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Abstract: Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings
hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of
traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic
neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting
state MEG recordings were obtained from a normative cohort, Cambridge Centre for Ageing and
Neuroscience (CamCAN), baseline: n = 619; mean 16-month follow-up: n = 253) and a chronic
symptomatic TBI cohort, Targeted Evaluation, Action and Monitoring of Traumatic Brain Injury
(TEAM-TBI), baseline: n = 64; mean 6-month follow-up: n = 39). For the CamCAN cohort, MEG-
derived neuroelectric measures showed good long-term test-retest reliability for most of the 103
automatically identified stereotypic regions. The TEAM-TBI cohort was screened for depression,
somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the Insomnia
Severity Index. Linear classifiers constructed from the 103 regional measures from each TEAM-TBI
cohort member distinguished those with and without each symptom, with p < 0.01 for each—i.e.,
the tonic regional neuroelectric measures of activation are sensitive to the presence/absence of these
symptoms. The novel regional MEG-derived neuroelectric measures obtained and tested in this
study demonstrate the necessary and sufficient properties to be clinically useful—i.e., good test-retest
reliability, sensitivity to symptoms in each individual, and obtainable using automatic processing
without human judgement or intervention.

Keywords: CamCAN; TEAM-TBI; post-concussion syndrome; normative atlas; test-retest reliability;
insomnia; depression; anxiety; somatization

1. Introduction

Traumatic brain injury (TBI) is a major cause of death and disability. Localized
neuroelectric correlates of persistent functional sequelae after TBI would provide significant
clinical value for diagnosis, disease monitoring, and targeted therapy.

It has been the informed expectation for a century that the keys to understanding
the human brain will be found in measuring and understanding the electrical activity
of neurons. Today, clinical neurophysiologists routinely measure single neurons to aid
implantation of therapeutic devices deep in the brain [1]. Epileptologists use arrays of
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implanted “stereo EEG” electrodes and the population recordings obtained from them to
diagnose and guide the treatment of intractable seizure disorders [2].

Population neuronal activity is presumed to be the basis for human behavior. Stereo
EEG and comparable invasive methods produce voltage recordings with resolution of a few
millimeters at best from up to a few hundred recording sites. Because the electric field inter-
acts strongly with the conducting tissue in the brain, these measures are difficult to localize
for currents at a distance from the electrodes. This problem is particularly pronounced
when the recordings are made noninvasively from electrodes placed on the scalp.

Magnetoencephalography (MEG) provides an alternative noninvasive measurement
approach with several advantages over scalp and even implanted EEG recordings. Elec-
trical current flow within populations of neurons is a fundamental constituent of brain
function. The magnetic fields produced by these electric currents within the brain are
measured at the MEG sensor array with high fidelity. Unlike electric fields, magnetic
fields do not interact with brain tissue [3–6]. Therefore, in principle, the currents which
are the sources of the measured magnetic field are more readily localized and their time
course quantified.

For almost all MEG studies, the neuroelectric sources of the recorded magnetic fields are
presumed to be due to population postsynaptic currents within the cerebral cortex [4–6]. For
this reason, most source level analyses are constrained to identify neuroelectric currents in the
cortex only, although there are occasional reports in which neuroelectric dipoles are localized
to the white matter—e.g., [7]. Additional remarks are found in the Discussion section.

In the current study, MEG recordings were processed using the referee consensus
solver, a method which extracts profuse localized and validated neuroelectric current
waveforms (p < 10−12 for each), not only from cortical and subcortical volumes within the
brain, but also from white matter volumes [8,9]. We employed a large set of MEG recordings
from healthy volunteers (CamCAN) to generate a normative database, including metrics
of test–retest reliability across MEG studies repeated 16 months apart. Good test–retest
reliability is a primary requirement for both scientific and diagnostic usefulness. We then
analyzed MEG-derived regional neuroelectric measures in a cohort of chronic TBI subjects
with persistent symptoms (Targeted Evaluation, Action and Monitoring of Traumatic Brain
Injury (Team-TBI)) to identify patterns of brain activity which distinguish between those
with and without specific TBI sequelae. Sensitivity to clinical symptoms is a second critical
requirement for clinical usefulness.

The primary objective of this work was to obtain and validate clinically useful neu-
roelectric measures localized within the brain. The mean and standard deviation for each
region from the CamCAN baseline MEG recordings were used to transform the corre-
sponding regional measure for each recording from both cohorts to z-scores. The baseline
and follow-up CamCAN z-scores were used to test for test-retest reliability. The baseline
and follow-up Team-TBI z-scores were used to test for sensitivity to symptoms. Consistent
with the translational objective of the effort, the data processing pipeline was deployed
(a) to function without human judgement or intervention and (b) to fully process each new
recording within 24 h [8].

The solver identifies high-fidelity waveforms for 80 msec instances of dipole electric
current flow localized to about 1 mm3 [3,4]. The normalized count of these instances within
each standardized region is the measure used in the present study—i.e., each measure
is the total value over a brain region automatically identified from one subject’s scan.
The fact that each standardized region is automatically identifiable for each scan using
Freesurfer [10,11] enables generating standardized measures, i.e., norms, for each region
across a large normative cohort. The values for those regions in any individual may then
be compared with the norms to assess the normality of the individual’s regional measures.

Note that each measure’s localization is limited by the automated parcellation accuracy
of Freesurfer and by the volume of each region. For the CamCAN and TEAM-TBI cohorts
reported here, those volumes range from less than 1.0 cm3, e.g., left or right nucleus
accumbens, to 30–70 cm3, e.g., left or right cerebellar cortex.
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The results reported here enable rejection of the following null hypotheses. (a) Individ-
uals with and without symptoms are indistinguishable. (b) The cohort membership of each
individual (TEAM-TBI or CamCAN) cannot be determined. (c) Regional measures from
an individual do not reliably repeat. (d) Within the individual, the neuroelectric activity
within a cortical region is indistinguishable from the adjacent rim of white matter.

Joint rejection of hypotheses (a) and (c) supports the potential for these measures
as clinically useful in the diagnosis and treatment of insomnia, depression, anxiety, and
somatization, common sequelae of TBI. Rejection of hypothesis (a) and (b) suggests the
possibility that these measures may be useful as biomarkers for TBI. The emphasis in
the study design is towards symptoms rather than etiology. It is hoped that this shift in
focus will produce insights which are useful in diagnosis and treatment of those symptoms,
regardless of etiology. Repeated MEG recordings during drug or other treatment modalities
may provide objective and useful information in assessing treatment efficacy and in making
adjustments to the treatment.

2. Results

The primary objective of this work was to obtain and validate clinically useful neuro-
electric measures localized within the brain. The mean and standard deviation for each region
from the CamCAN baseline MEG recordings were used to transform the corresponding
regional measure for each recording from both cohorts to z-scores. The baseline and follow-
up CamCAN z-scores were used to test for test-retest reliability. The baseline and follow-up
Team-TBI z-scores were used to test for sensitivity to symptoms.

Regional measures of neuroelectric activity for 17 subcortical, 68 cortical, and 18 deep
white matter regions were extracted from the MEG recordings for each study participant.
For the normative CamCAN cohort, the mean and standard deviation baseline values for
each region are shown in Appendix A. These values were used to transform all regional
measures to z-scores. The tables also include correlations and differences for baseline vs.
follow-up measures. These were used to assess test-retest reliability. The presence/absence
of relationships between these neuroelectric measures and measures of potential clinical
relevance was tested.

This effort produced several types of results. Significant relationships were found
between measures of tonic regional neuroelectric activity and (1) screening measures
of insomnia and psychological distress and (2) subjects in the CamCAN control cohort
vs. the TEAM-TBI chronically symptomatic group with history of concussion. These
directly impact on the potential usefulness of the measures as diagnostics and as probes for
scientific questions.

In addition, (3) both short-term (1 h) and long-term (16-month average) baseline vs.
follow-up test-retest reliability results are reported. This too impacts directly on potential
clinical utility. Finally, (4) the spatial resolution and statistical power of the neuroelectric
measures is demonstrated by identifying significant differential activity between cortical
and adjacent white matter regions.

