained from
the parent or legal guardian of each participant.
The patients, aged 3–6 years old, were recruited at

Xinhua Hospital from April 2016 to April 2019 and were
diagnosed with ASD according to the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition. They
had no access to behavioural interventions. Diagnosis was
confirmed with the Autism Diagnostic Interview–Revised
and Autism Diagnostic Observation Schedule (ADOS),
and a Children Autism Rating Scale (CARS) total score of
no less than 30. The evaluations were performed by a
multidisciplinary team that included well-trained specia-
lists, psychologists, and developmental behavioural pae-
diatricians who did not participate in the study. The
inclusion of each participant was reviewed by a develop-
mental behavioural paediatrician with over 10 years of
professional experience. Exclusion criteria were liver and
kidney dysfunction; a history of allergy to sulfa drugs;
abnormal electrocardiography; genetic or chromosomal
abnormalities; suffering from nervous system diseases (e.g.,
epilepsy, schizophrenia, etc.). Patients were excluded if
they were currently using melatonin for the treatment of
sleep disorders or had taken melatonin within the last
3 weeks. This was to eliminate the possibility of melatonin
effects on the GABAergic system31–33. Additional exclu-
sion criteria for neuroimaging were any contraindications
of magnetic resonance imaging (MRI) scanning and any
reported structural abnormalities in the brain.

Experimental design
The participants were randomly assigned to two groups:

bumetanide group, receiving 3-month bumetanide treat-
ment, and control group without such treatment. The trial
lasted for 3 months. Behavioural assessment and MRS
scanning were performed at baseline and after 3 months.
The CARS and other evaluations were conducted ‘blind’ to
condition (Bumetanide or no treatment) by experience
clinicians. Bumetanide treatment consisted of two 0.5mg
tablets per day for 3 months, given at 8:00 am and 4:00 pm.
During the intervention, side effects were closely monitored
especially at 1 week and 1 month after the initiation of
treatment and at the end of the treatment period. Symp-
toms (thirst, diuresis, nausea, vomiting, diarrhoea, con-
stipation, rash, palpitation, headache, dizziness, shortness of
breath, and any other self-reported symptoms) and blood
parameters (serum potassium, uric acid, and creatine) were
evaluated. The study procedure is outlined in Fig. 1a.

Measures
Primary outcome
Primary outcome was measured with CARS34, which

has been used to assess the occurrence and severity of
clinical symptoms of ASD and to delineate disease tra-
jectory and monitor treatment efficacy. CARS has 15
items rated on a 7-point scale (1, 1.5, 2, 2.5, 3, 3.5, 4); the
total score was calculated by adding the scores of the 15
items; the number of items that assigned a score ≥ 3 was
also used to measure the severity of the symptom.

Secondary outcome
The Clinical Global Impression (CGI) scale35 was used

to measure secondary outcome. The CGI-Improvement
scale (CGI-I) was used to evaluate the degree of
improvement in the patient’s symptoms relative to the
baseline, and the CGI-Efficacy Index (CGI-EI) assessed
the clinical efficacy of bumetanide by considering both the
treatment effect and associated side effects.

Exploratory outcomes
Inhibitory (GABA) and excitatory (glutamate [Glx])

neurotransmitter concentrations within a volume of
interest (VOI) were measured by MRS. In addition to the
VC, we also selected the IC as our VOI, as abnormal
GABAergic transmission has been reported in this region
in mouse models of autism.

Imaging
Image acquisition
Imaging was performed in the afternoon between 12:00

and 16:00. In our preliminary study, of the 10 children
who participated in the scanning session only four slept
naturally; two of these subjects awoke after completing
the T1 and T2 scans, and none slept through the entire
scan. Given the young age and clinical features of our
subjects, we offered sedation (50 mg/kg chloral hydrate at
a maximum dose of 1 g administered rectally). In a recent
review of over 300 children, Karaoui et al have demon-
strated the safety and efficacy of chloral hydrate for use in
paediatric sedation36. Children were scanned 15–20 min
after sleep onset, as a comparable stage of slow wave sleep
was achieved within this timeframe as during an after-
noon nap37. The experimental design and the analyses
used controlled for any potential confounding effects of
chloral hydrate on MRS measures.
Participants were scanned using a Siemens Verio 3.0-