Note that all regional neuroelectric activity measures were reduced to z-scores; the
means and standard deviations of the baseline CamCAN recordings (n = 619) were used
for the z-score transformation.

2.1. Insomnia and Psychological Distress

MEG-derived neuroelectric measures were obtained from 63 TEAM-TBI subjects at
baseline and from the 40 who returned for follow-up. Symptom surveys for insomnia and
three symptoms of psychological distress were obtained from all but one of the baseline
subjects. Standard inventories were for insomnia (Insomnia Severity Index, ISI, [12,13])
and somatization, depression and anxiety (Brief Symptom Inventory, BSI, [14,15]). Cut-offs
of 15 (ISI) and 63 (BSI) were used to divide both the baseline and follow-up TEAM-TBI
recordings into clinically negative or positive groups.
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Regional measures of neuroelectric activity for 17 subcortical and 68 cortical regions
were combined into classifiers using stepwise linear classification [16–18]. Classification
accuracies with p-values are shown in Table 1 (Figure 1). The p-values were computed
as follows. Considering line 1 of said table, 42 of 54 TEAM-TBI subjects who screened
negative for insomnia were classified as negative and 12 as positive. The chance that this
would happen by chance is equivalent to the odds of getting at least 42 heads when we
flip a fair coin 54 times. For each symptom, both sides of the classification have significant
p-values—i.e., the classifier does well in classifying both those who screen positive and
those who screen negative. This provides confidence that the neuroelectric measures which
comprise the classifier are related to the symptoms.

The regions whose measures were included are shown in Table 2 (Figure 1). For
each symptom, a second classification function was constructed, for which the regions
that were included in the first run were excluded. This second run produced significant
classification accuracy for insomnia only, as indicated in the tables. This suggests (a)
elevated confidence in the relationship between the regions whose neuroelectric measures
were used for each classification and (b) that the regional measures included in the second
classification function for insomnia are highly correlated with linear combinations of the
first set. That is why they were not included in the first classification run.

Classification accuracy reached significance for all four symptoms for both clinically
negative and positive groups. These results were weakest for anxiety. Classification
accuracy was comparable for baseline and follow-up records; baseline vs. follow-up
clinical rating changed for insomnia (n = 10), somatization (n = 9), depression (n = 10), and
anxiety (n = 15), almost all for the better.

Table 1. Eight-five cortical and subcortical regional measures were trained as linear classifiers by
groups determined by symptom survey clinical thresholds. Jackknifed classification accuracies are
shown. The results for insomnia (2nd step) are highlighted in gray. These were obtained when the
regions which were selected for the first classification analysis were excluded. Symptom survey scores
and regional neuroelectric measures were used from both baseline (n = 62) and follow-up (n = 40)
sessions for all subjects of the traumatic brain injury (TEAM-TBI) cohort. See the text for details.

Classified
Negative

Classified
Positive Percentage p-Value

insomnia

clinically negative 42 12 77.8% 0.000007

clinically positive 11 37 77.1% 0.000031
insomnia—2nd step
clinically negative 43 11 79.6% 0.0000017
clinically positive 13 35 72.9% 0.00036

somatization

clinically negative 46 12 79.3% 0.000001

clinically positive 14 30 68.2% 0.0048

depression

clinically negative 57 13 81.4% 0.00000001

clinically positive 9 23 71.9% 0.0035

anxiety

clinically negative 37 18 67.3% 0.0032

clinically positive 12 35 74.5% 0.00017
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Table 2. The regions whose neuroelectric activity values contributed to the symptom-Scheme 1. are
shown. Activity in regions marked “+” was higher in those who screened positive; those marked “-”
were lower. Regions marked “++” or “–” made the largest statistical contribution to the classifier.
The results for insomnia (2nd step) are highlighted in gray. These were obtained when the regions
which were selected for the first classification analysis were excluded.

Insomnia Somatization Depression Anxiety

Brain-Stem +

L Amygdala +
L Hippocampus – -

L Thalamus –
R Hippocampus +

R Thalamus ++

L caudal middle frontal -

L frontal pole -

L inferior parietal –

L insula –

L lateral occipital -

L lateral orbito-frontal + +

L paracentral -

L pars opercularis +
L pars triangularis +

L precentral –

L rostral anterior
cingulate ++

L rostral middle frontal +

L superior frontal -
L superior parietal -

L temporal pole +

R bankssts –
R caudal anterior

cingulate + - -

R caudal middle frontal –

R cuneus - -

R inferior parietal -

R insula ++

R isthmus cingulate -

R lateral occipital - –
R lateral orbito-frontal -
R medial orbito-frontal +

R middle temporal -

R pericalcarine +

R posterior central + +

R posterior cingulate -

R supramarginal + +

The magnitude of the difference between the nonclinical and clinical groups was
examined by testing the difference in the mean scores on each classifier between the groups.
This approach provides a complementary view on the magnitude and significance of the
differences between the groups achievable via measures of regional neuroelectric activity.
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The results are shown in Table 3. As might be expected, this produced comparable results
to those shown in Table 1, albeit with greater significance.

Table 3. For each symptom, the difference between those who screened negative vs. positive
was Table 1. Levene’s F-statistic was used to test for significant differences in the variability of
the comparison groups. Although no significant differences were found in variability, the most
conservative adjusted df values were used to compute the p-values corresponding to the t-statistics.
As in Tables 1 and 2 above, results are highlighted in gray for insomnia (2nd step). These were
obtained when the regions which were selected for the first classification analysis were excluded. See
the text for details.

t df
(Adjusted) p-Value Levene p-Value

insomnia 9.20 87.8 10−14 0.10 0.756
insomnia—2nd step 6.70 86.8 10−9 0.39 0.532

somatization 8.63 73.6 10−13 1.27 0.262

depression 10.15 56.6 10−16 0.09 0.763

anxiety 2.14 90.6 0.025 0.00 0.980

Finally, to provide information regarding the independence of the results for the
different symptoms, coincidence rates for pairs of symptoms and correlations between
classifier scores are shown in Table 4. These are the same classifiers reported in Table 1
and the same classifier scores reported in Table 3. In Table 4, the left panel shows that
60% or more of the TEAM-TBI subjects have at least two of the four symptoms. Note
that the acceptance criteria for the TEAM-TBI study included “high symptom burden”.
The correlations (right panel) are relatively high between pairs of BSI classifier scores and
relatively low between the insomnia classifier score and each of the BSI classifiers.

Table 4. Left panel: symptom coincidence rate. The fraction of the TEAM-TBI cohort who screened
positive for at least two symptoms is shown. For example, 61% of the TEAM-TBI cohort screened
positive for both insomnia and depression. Right panel: correlations between classifier scores for the
TEAM-TBI cohort. See the text for details.

Symptom Coincidence Rates Classifier Score Correlations

Somatization Depression Anxiety Somatization Depression Anxiety

0.67 0.61 0.71 insomnia 0.269 0.258 0.383

0.66 0.70 somatization 0.599 0.666

0.66 depression 0.781

2.2. CamCAN vs. TEAM-TBI Cohort

MEG recordings were obtained from 619 CamCAN subjects at baseline, 253 at follow-
up, 63 TEAM-TBI subjects at baseline and 40 at follow-up. High resolution T1 weighted
MR imaging (MRI) was obtained from all members of both cohorts. Diffusion-weighted
imaging (DWI) was obtained from 589 CamCAN subjects, and all of the TEAM-TBI subjects.
DWI is required to obtain regional neuroelectric measures for deep white matter tracts.
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to superior in one-centimeter increments. The left side of each slice is the right brain. Activity in blue/red regions was 

Figure 1. The regions whose neuroelectric activity values contributed to the symptom-specific classifiers reported in Tables 1
and 2 are shown. Each row shows the regions for the indicated symptom. From top to bottom, they are insomnia, insomnia
(2nd step), somatization, depression, and anxiety. The MR imaging (MRI) slices range from left to right, inferior to superior
in one-centimeter increments. The left side of each slice is the right brain. Activity in blue/red regions was higher/lower in
those who screened positive. The cyan landmarks are the boundaries between gray and white matter in the precentral,
cingulate, insula, and fusiform regions.

Regional measures of neuroelectric activity for 17 subcortical and 68 cortical regions
were combined into classifiers using stepwise linear classification [16]. Classification
accuracies with p-values are shown in Table 5. The cortical and subcortical regions which
contributed to the classifier in order of their statistical contribution were R thalamus, R
cerebellum, R middletemporal, R hippocampus, R lateraloccipital, L isthmuscingulate, L
thalamus, L fusiform, brain-stem, and 11 others. When these 20 regions were excluded,
classification accuracy remained highly significant albeit reduced. The contributing regions
in order were L insula, L lingual, R superior temporal, L caudate, L parahippocampal, and
seven others.

As for the cortical and subcortical regions, regional measures of neuroelectric activity
for 18 deep white matter tracts were combined into classifiers. Classification accuracies
with p-values are shown in Table 5. The regions which contributed to the classifier in order
were left cortico-spinal tract (L_cst), right inferior longitudinal fasciculus (R_ilf), R_cst,
forceps minor (fminor), and six others.

Discriminant analysis reduces all of the measures for an individual to a single score
for each classifier. Here, each individual has two scores, one for the cortical/subcortical
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classifier and one for the deep white matter tract classifier. Figure 2 shows these scores
in bivariate plots to illustrate the “spatial” separation which results in the classification
accuracies shown in Table 5 (Figure 3).
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Figure 2. The classifier scores for each baseline CamCAN subject (blue, n = 589) and each TEAM-TBI subject (red, n = 63)
are shown in the left. The score on the cortical/subcortical classifier is plotted on the x-axis; the score on the deep white
matter classifier is plotted on the y-axis. These are the classifiers whose accuracies are shown in Table 5. In the right panel,
all baseline TEAM-TBI scores are plotted, n = 63. Those who returned for follow-up (n = 40) are plotted as arrows; the
baseline is plotted at the base of the arrow; the follow-up is plotted at the arrow-head. 63 age and sex matched CamCAN
subjects who returned for follow-up are plotted in blue. The standard deviation bars represent 2.0 standard deviations for the
classifier scores.

Table 5. 85 cortical and subcortical regional measures were trained as linear classifiers by cohort using the baseline CamCAN
and TEAM-TBI measures. Jackknifed classification accuracies are shown for classifiers using 85 cortical and subcortical
regions (lines 1–10) and 18 deep white matter tracts (lines 11–15). The results highlighted in gray were obtained when the
regions which were selected for the first classification analysis were excluded. See the text for details.

CamCAN TEAM-TBI Percentage p-Value

Cortical/Subcortical

CamCAN baseline 581 38 93.9% 10−126

CamCAN follow-up 227 25 90.1% 10−42

TEAM-TBI baseline 0 63 100.0% 10−18

TEAM-TBI follow-up 0 40 100.0% 10−12

cortical/subcortical—2nd step
CamCAN baseline 504 115 81.4% 10−126

CamCAN follow-up 228 24 90.5% 10−42

TEAM-TBI baseline 2 61 96.8% 10−18

TEAM-TBI follow-up 3 37 92.5% 10−12

deep white matter

CamCAN baseline 518 71 87.9% 10−85

CamCAN follow-up 208 31 87.0% 10−33

TEAM-TBI baseline 14 48 77.4% 0.0000024

TEAM-TBI follow-up 9 30 76.9% 0.00015
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Figure 3. The regions whose neuroelectric activity values contributed to the cohort-specific classifiers reported in Table 5
and Table 6 are shown. The MRI slices range left to right, inferior to superior, in one-centimeter increments. The left side of
each slice is the right brain. Activity in blue/red regions was higher/lower in the TEAM-TBI cohort. The cyan landmarks
are the boundaries between gray and white matter in the precentral, cingulate, insula, and fusiform regions.

The components of each classifier are the measures for each included region. The
discriminant analysis algorithm identifies those regions for which there are differences
between the cohorts and constructs a linear combination of those regions’ measures which
adds the differences to enable significant separation/classification.

Figure 4 illustrates the differences for each subcortical region. A dot is plotted for
each subject of the CamCAN cohort (upper panel) and the TEAM-TBI cohort (lower panel).
Since each measure is a z-score computed from the mean and standard deviation for that
region from the CamCAN cohort, the plots for the CamCAN cohort all have a mean of 0.0,
standard deviation of 1.0, and are nearly symmetrically distributed about the mean.

Lack of symmetry primarily results from the fact that each measure has a floor since
each measure is a normalized count. The floor for each region is indicated in the figure with
a horizontal bar. No individual’s measure for a region can fall below that bar; this results
in bunching of the values below the mean. This is most pronounced for the accumbens
regions for which the floor is only slightly more than one standard deviation below the mean.

The regions whose contributions to the classifier were greatest are listed above and in
Figure 4 (subcortical) and Figure 5 (right cortical). The means for each of those regions is
markedly displaced from 0.0 as expected.

2.3. Test-Retest Reliability

Regional measures of neuroelectric activity for 103 cortical, subcortical, and deep
white matter regions were extracted from the resting and task MEG recordings for each
subject of both cohorts. The values for the CamCAN cohort were used to assess short-term
and long-term test-retest reliability. For short-term reliability, baseline resting vs. task
recordings obtained in the same sitting were used. For long-term, baseline vs. follow-up
resting recordings were used (mean interval = 16 months). The long-term correlations and
mean differences for each region are listed in Appendix A and are plotted on the y-axis in
Figure 6 in blue and red, respectively; the short-term correlations and mean differences are
plotted on the x-axis. Note that for mean difference, the values are z-scores.
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Figure 4. Regional activity (z-score) for 17 subcortical regions is shown for each CamCAN (upper
panel) and TEAM-TBI (lower panel) subject. Since the means and standard deviations for the CamCAN
subjects were used to compute the z-scores, the mean for each of the CamCAN regions is zero and the
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are highlighted in gray are far from the norm. Note that assessing sub-mean normality is limited by
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Figure 5. Regional activity (z-score) is shown for each TEAM-TBI subject for 34 right cortical regions. As in Figure 2, each
horizontal bar represents the floor below which no measure can go. The right middle temporal and lateral occipital cortices,
indicated with the wide black bars, contributed significantly to the classifier. Note that the means for some regions are
greater than zero, some less. See the Figure 4 legend for details.

The correlations are centered about 0.8 for short-term reliability; for long-term reliabil-
ity, they are centered around 0.45. The mean differences are consistently within 0.03 of 0.0
for the short-term reliability and range between ±0.55 for the long-term reliability. Hence,
test-retest reliability is high in the short term and moderate in the long term.

Note that the resting recordings were obtained with eyes closed, while the task
recordings were obtained with eyes open. Yet, the comparisons of these, reported here as
short-term correlations, are quite high, demonstrating that these measures, unlike fMRI
measures, are relatively insensitive to eyes open vs. eyes closed.

2.4. Differential Activity: Cortical vs. Adjacent White Matter Regions

For each of 68 cortical regions, Freesurfer identified an adjacent white matter region
with a maximum thickness of 5 mm. For each such pair of regions, i.e., cortex and adjacent
white matter rim, the difference in activity can be tested for significance by comparing the
observed current counts within the regions to the expected counts given the volumes of
the regions. This is not only a test of the spatial resolution of the referee consensus solver,
but in addition may provide useful neurophysiological information. See the Discussion
section for additional comments.

For most regions, there are thousands of counts so there is considerable statistical
power to identify differences using the χ2 statistic. For each of the 619 baseline CamCAN
subjects, there are 68 cortex/white matter region pairs—i.e., 42,092 in total. To reduce false
positives due to the large number of comparisons, p < 10−8 was used as the threshold for
significance. In total, 14,187 (33.7%) of the pairs demonstrated greater cortical activity than
white matter activity. This supports the claim that the solver’s resolution is less than 5 mm.
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subcortical, and deep white matter regions. Regional measures (z-scores) of tonic neuroelectric activity were compared across
all CamCAN subjects. Comparisons were between baseline resting and task recordings (short-term reliability, about one
hour) and between baseline and follow-up resting recordings (long-term reliability, mean 16-month interval). Correlations
(blue) and mean differences (red) are plotted—short term (x-axis) vs. long term (y-axis). Long-term test-retest reliability
shows reduced correlations and increased differences. Note that mean differences >0.1 or <−0.1 are typically significant
with p < 0.03.