Tesla MRI scanner (Siemens Medical Solutions, Munich,
Germany) with 32-channel head coil and four-channel
neck coil. Earplugs, earphones, and extra foam padding
were provided to the subjects to reduce the sound of the
scanner during the scan. The insula voxel (20 × 40 ×
20mm, Fig. 1b) was placed along the anterior–posterior
direction of the IC and covered the anterior and posterior
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Fig. 1 Flow diagram and VOIs in MRS. a Among 102 participants recruited in this study, 19 did not meet the inclusion criteria and 83 were
randomized into two groups. During the intervention stage, two participants in the control group withdrew, as they were given an opportunity to
engage in behavioural therapy. In the end, 81 participants completed this trial; and 57 of them (bumetanide group: n= 40, all the parents agreed to
scan while two participants waked up during scan; control group: n= 17, only 17 parents agreed to scan) were scanned both at baseline and after
3 months. b, c This figure shows the mean voxel placements in (B left) insula and (C left) visual cortex (VC) from all the studied participants that
transformed to the MNI standard space. The colormap indicates the percentage of overlapping. We also show the examples of GABA-edited specta
and the fitted GABA/Glx concentrations from (B right) insula and (C right) VC of a representative participant.
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limits of the insula38. The VC voxel (30 × 30 × 30 mm, Fig.
1c) was positioned medially between bilateral occipital
cortices39. To ensure the consistency of VOI positioning
in the longitudinal experiments, we used the first-scanned
VOI of each participant as a reference to locate the same
VOI in the follow-up scan. For each participant, a three-
plane localiser image was first acquired, followed by a
high-resolution anatomical T1-weighted magnetisation‐
prepared rapid gradient echo image (192 sagittal slices;
voxels= 1 × 1 × 1mm; repetition time [TR]= 2300 ms;
echo time [TE]= 2.28 ms; inversion time= 1100 ms; flip
angle= 8°, field of view= 192 × 192 × 192 mm) to guide
the spectroscopic VOI. For GABA measurements,
Mescher-Garwood point-resolved spectroscopy (MEGA-
PRESS) scans (256/128 spectra for IC/VC were acquired
with on-/off-resonance frequency= 1.9/7.5 ppm using
TR/TE= 1500/68ms) were performed in two VOIs40.
The difference spectrum was obtained by subtracting the
edit-ON and -OFF spectra, yielding a spectrum for
total GABA.

Imaging preprocessing
For reliable quantification of the GABA signal, we used

LCModel software41,42 with a simulated MEGA-PRESS
basis set to fit the MRS data and determined n-
acetylaspartate (NAA), n-acetylaspartyl-Glx, GABA, Glx,
glutamine, and glutathione concentrations using the dif-
ference spectra. Each spectrum was reviewed and the
quality control parameters from LCModel were applied to
ensure an acceptable signal-to-noise ratio (SNR) for the
MRS voxel. Participants with SNR ≤ 15, full-width at half-
maximum ≥ 0.05 ppm, and Cramer–Rao lower bounds in
the fitted spectrum equal to or higher than 20% for GABA
were excluded from further analysis. Figure 1b, c shows
representative MRS spectra of the two target VOIs ana-
lyzed with the LCmodel.
GABA metabolite concentrations are expressed in

institutional units after normalizing by NAA con-
centration within the VOI43, since there was no inter-
group difference either before or after treatment and no
significant time × group interaction effect for NAA
concentration (Supplementary Table 1). In addition, due
to the difference in tissue composition of each VOI
(partial volume effect), tissue correction was performed
for GABA-edited MRS to adjust GABA measurements.
We segmented the T1-weighted images into grey matter
(GM), white matter (WM), and cerebrospinal fluid using
Statistical Parametric Mapping (SPM12; Wellcome
Institute of Neurology, University College London, UK)
to compute the volume fraction of each tissue compo-
nent covered within the VOI44. The corrected GABA
metabolite concentration was calculated with the fol-
lowing equation: Metabolitecorrected=Metaboliteraw/
NAAobserved × (1/[frGM+ 0.5 × frWM]).

After quality control, pre- and post-treatment mea-
surements of IC/VC VOIs were available for 52/53 and
46/53 patients, respectively, whereas data at both time
points were available for 43/50 patients.