3. Materials and Methods

Magnetoencephalographic (MEG) recordings were processed from each subject of two
cohorts: (1) the normative CamCAN cohort, n = 619 at baseline, ages 18–87 [19,20], n = 253
at follow-up, and (2) the chronically symptomatic concussed TEAM-TBI cohort, n = 63
at baseline, ages 21–60, n = 40 at follow-up. The MEG recordings were coregistered with
high-resolution T1-weighted and DWI weighted MRI scans obtained at baseline.

The primary objective of this work was to obtain and validate clinically useful neu-
roelectric measures localized within the brain. The mean and standard deviation for each
region from the CamCAN baseline MEG recordings were used to transform the corre-
sponding regional measure for each recording from both cohorts to z-scores. The baseline
and follow-up CamCAN z-scores were used to test for test-retest reliability. The baseline
and follow-up Team-TBI z-scores were used to test for sensitivity to symptoms. Consistent
with the translational objective of the effort, the data processing pipeline was deployed
(a) to function without human judgement or intervention and (b) to fully process each new
recording within 24 h [8].
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The raw MEG data from each subject were initially transformed to a collection of
probabilistically validated neuroelectric currents. Each current is 80 msec in duration and is
localized in time and space with a resolution of one millisecond (msec) and better than 5 mm
(mm). This primary processing step yielded profuse high-resolution neurophysiological
measures from within the brain of each subject. The total current count per subject per
minute is typically in excess of 500,000.

The current counts were normalized to produce measures of tonic activity for each
of 171 standard regions of interest (ROIs): 17 subcortical regions, 68 cortical regions,
68 adjacent white matter regions, and 18 deep white matter tracts. Each regional measure is
a count of all the neuroelectric currents localized within the region over the several-minute
recording time. The statistical power when comparing counts to test for regional differences
is high because the count for each region is high. A final adjustment was applied to each
regional measure based on comparable measures obtained from empty-room recordings
obtained on the same day.

3.1. CamCAN Dataset

The Cambridge Centre for Ageing and Neuroscience (CamCAN) Stage 2 cohort study
is a large cross-sectional adult lifespan study (ages 18–87) of the neural underpinnings
of successful cognitive ageing [19,20]. The study was conducted in compliance with the
Helsinki Declaration, and was approved by the local ethics committee, Cambridgeshire
2 Research Ethics Committee (reference: 10/H0308/50) [20].

The work reported here utilized the majority subset (n = 619) of the cohort for whom
high-resolution (1 mm) anatomic T1-weighted MR imaging and MEG recordings were
available. Of these, 253 follow-up resting recordings were obtained (Stage 3 longitudinal
study) with a mean interval of 16 months between MEG studies. Diffusion-weighted
imaging (DWI) was obtained for 589 of the baseline subjects, 240 of whom returned for
follow-up.

MR imaging was obtained on all subjects at a single site using a 3T Siemens TIM Trio
scanner with 32-channel head coil. T1 scans were obtained using the MPRAGE sequence.
The field of view for these scans was 256 × 240 × 192 at 1 mm resolution. DWI scans
were acquired (n = 589) with a twice-refocused spin-echo sequence, with 30 diffusion
gradient directions for each of the two b-values, 1000 and 2000 s/mm2, plus three images
acquired with a b-value of 0. Other parameters are: TR = 9100 msec, TE = 104 msec, voxel
size = 2.0 mm, FOV = 96 × 96 mm, 66 axial slices [20].

MEG recordings were collected at a single site using a 306-channel VectorView MEG
system (Elekta Neuromag, Helsinki). The data were sampled at 1 KHz with antialiasing
low-pass filter at 330 Hz and high-pass filter at 0.03 Hz. Continuous head position measures
were enabled throughout the recordings. All recordings were obtained with the subject
sitting up.

At baseline, 560 s were recorded continuously with eyes closed resting [19]. In the
same sitting, 560 s were recorded continuously during performance of a sensorimotor
task (n = 619). To test for short-term test-retest reliability, MEG-derived measures were
compared between the baseline resting and sensorimotor task recordings. The implications
of this test are detailed in the Discussion.

For the sensorimotor task, subjects detected visual and auditory stimuli and responded
to detection of each with a button press with the right index finger. The stimuli were two
circular checkerboards presented simultaneously to the left and right of a central fixation
cross, 34 msec duration, and a binaural tone of 300 msec duration. The tone was at 300, 600,
or 1200 Hz in equal numbers with the order randomized. In total, 121 trials were presented
with simultaneous visual and auditory stimulation. Eight trials were randomly intermixed
in which one stimulus was presented at a time—four visual and four auditory. This was
carried out to discourage dependence on one stimulus modality only. The average intertrial
interval was approximately 4.3 s
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At follow-up, 320 s were recorded continuously with eyes closed resting, n = 253 [20]. At
both baseline and follow-up sessions, 60 s of empty-room recordings were obtained.

3.2. TEAM-TBI Dataset

The chronic TBI subject dataset was derived from the Targeted Evaluation, Action
and Monitoring of Traumatic Brain Injury (TEAM-TBI) study, a personalized medicine
research program for subjects with chronic TBI sequelae at the University of Pittsburgh
(clinicaltrials.gov: NCT02657135). All TEAM-TBI subjects gave their informed consent for
inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the Institutional Review
Board of The University of Pittsburgh (PRO13070121).

Inclusion criteria were ages 18–60 with a history of one or more TBI more than six
months prior to the study, with severe persistent chronic TBI sequelae as assessed with
the post-concussion symptom severity (PCSS) scale—i.e., high chronic symptom load [21].
In total, 61 of the 63 subjects with MEG recordings had sustained “mild” TBIs. TEAM-
TBI subjects underwent a 4-day comprehensive clinical assessment, including advanced
neuroimaging, followed by multidisciplinary adjudication of clinical syndromes. TEAM-
TBI subjects then completed 6 months of supervised, targeted therapy. Subjects returned to
Pittsburgh for a follow-up evaluation (mean interval = 6.4 months) to document impact of
treatment on identified clinical disorders.

MR imaging was obtained for all subjects at a single site using a 3T Siemens TIM Trio
scanner with 32-channel head coil. T1 scans were obtained using the MPRAGE sequence.
The field of view for these scans was 256 × 256 × 176 at 1 mm resolution. DWI scans were
acquired (n = 64) with a twice-refocused spin-echo sequence, with 64 diffusion gradient
directions at b-values of 1000 and 3000 s/mm2, and 128 directions at b-values of 5000 and
7000. Additional parameters for the four b-values were: TR = 3700, 3700, 4100, 4500 msec,
TE = 92, 125, 147, 164 msec. voxel size = 2.4 mm, FOV = 230.4 mm, 63 axial slices.

MEG recordings were collected at a single site using a 306-channel VectorView MEG
system, Elekta Neuromag, Helsinki. The data were sampled at 1 KHz with an antialiasing
low-pass filter at 330 Hz and high-pass filter at 0.03 Hz. Continuous head position measures
were enabled throughout the recordings. All recordings were obtained with the subject
sitting up.

At baseline four 200 s resting recordings were obtained with eyes open and fixated
with the room darkened (n = 63). Four to eight recordings were obtained totaling 1500 s
with the lights on during performance of a visual semantic decision task [20]. The protocol
was the same at follow-up (n = 40).

Baseline resting MEG recordings were used (n = 63) for subjects whose high-resolution
(1 mm) anatomic T1 and MEG recordings were available. Of these, 40 follow-up resting
recordings were obtained—mean interval = 6.4 months. DWIs were obtained for 63 of the 64
baseline recordings and 39 of the 40 follow-up recordings. At both baseline and follow-up
sessions, 300 s of empty-room recordings were obtained.

3.3. MRI Processing

Each high-resolution T1 scan was processed with Freesurfer, version 5.3, using its
default Desikan–Killiany atlas parcellation [10,11]. Freesurfer is a segmentation pack-
age which automatically and reliably identifies brain regions. The 3-dimensional co-
ordinates of the extent of the brain volume and 153 standardized regions of interest
(ROIs) were identified—68 cortical regions, 68 adjacent white matter rims of tissue with
thickness ≤ 5.0 mm, and 17 subcortical regions. Figure 7 shows the expected descending
relationship between brain volume and age.

Each DWI scan was processed with Tracula, version 1.22 [22]. Tracula is a fully
automated package which identifies the 3-dimensional coordinates of the volumes occupied
by 18 deep white matter tracts.
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Figure 7. The brain volume for each subject was obtained using Freesurfer (see text). Brain volume
for this normative cohort shows the expected decrease with age [23] beginning at about age 60.
Over the full age range, the Pearson’s correlation between brain volume and age is −0.295, df = 617,
p < 10−18.

3.4. MEG Processing

The MEG channels were each filtered using MNE tools with high and low pass at 10
and 250 Hz, 5 Hz roll-off [24]. A value of 250 Hz was used for the low pass to thoroughly
remove the continuous head positioning signals present in the raw MEG at 293, 307, 314,
and 321 Hz. Previous work has shown that the higher the low-pass frequency, the greater
the yield of the solver [8,9]. Note that the 10 Hz high-pass filtering effectively demeans
each channel and removes much of the low-frequency content most commonly studied. A
value of 10 Hz was used for the high pass because (a) the solver yield significantly increases
with the low frequencies removed and (b) the solver was set to search one 80 msec data
segment at a time. Data lengths greater than this reduce solver yields [8,9], presumably
because current dipole orientation rarely remains stable for that long. This short data
length provides very low sensitivity to frequencies below 12 Hz. However, the solver was
stepped through the data in 40 msec increments; hence, a bolus of identified current dipoles
was identified at 25 Hz. Analysis of the time course of those boluses can provide analysis
of low frequencies; however, this is outside the scope of the present study.

For each 1.24 s data segment, mains noise was removed from the CamCAN data at 50,
100, 150, 200, and 250 Hz using polynomial synchronous noise removal [25]. Mains noise
was removed at 60, 120, 180, and 240 Hz from the TEAM-TBI data. No other preprocessing
was applied and no data segments were excluded by manual artifact identification.

The subject’s head position within the MEG scanner was manually coregistered to
the TI scan using Elekta’s Mrilab visualization tool. The coordinates of the center point
of a sphere most nearly approximating the brain were identified. These are the only
operations in the data processing pipeline for which human judgement was applied. All
other operations were fully automated.

Continuous head positioning measures were extracted using Elekta’s MaxFilter tool [26].
The coregistration of the MEG sensor array with the location of the subject’s head and brain
was corrected once per second using the continuous head positioning information. This
correction was applied to the forward solution used by the solver. The referee consensus
solver is described in detail elsewhere. [8,9,27].

The forward solution is the mathematical relationship between a putative electric
current within the brain and the resultant magnetic field measurements at the sensor array.
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The solution we used models the brain as a uniformly conducting sphere [3]. Currents
within 30 mm of the center of the sphere are nearly undetectable and the mathematical
formulation for the forward solution behaves poorly for this volume; hence, it was excluded
from the search. The intersection of this region with an MRI slice is shown in Figure 8.
Note that the excluded volume typically includes the posterior thalamus, the posterior
commissure, and much of the midbrain (not shown in the figure). The solver’s search
volume was delimited using the automated brain segmentation provided by Freesurfer
with the 30 mm sphere at the center excluded.
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Figure 8. Two typical simultaneously active neuroelectric currents were identified and validated by the referee consensus
solver, p < 10−12 for each—i.e., p < 10−4 for each when corrected for multiple comparisons. Each waveform has a duration
of 80 msec sampled at 1000 Hz. The bandpass is 10–250 Hz. The currents are 5 mm apart with zero-lag cross-correlation of
0.157, df = 80, p = 0.16. The yellow dot and circle delineate the region near the center of the head which is excluded from the
search for neuroelectric currents. See text for details.

The solver was deployed on The Open Science Grid (OSG), an international distributed
supercomputing partnership for data-intensive research [28,29]. The work described here
utilized more than 70,000,000 processor-hours on the OSG. The solver is detailed in [8,9]
and in Appendices B and C.

When applied to continuous MEG recordings, the solver typically identifies and
validates more than 400 neuroelectric currents within the brain per 40 msec step through
the data stream—p < 10−12 for each and p < 10−4 for each when conservatively corrected
for multiple comparisons (Bonferroni). This is more than 600,000 currents per minute of
recorded MEG data identified with millimeter and millisecond resolutions. Note that data
segments contaminated by movement or other artifacts were not manually identified for
removal. Instead, artifact rejection relied upon the referee consensus solver’s inherent
failure to validate neuroelectric currents when presented with noisy data, as shown in
Figure 9 [27].

The validated currents within each of the 171 automatically identified brain regions
were counted over the duration of the recording. Each count was normalized to current
density, ρroi:

ρroi = (countregion/counttotal) ÷ (volregion/voltotal) (1)
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The purpose of this normalization is to enable comparisons of a region within or
between individuals, during different states, at different times, or comparisons of one
region with another. The normalization is defined so that ρregion = 1.0 for all regions if the
neuroelectric currents are uniformly distributed throughout the brain. In the isotropic case,
(a) the regional count fraction is always equal to the regional volume fraction and (b) no
difference is found for any comparison. Dividing the counts for a region by the total count
normalizes ρ for variations due to both data quality and record length. The normalization
for data quality is important since the yield of the solver changes from moment to moment
as data quality waxes and wanes, e.g., Figure 9 [8,27].
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graphic (MEG) (lower) and neuroelectric currents (upper) are shown. The number of validated (p < 10−12) currents
identified drops markedly when the MEG is noisy.

4. Normative Measures

Normative values for regional measures of static neuroelectric activity were estab-
lished. To accomplish this, the meanρ and standard deviationρ for each regional current
density (ρ) were obtained from the CamCAN recordings. ρ for any region for any individ-
ual may then be compared with the norm for that region by converting it to a z-score with a
corresponding p-value under the assumption that the current densities for the normative
population is normally distributed.

z-scoreρ = (ρ − meanρ) ÷ (sdρ) (2)

The tables of CamCAN means and standard deviations are presented in Appendix A.
They constitute an atlas which may be used to transform the current densities from any
individual to z-scores and then assess the normality of deep white matter tonic neuroelectric
traffic and cortical/subcortical tonic neuroelectric activity.

Note that transformation of the density measures to z-scores nominally equalizes the
variances of the norms for all of the regions. This ensures that for a composite measure, e.g.,
a linear classifier composed of the 18 tract z-scores, the impact of each of the 18 densities is
approximately equal.
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Empty Room Correction

An ideal method for extracting neuroelectric measures from MEG recordings would
consistently yield a value of zero from empty room recordings. The referee consensus
solver falls short of this ideal—i.e., there is a significant “dark count”. In addition, the
neuroelectric measures extracted from empty room recordings consistently demonstrate
significant correlations to measures extracted from human resting recordings obtained on
the same day (Figure 10). Each correlation is computed across all of the subjects of one of
the cohorts. They are plotted on the y-axis in the figure in blue for the CamCAN cohort
(n = 619) and in red for the TEAM-TBI cohort (n = 63).
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Figure 10. The correlations between measures for empty room and human resting for 85 cortical
and subcortical regions for the CamCAN (blue, n = 619) and the TEAM-TBI (red, n = 63) cohorts are
plotted on the y-axis. The number of events found within each region as a fraction of the total number
of events found is plotted on the x-axis; the x-axis is logarithmic. The correlations are greater for
TEAM-TBI than CamCAN as expected given the large difference in the n values. See text for details.