Statistical analysis
Effect on clinical symptoms
Before and after treatment, inter-group differences in

demographic parameters (i.e., sex proportion, age, intel-
ligence quotient [IQ]) and symptom severity (i.e., ADOS
and CARS) were evaluated with the Welch’s t test
(t statistic, assuming non-equal variances) for continuous
variables and Pearson’s chi-squared test for categorical
variables.
A mixed-effects model was used to determine whe-

ther the group and time × group interaction were sig-
nificant45. Considering sex, age, and IQ as covariates,
we tested the fixed effects of time (0, month before
treatment; 1, month after treatment), group (0, control;
1, bumetanide), and their interaction (time × group) by
assuming different random intercepts for each subject.
Our dependent variables were the behavioural assess-
ments (CARS total score and number of scores ≥ 3).
The normality of the model residuals was assessed with
the Shapiro–Wilk normality test, and homogeneity of
variance across groups was evaluated with Levene’s
test. If at least one of the two tests were significant, a
permutation-based mixed-effects model was estab-
lished by 3000 random permutations of the group label
using the permlmer and predictmeans functions in
R package v.1.0.1 (https://www.r-project.org/). If the
interaction term was significant for overall symptoms,
we further examined the 15 subscales of the CARS to
identify those that were the most affected by the
treatment. Using the p values from the permutation
test (perm.p), we carried out a false discovery rate
(FDR) correction for multiple comparisons (fdr.p). For
CGI-I and CGI-EI, the Kruskal–Wallis tests were
applied to assess the significance level of the inter-
group difference.

Effect on MRS measurements
For MRS measurements, a linear model with age, sex,

and IQ as covariates was used to assess the main effect of
group on neurotransmitter concentrations. To directly
test the treatment effect on these measurements, we used
a mixed-effects model similar to that described above for
behavioural assessment. Since the normality tests of the
model residuals yielded a few significant results, we
combined the permutation-based p value of the interac-
tion term in the mixed-effects model with the FDR cor-
rection for multiple comparisons among multiple MRS
measurements and/or brain regions.
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Association between changes in MRS measurements and
severity of clinical symptoms
We calculated Spearman’s correlation coefficients

between the change in MRS measurements after treat-
ment and the change in symptom severity while con-
sidering age, sex, IQ, symptom severity, and MRS
measurements before treatment as covariates. If a sig-
nificant association was detected, we further investigated
which subscales (i.e., phenotype) of the CARS were
associated with the change in MRS measurement based
on 3000 random permutations.
To determine whether the baseline MRS measurement

reflected the efficacy of bumetanide treatment (i.e., could
serve as a predictor of efficacy), the bumetanide group was
divided into high and low concentration subgroups based
on the median MRS measurement. The Kruskal–Wallis
rank sum test was used to assess overall differences
among the two bumetanide groups and control group.
The FDR was applied to correct for multiple comparisons.
If the Kruskal–Wallis test was significant, a post hoc
comparison was carried out with Dunn’s test in the Fish
Stock Assessment package of R v.0.8.22 software.
All analyses were performed using R v.3.5.1. The code is

available from the following webpage: https://github.com/
qluo2018/RCT.

Results
Demographics and clinical characteristics of the study
population
A total of 102 patients were recruited in outpatient

settings and 83 met the criteria for study enrolment.
Among these patients, 42 received bumetanide treatment
(0.5 mg twice daily for 3 months) while 41 control subjects
received no such treatment (Fig. 1a). There were no dif-
ferences between the two groups in terms of symptoms
and demographic characteristics before treatment (Table
1). Eighty-one participants completed the trial. Two par-
ticipants in the control group withdrew, as they were
given an opportunity to engage in behavioural therapy.
Fifty-seven participants were scanned both at baseline and
after 3 months (Fig. 1a).

Safety and tolerability of bumetanide treatment
In the bumetanide group, no patient withdrew from the

trial due to the adverse effects. The most frequent adverse
effect observed was polyuria/pollakiuria (n= 15), usually
occurred within 3 h after bumetanide administration,
which was mild and no additional treatment required. A
total of four patients developed mild hypokalemia, with
serum potassium between 3.0 and 3.5 mmol/L. These
patients were administered potassium supplements and
were advised to intake potassium-rich foods. These pro-
cedures permitted the return of potassium to normal
levels. The remaining adverse effects were loss of appetite

(n= 4), fatigue (n= 1), and mild hyperuricemia (n= 1).
These results show that bumetanide is safe in young
children with ASD when the administration is monitored.