Each ρregion was adjusted to compensate for the contribution of the empty-room
“dark count”—i.e., the presumed contribution of falsely validated currents. We define
the following:

ρregion-empty is the result of the ρregion calculation applied to the empty-room data.
corrregion is the correlation across the CamCAN subjects between ρregion and ρregion-empty

—i.e., between the regional activity measured with the subject present and absent in the
scanner. Then

ρregion-corrected = ρregion − (corrregion × ρregion-empty) (3)

This correction is an approximate one which uses the correlations as estimates of
detecting the competitive advantages that true vs. false neuroelectric currents have. A
likely more accurate approach would use a classifier to decide on inclusion or exclusion of
one current at a time. For each subject by region, there are typically thousands of identified
currents; hence, there is considerable statistical power to accurately train such a classifier.
Pursuing this approach is beyond the scope of the work reported here.

5. Classification

Regional measures of neuroelectric activity for 17 subcortical and 68 cortical regions
were combined into classifiers using stepwise linear classification [16–18]. This is an
automated computer algorithm which performs discriminant analysis between two groups
by computing a linear classification function in a stepwise manner. The groupings for
classification were determined by symptom survey scores to test for sensitivity of the
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measures to symptoms and by cohort membership to test for differences between the
cohorts. These are detailed in the Results section.

6. Discussion

MEG-derived regional brain measures of tonic neuroelectric activation were tested for
long-term test-retest reliability in a large normative cohort, CamCAN, and for sensitivity
to symptoms in a chronic TBI cohort, TEAM-TBI. The studied symptoms were insomnia,
depression, anxiety, and somatization. Good test-retest reliability was found as well
as sensitivity to all four symptoms. Hence, the measures reported here may prove of
significant clinical utility in the diagnosis and treatment of these symptoms. In addition,
the measures enable classification of each individual into her/his cohort—i.e., normative
vs. chronic TBI. Hence, the measures may prove useful as biomarkers for TBI.

The analysis and all results were obtained “by region”. Since we are seeking measures
with good test-retest reliability and which can be compared between subjects. The volumet-
ric units we used are regions, i.e., volumes, which can be reliably identified by automated
algorithms because they are common to the anatomically normal human brain. As more
detailed atlases with finer structures are developed, the measures reported here will be
tested for those volumes. For the present, the volumes to which the measures reported
here apply are the regions identifiable with Freesurfer 5.3 [10,11] and tracula 1.22.2.12 [22].

Each regional value which demonstrates long-term test-retest reliability is a measure
of regional neuroelectric tonus—i.e., the static level of regional neuroelectric activation.
Elevated or reduced regional tonus within an individual may prove emblematic of tonic
alterations in network function. The ability to assess many such regional measures simul-
taneously may provide substantive useful information which is complementary to the
measures which have specificity to TBI—e.g., bloodborne markers [30,31] and MEG-derived
slow waves [32–34]. Patterns of altered regional tonus may prove useful in monitoring
response to treatment. Analysis of the patterns may enable identification of regions to
target for treatment. In particular, the several-centimeter localization of the measures is
comparable to the localization precision of transcranial magnetic stimulation (TMS) [35–38].
The deviations seen in a particular individual may prove sufficient to identify individual-
ized target regions for TMS [39,40] rather than the standardized left and/or right prefrontal
cortex currently in use [41,42].

6.1. Potential Clinical Utility

This study was undertaken to utilize and assess MEG-derived measures for the
diagnosis and monitoring of treatment for chronic symptoms of TBI. We report results
which demonstrate (a) sensitivity to the presence/absence of insomnia, somatization,
depression, and anxiety (Tables 1 and 3, Figure 1) and (b) sensitivity to history of concussion
and/or chronic symptoms (Table 5, Figures 2–5). We cannot directly tie these MEG results
to TBI. However, for clinical purposes, the etiology may not matter so long as we can use
the measures to more effectively diagnose and treat.

The symptomatic identification accuracies shown in Tables 1 and 3 are reliably sig-
nificant, but the percentages are not yet high enough for this classification method to be
useful clinically. It is likely that classification accuracy can be increased by (a) refining
the measures of neuroelectric activity and by (b) using nonlinear or machine-learning
classification methods,

The primary results of the study combine the information contained in many regional
neuroelectric measures into patterns of brain activity which are related to chronic symptoms
in chronic TBI. We also report cohort-wide differences in regional activity (Figures 4 and 5).
These are findings which suggest ways to study the mechanisms which underlie presen-
tation and recovery from symptoms. Productive scientific use of these findings may be
complemented by a working theoretical conjecture. To this end, we propose a phantom
pain conjecture: all symptoms of psychological distress result from hyperactivity in brain
regions responsible for attention and response to pain. In support of this conjecture, many
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regions which show fMRI-derived differential activation in response to painful stimuli [43]
(Table 1) show differential activation in MEG-derived measures in the TEAM-TBI cohort
when compared with the CamCAN cohort (Table 6)—e.g., thalamus, precentral, postcentral,
and precuneus cortexes, and portions of the cingulate, orbito-frontal, and insular cortexes.

Table 6. The regions whose neuroelectric activity values contributed to the cohort-specific classifiers
reported in Table 5 are shown. Activity in regions marked “+” was higher in the Team-TBI cohort;
those marked “-” were lower. Regions marked “++” or “–” made the largest statistical contribution
to the classifier. The results for the 2nd step are highlighted in gray. These were obtained when the
regions which were selected for the first classification analysis were excluded.

Brain-Stem
++

Left Right
Accumbens -
Cerebellum + ++

Caudate –
Hippocampus –

Pallidum +

Thalamus – –

fusiform ++ +

inferior parietal +
insula –

isthmus cingulate ++
lateral occipital - –

lingual ++
medial orbito-frontal -

middle temporal - –
para-hippocampal –

pars opercularis - -
pars triangularis +

peri-calcarine -
postcentral - -
precuneus +
precentral -

superior parietal -
superior temporal –

transverse temporal -

6.2. Test-Retest Reliability

We report short-term (1 h, n = 619) and long-term (mean 16-months, n = 253) test-retest
reliability for the CamCAN normative cohort for each of the 103 brain regions. The shorter
average follow-up for the TEAM-TBI cohort of 6.4 months would be expected to have
better test-retest reliability in a normative population. This strengthens confidence in the
primary findings of the study that MEG-derived neuroelectric measures change in those
TEAM-TBI cohort members whose symptom scores changed.

We used Pearson’s correlation and mean difference in test–retest values—Tables A1–A3
and Figure 6. The difference measure may be used to correct a follow-up measure to
compare with baseline.

Short-term test-retest reliability ranged around a mean correlation of 0.8 with mean aver-
age difference well under the z-score = 0.03. Long-term test-retest reliability ranged around
a mean correlation of 0.45, with the mean average difference as high as |z-score| = 0.55. This
is visualized for the hippocampus and supramarginal cortex in Figure 11. These regions
were selected because their baseline vs. 16-month follow-up correlations are typical and
their difference values are significantly different from zero and visibly so in the figure.
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A survey of recent test–retest reliability reports shows reliability ranging widely. As
would be expected, test-retest reliability is more consistent for time-locked measures in
evoked response paradigms [44–51]. For free-running paradigms, most measures are for
resting connectivity confined to frequency bands [52–58]. The test–retest intervals in most
studies are days to weeks. Recasens et al. [47] report results from a 7-week interval and
both Piitulainen et al. [57] and Dunkley et al. [48] report results for intervals greater than
one year. Over all the reports, the maximum number of subjects was 40 [46]. Cohorts
with clinical diagnoses were reported by Candelaria-Cook et al. [55] (psychosis) and
Dunkley et al. [48] (PTSD).

Both short-term and long-term reliability values we report compare favorably with
all others. For the work reported here (a) the n values are much larger, (b) the long-term
interval is 16 months, (c) the measures are free-running rather than synchronized to an
event, and (d) the measures are from raw rather than averaged data.