Bumetanide improves ASD symptoms
The bumetanide and control groups had similar CARS

total scores before treatment (Table 1), but after treat-
ment the former had a lower total score (t77.3= 3.35, p=
0.0012; Cohen’s d= 0.74) and less number of items ≥ 3
(t74.6= 2.88, p= 0.0053; Cohen’s d= 0.63). Bumetanide
treatment altered the progression of symptoms, as evi-
denced by significant interaction effects of time × group
on CARS total score (t81=−9.69, p= 3.46 × 10−15) and
number of scores ≥ 3 (t81=−5.31, p= 9.38 × 10−7)
(Table 2 and Supplementary Fig. 1). The normality test of
residuals and heteroscedasticity test for the two linear
models were non-significant. After correction for multi-
ple comparisons, we found that such interaction effects
were particularly significant on six subscales of CARS—
namely, item 1 (impairment in human relationships;
t81=−2.85, fdr.perm.p= 0.02), item 3 (inappropriate
affect; t81=−3.17, fdr.perm.p= 0.02), item 4 (bizarre use
of body movement and persistence of stereotypes; t81=
−2.83, fdr.perm.p= 0.02), item 5 (peculiarities in relating
to non-human objects such as toys and other materials;
t81=−2.48, fdr.perm.p= 0.046), item 7 (peculiarities of
visual responsiveness; t81=−2.44, fdr.perm.p= 0.049),
and item 13 (activity level; t81=−2.83, fdr.perm.p= 0.02)
(Table 2).
Using CGI, clinical improvement was confirmed by

both the improvement scale (CGI-I; kw-χ2= 17.09, p=
3.56 × 10−5) and the efficacy index (CGI-EI; kw-χ2=
11.89, p= 5.62 × 10−4).

Bumetanide alters GABA/NAA and GABA/Glx ratios in the
IC
Before treatment, the bumetanide group had a higher

GABA/NAA ratio (F1,47= 5.27, perm.p= 0.0260) in the
IC and a higher GABA/Glx ratio in both the IC (F1,47=
4.80, perm.p= 0.0463) and VC (F1,48= 11.01, perm.p=
0.0013) compared with the control group (Fig. 2 and
Table 3). Consistent with the trends in the symptoms, we
found that bumetanide had significant effects over the
3-month treatment course on both GABA/NAA (F1,41=
5.06, fdr.perm.p= 0.0418) and GABA/Glx (F1,41= 6.16,
fdr.perm.p= 0.0418) ratios in the IC and GABA/Glx ratio
(F1,48= 5.47, fdr.perm.p= 0.0418) in the VC when con-
sidering baseline MRS measurements as additional cov-
ariates (Fig. 2 and Table 3).

Changes in the GABA/Glx ratio in the IC are associated with
clinical improvement
The change in GABA/Glx ratio in the IC was associated

with a decrease in the number of CARS scores ≥ 3 in the
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bumetanide group (Spearman’s r= 0.42, p= 0.0194, n=
35); this correlation was stronger in the bumetanide group
than in the control group (z= 5.71, p= 0.0347). We also
found both significant association with CARS item4
(bizarre use of body movement and persistence of ste-
reotypes) (r= 0.37, p= 0.0466, n= 35) and item 5
(peculiarities in relating to non-human objects such as
toys and other materials) (r= 0.47, p= 0.0084, n= 35)
(Supplementary Table 2).
Using the median GABA/Glx ratio in the IC (0.3691)

as a threshold, we tested whether such a pre-treatment
ratio could predict treatment efficacy. Non-parametric
inter-group comparisons revealed differences in CGI-I
(kw-χ2= 13.64, p= 0.0011; Supplementary Table 3).
The post hoc tests indicated that the bumetanide sub-
group with a sub-threshold GABA/Glx ratio showed
greater improvement than the bumetanide subgroup
with a higher GABA/Glx ratio (kw-χ2= 1.99, fdr.p=
0.0468) and the control group (kw-χ2=−3.69, fdr.p=
0.0007), with the latter two groups showing comparable
change (fdr.p= 0.0532) (Supplementary Table 3).