6.3. Cortical vs. Adjacent White Matter Regions

We report considerable detectable neuroelectric activity from the white matter with
positive differentials in favor of adjacent white matter for 56% of those pairs for which
the differential is significant with the threshold p < 10−8. Both previously reported mea-
surements and neurophysiological understanding speak to the plausible validity of these
findings. MEG-derived responses from thalamocortical fibers have been reported [59,60].
The source magnetic fields were presumed due to synchronous volleys of action potentials
(APs). Each AP produces a travelling current quadrupole. The approximate amplitude was
estimated at 100 Amp−15 m in an unmyelinated axon [7], with separation of 1 mm between
the two dipoles forming the quadrupole, assuming a propagation velocity of 1 m/second.
It is presumed that the velocity is greater in the myelinated fibers which comprise the white
matter. Hence, the velocity and dipole separation would be greater. This would decrease
the distance-dependence of the magnetic field strength and so enhance the detectability of
this activity. In addition, the magnetic field, due to an action potential in a single axon, was
directly measured at about 150 × 10−12 Tesla [60].

A trivial explanation of the profuse findings we report is that cortical activity is local-
ized in nearby white matter due either to poor resolution or to head movements. The robust
finding of differential activity between adjacent cortical and white matter ROIs argues
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against this. As does the design of the method which relies on gradients between points
within the brain that are 1 mm apart [8,9] (Appendix B), coupled with the use of one correc-
tion per second to the forward solution using continuous head positioning information.

Under the assumption that the white matter is in fact the source of profuse measurable
neuroelectric activity, the measured magnetic field components can only be due to syn-
chronous volleys of APs. These would produce transient longitudinal intra-axonal currents
which are nearly synchronous in many parallel running axons due to near simultaneous
passage of propagating APs.

The detected magnetic field waveforms, e.g., Figure 8, are envelopes which follow the
high-frequency waveforms of several AP volleys in sequence. The envelope of a single
highly synchronized AP volley would require well under 10 msec to rise and fall. Hence,
this type of activity would be dominated by high-frequency contents. This is consistent
with the observation that the yield of the solver improves when the low-pass cut-off with
which the signals are preprocessed is increased from 150 to 330 Hz [8] (Figure 3). It is also
consistent with the observation from a typical task recording that the frequency content of
the current waveforms includes profuse resonant activity with frequency content above
70 Hz [61,62].

Additional work outside the scope of the present study is needed to understand the
mechanisms which underlie the detection of profuse activity localized to the white matter.

6.4. CamCAN vs. TEAM-TBI Differences

The robust differences seen between the two cohorts must be interpreted with caution.
We cannot rule out the possibility that these differences are due to differences in the MEG
scanners, the scanner noise environments, or for the white matter results to the differences
in DWI scan parameters. Given the robustness of the differences, this question can be
answered by running a cohort of 40 neurologically normal individuals in the scanner used
for the TEAM-TBI cohort. The classifiers developed for the present study can be applied to
the measures from such a control cohort. If they are different from the CamCAN cohort,
then the differences between the CamCAN and TEAM-TBI cohorts must be presumed to
be due to differences in the scanners.

A second potential confounding factor of these results is that the CamCAN resting
recordings were obtained with eyes closed, whereas the Team-TBI recordings were obtained
with eyes open. To test this, consider that the short test-retest reliability results were ob-
tained by comparing baseline CamCAN resting (eyes closed) with CamCAN sensorimotor
task (same sitting, eyes open). The test-retest reliability is very good, i.e., the differences
between resting and task are very small. In addition, linear classifiers fail to distinguish
between baseline CamCAN resting and task recordings. Hence, this difference in recording
conditions, i.e., eyes closed vs. eyes open, does not account for the differences between
the cohorts.

It is noteworthy that differences found between TEAM-TBI cohort members with and
without specific symptoms is not affected by these questions. The same applies to the
test-retest reliability results and to the comparisons between cortical and adjacent white
matter volumes. Only the cause of the differences between the cohorts is in question.

Under the assumption that the differences found between cohorts are due to differ-
ences from the norm in the neuroelectric brain activity of those with TBI, correspondences
between the normal vs. TBI classification results we report and those reported by others
may be useful. The high classification accuracy found between CamCAN and TEAM-TBI
cohorts, i.e., greater than 90%, provides confidence in the validity of the regions whose
measures contribute most to the classifier (Table 6). Of the frontal regions, only the left
medial-orbito frontal was a contributor, so significant correspondence was found in our
findings to the bilateral orbito-frontal localization of high-amplitude slow waves reported
by Lewine et al., Huang et al. and others [32–34].

A striking correspondence was also found with a recent study of MEG-derived func-
tional connectivity in TBI [63]. The results of this study highlight the importance of changes
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in thalamic function in TBI. Table 6 shows that both left and right thalamic measures are
major contributors to the classifier and that tonic thalamic activation in the TEAM-TBI
cohort members is bilaterally reduced. At present, we can only speculate what the neuro-
physiologic mechanisms that tie altered regional activation, functional connectivity, and
symptoms together are. The growth in our ability to reliably measure such alterations and
to target specific regions with drug and TMS therapies may enable us to understand these
mechanisms and to more effectively treat them.
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Appendix A. Atlas of Normative Regional Neuroelectric Measures

Regional measures of neuroelectric activity for 103 cortical, subcortical, and deep
white matter regions were extracted from both the baseline (n = 619) and 16-month follow-
up (n = 253) CamCAN recordings. The means and standard deviations for the baseline current
density measures are listed in the left-most four columns of Table A1 (18 deep white matter
tracts), Table A2 (17 subcortical regions), and Table A3 (68 cortical regions).

These density measures were transformed into z-scores; the correlations and mean
differences between the baseline and follow-up z-scores are listed in the right-most four
columns of the tables.

https://www.cam-can.org/
https://www.cam-can.org/
https://fitbir.nih.gov/
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Table A1. Deep white matter tract traffic norms. Left columns—Atlas. The column labelled mean contains the normalized
current density for the tract. s.d. == standard deviation. These were obtained from the CamCAN resting MEG recordings.
A value greater/less than 1.0 indicates that normal tonic neuroelectric activity level for the tract is greater/less than that
for the total volume of the brain. The activity measured within a tract for an individual is converted to a z-score using
the corresponding mean and standard deviation listed in the table. Note that 589 of 619 CamCAN subjects had DWI scans;
240 returned for follow-up studies. Right columns—good test-retest reliability. The mean baseline to follow-up interval was
16.0 months. For each tract, the cohort-wide follow-up vs. baseline correlation (Corr) and difference (Diff ) are shown. Diff
is the mean z-score difference: follow-up–baseline. The correlations are all high and the differences are all low. Moderate
significance (i.e., 0.03 > p > 0.002; −3.0 < t < 3.0) is indicated with italics; high significance (i.e., p < 0.002; t ≥ 3.0) is indicated
in bold.

Deep White Matter Tracts
CamCAN Baseline (n = 589)

Baseline vs. Follow-up (n = 240) Correlation and
Mean Difference

mean s.d. corr diff

0.319 0.168 corpus callosum splenium
(fmajor) 0.255 −0.055

0.561 0.234 corpus callosum genu
(fminor) 0.345 −0.102

Left Right Left Right

mean s.d. mean s.d. corr diff corr diff

0.924 0.275 0.828 0.278 anterior thalamic radiations
(atr) 0.427 −0.001 0.348 0.050

0.914 0.304 1.039 0.325 cingulum angular bundle
(cab) 0.468 0.044 0.507 −0.085

0.477 0.245 0.511 0.259 cingulate gyrus endings (ccg) 0.366 −0.059 0.435 −0.021

1.004 0.227 0.878 0.217 cortico-spinal tract (cst) 0.471 0.041 0.369 −0.052

0.958 0.254 0.796 0.253 anterior thalamic radiations
(atr) 0.589 −0.012 0.532 −0.030

0.826 0.260 0.856 0.254
superior longitudinal

fasciculus,
parietal (slfp)

0.515 −0.003 0.576 0.008

0.980 0.197 1.020 0.236
superior longitudinal

fasciculus,
temporal (slft)

0.497 0.006 0.408 −0.073

1.087 0.288 0.947 0.288 uncinate fasciculus (unc) 0.523 −0.000 0.524 −0.046

Table A2. Subcortical regional activity norms. These norms and test-retest reliability measures were obtained as described
in Table A1.