Discussion
The present study showed that treatment with bume-

tanide reduced the severity of ASD symptoms in a group
of patients, and also demonstrated the safety of this drug
for children aged between 3 and 6 years. Importantly, our
results provide the first neuroimaging evidence that the
GABA/Glx ratio was decreased in both the IC and VC
relative to the control group following bumetanide
administration. Furthermore, the decrease in GABA/Glx
ratio was associated with a reduction in symptom severity
as assessed by the CARS. These findings provide insight
into the mechanistic basis for the clinical efficacy of
bumetanide in ASD and support to the hypothesis that
bumetanide can restore E-I balance in the autistic brain
thereby promoting normal brain function and social
emotional cognition.
It is thought that GABAergic signals are altered in ASD

and that an elevated level of [Cl−]i contributes to E-I
imbalance during early brain development46. In mouse
models of ASD, bumetanide was shown to function as a
high-affinity specific inhibitor of NKCC1 that could

Table 1 Demographic information and clinical characteristics of the study population.

Control Bumetanide Degree of freedom Statistic p value

Num. Min Max Mean SD Num. Min Max Mean SD

Sex (F, M) 12, 29 6, 36 1.00 2.7422 0.098

Age 41 3 6.69 3.97 1.01 42 3.01 6.04 4.19 0.95 80.42 −0.9949 0.3228

IQ 41 35 97 62.28 16.51 42 27.4 90 60.84 13.75 77.74 0.4320 0.6669

ADIR

TotalA 41 12 30 19.39 4.85 42 11 29 20.40 4.20 79.80 −1.0184 0.3116

TotalBv 34 6 21 13.65 4.39 24 8 23 13.96 3.85 53.30 −0.2860 0.7760

TotalBnv 7 7 14 11.29 2.29 18 5 14 11.11 2.91 13.96 0.1582 0.8766

TotalC 41 3 11 6.07 2.18 42 3 10 5.98 1.99 79.94 0.2111 0.8333

TotalD 41 1 6 3.83 1.69 42 1 6 4.07 1.35 76.50 0.7209 0.4731

ADOS

TotalA 41 3 10 6.34 1.59 42 3 8 6.21 1.34 77.96 0.3941 0.6946

TotalB 41 7 113 13.37 16.09 42 5 14 10.52 2.35 41.67 1.1196 0.2693

TotalC 41 11 22 17.27 3.38 42 9 22 16.74 3.44 81.00 0.7090 0.4804

TotalD 41 0 6 2.85 1.54 42 0 6 2.64 1.34 78.89 0.6641 0.5086

TotalE 41 0 4 1.95 1.05 42 0 5 2.26 1.21 79.86 −1.2510 0.2146

CARS

Total score 41 30 46.5 38.15 4.04 42 31.5 43.5 37.40 3.20 76.12 0.9267 0.3570

Num.item ≥ 3 41 1 15 6.32 3.57 42 1 12 5.93 3.03 78.31 0.5341 0.5948

Numbers of subjects with a particular characteristic are listed as integers, and quantitative measurements are presented as mean values ± standard deviations. Inter-
group differences are evaluated with Welch’s t test for continuous variables and Pearson’s chi-squared test for categorical variables
IQ intelligence quotient, ADIR The Autism Diagnostic Interview-Revised, TotalBv Total B score of ADIR for verbal subjects, TotalBnv Total B score for nonverbal subjects,
CARS Childhood Autism Rating Scale, Num. item ≥ 3 number of items assigned a score ≥ 3
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reduce [Cl−]i and thus restore GABAergic transmission to
rescue autism-like behaviours11–14. However, direct neu-
ropharmacological evidence for the action of bumetanide
in humans is lacking, despite the promising therapeutic
effects in ASD patients reported in several clinical studies.
Using 1H MRS MEGA-PRESS, a state-of-the-art neuroi-
maging sequence, we detected both GABA and Glx in
cortical neurons in vivo, which allowed us to monitor E-I
transmission in target VOIs during brain development.
The observed association between the decreased

GABA/Glx ratio in the IC and improvement in CARS
score after bumetanide treatment provides evidence for
the involvement of this cortex in ASD. The insula has
traditionally been recognized as a limbic integrative cortex
that is part of a so-called salience network, which inte-
grates sensory, emotional, and autonomic signals in order
to allocate cognitive resources and guide behaviour47. In
particular, impaired sensory integration and the under-
lying GABAergic circuits in the IC were rescued in mouse
models of ASD by pharmacological enhancement of
inhibitory transmission30. Neuroimaging evidence has
revealed hypoactivity of the insula in ASD patients in
response to social stimuli48. Thus, the most likely expla-
nation for our results is that bumetanide decreased the

severity of ASD symptoms by improving sensory inte-
gration and decreasing salience of non-social stimuli while
enhancing salience of social emotion stimuli49. This was
supported by the observed association between the
decrease in GABA/Glx ratio in the IC and improvement
of the symptoms “bizarre use of body movement and
persistence of stereotypes” and “peculiarities in relating to
non-human objects (like toys and other materials)” fol-
lowing bumetanide administration.
The measurement of GABA/Glx ratio in the insula by

MRS is a promising tool for the precision medicine
approach to ASD treatment50. The lower pre-treatment
GABA/Glx ratio in the IC was associated with greater
clinical improvement at the 3-month follow-up. Inter-
estingly, before the initiation of bumetanide therapy there
was no difference in symptom severity between patients
with higher and lower GABA/Glx ratios. Thus, patients
with similar symptom scores can present distinct neu-
roimaging findings; moreover, quantitative indices such as
GABA/Glx ratio in the insula are potential biomarkers for
monitoring treatment response.
Indeed, the precise mechanistic links between

bumetanide-mediated reducing intracellular chloride con-
centration([Cl−]i) and the resultant decrease of GABA/

Table 2 Clinical improvement in CARS after bumetanide administration.

CARS score Control (n= 41) Bumetanide (n= 42) Time × Group

Min Max Mean SD Min Max Mean SD t81 p value Shapi.p Leven.p perm.p fdr.p

Total score 30 47 37.27 4.09 27.5 40.5 34.51 3.35 −9.69 3.46 × 10−15 0.9149 0.3301

Num.item ≥ 3 0 15 5.49 3.50 0 9 3.52 2.65 −5.31 9.38 × 10−7 0.9059 0.0846

Item 1 1.5 3.5 2.71 0.46 1.5 4 2.50 0.53 −2.85 0.0055 0.0019 0.7963 0.0053 0.0200

Item 2 1.5 3.5 2.37 0.54 2 4 2.37 0.43 −2.18 0.0319 0.0015 0.2847 0.0350 0.0750

Item 3 2 3.5 2.65 0.39 2 3 2.40 0.43 −3.17 0.0022 0.5326 0.4607 0.0017 0.0200

Item 4 1 3 2.50 0.50 1 3.5 2.30 0.55 −2.83 0.0058 0.0018 0.8898 0.0033 0.0200

Item 5 2 3.5 2.66 0.48 1.5 3 2.43 0.44 −2.48 0.0151 0.1594 0.3898 0.0153 0.0460

Item 6 1.5 3.5 2.37 0.49 1 3 2.08 0.40 −1.71 0.0906 1.85 × 10−6 0.0164 0.0923 0.1538

Item 7 2 3 2.55 0.44 1 3 2.30 0.43 −2.44 0.0170 2.92 × 10−6 0.2265 0.0197 0.0492

Item 8 1.5 3 2.40 0.44 1 3 2.25 0.47 −1.90 0.0615 0.0993 0.8441 0.0606 0.1137

Item 9 1 3.5 2.20 0.61 1 3 1.79 0.54 −0.76 0.4517 4.63 × 10−9 0.4441 0.4285 0.4945

Item 10 1 3 2.05 0.43 1 2.5 1.58 0.49 −1.36 0.1771 4.21 × 10−5 0.1515 0.1716 0.2340

Item 11 1.5 3 2.71 0.49 1.5 4 2.79 0.47 −1.25 0.2156 6.18 × 10−5 0.4268 0.2166 0.2707

Item 12 1 3 2.28 0.61 1.5 3 2.25 0.47 −1.45 0.1501 0.0023 0.0828 0.1466 0.2199

Item 13 1.5 3 2.59 0.46 1.5 3.5 2.30 0.44 −2.83 0.0059 7.46 × 10−6 0.2050 0.0050 0.0200

Item 14 2 4 2.38 0.47 2 3 2.27 0.44 −0.43 0.6676 1.90 × 10−24 0.3272 0.6768 0.7251

Item 15 1.5 3.5 2.88 0.56 2 4 2.98 0.61 −0.26 0.7950 5.11 × 10−17 0.5057 0.7611 0.7611

CARS Childhood Autism Rating Scale, Num. item ≥ 3 number of items assigned a score ≥ 3, Shapi.p p value of the Shapiro–Wilk normality test for model residuals, Leven.
p p value of Levene’s test for homogeneity of variance, perm.p p value for time × group interaction in a mixed effect model based on 3000 random permutations,
fdr.p false discovery rate corrected p value
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glutamate ratios in ASD patients warrant further investiga-
tion. In the literature, it was reported that the GABA switch
(excitatory-to-inhibitory GABA switch) was impaired in
ASD, and bumetanide was able to largely correct this
impairment via gradually restoring the low level of [Cl−]i
and autistic behaviours in ASD rodent models11,51. In
our present work, it is not feasible yet to test whether
bumetanide restores the impaired GABA switch in ASD
patients. Mechanistically, we inferred the bumetanide-
caused decrease in GABA might be considered as a
reduction in an excitatory action of GABA, followed by
the shift of polarity of GABA and then a gradually
enhanced GABAergic inhibition. In the future, pro-
longed monitoring of GABA and GABA/Glx would be
helpful to illustrate this dynamic change of these neu-
rotransmitters during the GABA switch associated with
the neurodevelopment and bumetanide treatment. In
summary, although the precise mechanisms underlying
the effects of bumetanide on the GABA concentration in
insular and VCs remain to be established, we favoured
the notion that bumetanide could restore the imbalance
between neuronal excitation and inhibition in ASD, and
the current shift in GABA/glutamate levels might reflect
the process of the remodelling of GABAergic inhibition.

Kaila et al. have questioned the brain availability of
bumetanide due to its low permeability of brain-blood
barrier (BBB) and rapid efflux52. Indeed, in neurodeve-
lopmental disorders, the BBB has been suggested to be
especially permissive53,54. Our study in young children
supported the previous reports that bumetanide can
alleviate the core symptoms of ASD, and importantly
advances the understanding of the mechanism in the
brain by which these effects occurred. A recent review55

has indicated that the mechanisms controlling bumeta-
nide’s brain entry and removal are complex. New trans-
port mechanisms have been identified recently and it is
conceivable that the pharmacokinetics of bumetanide or
the affinity of phosphorylated NKCC1 are modified in
developmental disorders.
There were several limitations to this study. First of all,

as a pilot study, the small sample size prevented more
detailed profiling of the best responders to this treatment
and establishment of the optimal time window for inter-
vention. Additionally, while the MRS measurements
weren’t balanced between the two groups at baseline, we
controlled for the potential limitation by covariate ana-
lyses. In future, large-scale, multi-center studies will be
able to address this limitation. Nevertheless, these are

Fig. 2 Changes in neurotransmitter levels after bumetanide administration. a Group comparisons of insular GABA concentration before and
after treatment. Dots represent insular GABA concentration of each subject. b Trajectories of the change of insular GABA concentration before and
after treatment. Dots represent GABA concentration of each subject from bumetanide group, and triangles represent the concentration of control.
c, e Group comparisons of insular GABA/Glx ratios (c) visual GABA/Glx ratios (e) before and after treatment. d, f Trajectories of the change of both the
insular GABA/Glx ratios (d) and the visual GABA/Glx ratios (f). Dots represent GABA/Glx ratios of each subject from bumetanide group, and triangles
represent the concentration of control. Abbreviations: INS-insular cortex, VC-visual cortex, GABA -γ-aminobutyric acid, Glx – glutamate and glutamine.
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novel and highly clinically relevant findings, which pro-
vide a mechanism for the improvement in ASD patients
by bumetanide. Moreover, brain regions involved in sen-
sory information processing/integration were investigated
in this study. In future MRS research focused on the
social-communication and cognitive-associated brain
regions, such as ventromedial prefrontal cortex, are nee-
ded to further elucidate the neuropharmacological
mechanism of bumetanide. Last but not the least,
although the results of our study are promising, a double-
blind, randomised clinical trial with a larger population is
required to confirm the efficacy of bumetanide treatment
for ASD.

Conclusions
In summary, the results of this study demonstrate that

bumetanide has clinical potential for the treatment of
ASD, with few side effects; and that the GABA/Glx ratio
in the IC is a useful neuroimaging biomarker for mon-
itoring the response to treatment.
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Group (after treatment) INS.GABA/
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10 0.41 0.08 36 0.39 0.05 1.20 0.2801 41 1.0000

INS.GABA/Glx 10 0.35 0.06 36 0.34 0.04 0.83 0.3673 41 0.9983

VC.GABA/NAA 15 0.36 0.05 38 0.37 0.05 0.04 0.8502 48 0.9280
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perm.p p value given by 3000 random permutations, fdr.p false discovery rate corrected p value
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