Subcortical Regions
CamCAN Baseline (n = 619)

Baseline vs. Follow-up (n = 253) Correlation and
Mean Difference

mean s.d. corr diff

0.713 0.203 brainstem 0.434 −0.510

Left Right Left Right

mean s.d. mean s.d. corr diff corr diff

0.746 0.658 0.635 0.566 accumbens 0.388 0.157 0.349 0.136

1.057 0.483 0.921 0.476 amygdala 0.523 0.474 0.560 0.513

0.569 0.347 0.580 0.330 caudate 0.488 0.022 0.609 −0.050

0.666 0.184 0.697 0.187 cerebellum 0.441 0.207 0.546 0.004

0.876 0.348 0.985 0.360 hippocampus 0.456 0.524 0.476 0.408

0.957 0.552 0.715 0.552 pallidum 0.488 0.287 0.523 0.333

0.944 0.409 1.062 0.429 putamen 0.509 0.194 0.656 0.287

0.622 0.306 0.730 0.328 thalamus 0.520 0.146 0.549 −0.079

Left panel—Atlas. Table (right)—good test-retest reliability. As for Tables A1 and A3, Diff is the mean z-score difference: follow-up–baseline;
mean interval is 16 months. Moderate significance (i.e., 0.03 > p > 0.002; −3.0 < t < 3.0) is indicated with italics; high significance (i.e., p <
0.002; t ≥ 3.0) is indicated in bold.
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Table A3. Cortical regional activity norms. These norms and test-retest reliability measures were obtained as described in
Table A1.

Cortical Regions
CamCAN Baseline (n = 619)

Baseline vs. Follow-up (n = 253) Correlation
and Mean Difference

Left Right Left Right

mean s.d. mean s.d. corr diff corr diff

0.961 0.415 0.903 0.442 bankssts 0.538 0.203 0.523 0.091

0.565 0.426 0.547 0.156 caudalanteriorcingulate 0.252 −0.142 0.377 −0.200

0.729 0.408 0.848 0.448 caudalmiddlefrontal 0.434 0.210 0.459 0.231

0.276 0.276 0.287 0.275 cuneus 0.253 −0.134 0.355 −0.042

1.015 0.405 0.954 0.419 entorhinal 0.393 0.422 0.532 0.345

0.124 0.310 0.117 0.313 frontalpole 0.567 −0.169 0.418 −0.137

0.578 0.229 0.611 0.243 fusiform 0.419 0.395 0.420 0.331

0.661 0.268 0.553 0.234 inferiorparietal 0.426 −0.068 0.530 −0.284

1.041 0.277 0.988 0.284 inferiortemporal 0.520 0.556 0.521 0.471

0.697 0.267 0.652 0.274 insula 0.581 0.213 0.508 0.428

0.227 0.286 0.263 0.298 isthmuscingulate 0.318 −0.002 0.337 −0.112

0.889 0.263 0.855 0.261 lateraloccipital 0.577 −0.432 0.472 0.369

0.952 0.300 0.907 0.320 lateralorbitofrontal 0.478 0.517 0.471 0.386

0.470 0.260 0.497 0.253 lingual 0.473 −0.020 0.520 −0.284

0.517 0.263 0.537 0.269 medialorbitofrontal 0.337 −0.140 0.384 −0.531

0.716 0.256 0.862 0.252 middletemporal 0.4675 0.546 0.601 0.471

0.335 0.290 0.334 0.274 paracentral 0.317 −0.146 0.422 −0.123

0.886 0.378 0.909 0.386 parahippocampal 0.410 0.394 0.372 0.301

0.845 0.355 0.843 0.389 parsopercularis 0.431 −0.161 0.354 −0.112

0.506 0.362 0.462 0.335 parsorbitalis 0.525 0.152 0.342 0.104

0.803 0.362 0.882 0.381 parstriangularis 0.443 −0.033 0.415 −0.038

0.352 0.297 0.359 0.302 pericalcarine 0.490 0.109 0.292 0.036

0.784 0.276 0.712 0.264 postcentral 0.466 −0.060 0.399 0.019

0.382 0.356 0.403 0.324 posteriorcingulate 0.316 −0.102 0.319 −0.290

0.793 0.281 0.777 0.287 precentral 0.459 0.092 0.480 0.198

0.150 0.154 0.160 0.165 precuneus 0.205 −0.305 0.365 −0.248

0.730 0.438 0.701 0.419 rostralanteriorcingulate 0.278 −0.401 0.280 −0.540

0.560 0.276 0.559 0.296 rostralmiddlefrontal 0.450 0.081 0.394 0.102

0.530 0.258 0.512 0.262 superiorfrontal 0.442 0.005 0.457 −0.143

0.618 0.273 0.612 0.289 superiorparietal 0.442 −0.105 0.447 −0.071

0.892 0.232 0.902 0.255 superiortemporal 0.468 0.596 0.513 0.430

0.768 0.284 0.731 0.304 supramarginal 0.524 −0.264 0.482 −0.194

0.642 0.387 0.856 0.403 temporalpole 0.351 0.512 0.438 0.555

0.808 0.450 0.832 0.503 transversetemporal 0.521 0.267 0.293 0.280

Left Panel—Atlas. Table (right)—good test-retest reliability. As for Tables A1 and A3, Diff is the mean z-score difference: follow-up–baseline;
mean interval is 16 months. Moderate significance (i.e., 0.03 > p > 0.002; −3.0 < t < 3.0) is indicated with italics; high significance (i.e.,
p < 0.002; t ≥ 3.0) is indicated in bold.



Med. Sci. 2021, 9, 20 26 of 30

Appendix B. The Referee Consensus Method

The 2-fold task of the solver is to (1) provide a robust measure of confidence that a dipole
current is detected at location X and (2) estimate the time course of the current amplitude.

The solver was applied to one 80 msec data segment (Mt=1, . . . , 80) at a time. A decision
was made for one location at a time—for example: “Is there a dipole current present at
location X?”. To answer this question, spatial filters were constructed from the “viewpoints”
of each of the 90 distant “referee” locations distributed widely through the volume of the
brain—e.g., R.

Filter PR!X’ was constructed with gain 1.0 at R and gain 0.0 at X’ 1 mm from X. PR!X’ was
applied to the 80 data vectors, Mt=1, . . . ,80, to produce the 80-point univariate time series,
VR!X’. A second filter was constructed, PR!X, with gain 1.0 at R and gain 0.0 at X. PR!X was
also applied to Mt=1, . . . ,80 to produce the 80-point univariate time series, VR!X. Note that
there was a small contribution to VR!X’ from activity at X but none from X’. Contrariwise,
there was a small contribution to VR!X from activity at X’, but none from X. The difference
filter was constructed, PR!X’-R!X. This has gain 0.0 at R and nearly equal and opposite gains
at X and X’. PR!X’-R!X applied to Mt=1, . . . ,80 produced VR!X’-R!X, the difference—VR!X’–VR!X.
Note that there is no contribution to this from R. Note too that each of these three filters
was constructed with gain 0.0 at each of 89 other “referee” locations coarsely covering the
brain, so VR!X’-R!X includes only small contributions from other neuroelectric currents. This
ensures that the primary contributors to VR!X’ - VR!X are currents close to X and/or X’.

The “opinion” from the viewpoint of referee R regards the presence of a current at X,
which is obtained by evaluating this inequality:

(VR!X’-R!X • VR!X’)2 > (VR!X’-R!X • VR!X)2 (A1)

If the inequality is true, then there is a current at X from the viewpoint of R since VR!X’
(left side) has no contribution from X’, VR!X (right side) has none from X, and VR!X’-R!X has
nearly equal contributions from both.

This procedure is repeated for two vector components for each of the 90 referee
locations to produce 180 yes/no “opinions”. In total, 114 or more must be “yes” (p <<
0.01) to produce an acceptable “consensus” for this differential. The same procedure was
repeated for each of the other five differentials since there were two differentials along each
of the three spatial axes. Only if all six exceed the threshold, i.e., 57 or more of 90 for each
of the 6, was a current accepted. Therefore, 0.016 = 10−12 is the threshold for accepting
a current.

Once a location was validated, an eigenvector analysis was used to identify the 80-
point time course of the current at that location as the waveform which captures the most
variance in the complete set of VR!X’-R!X values. The estimated signal/noise enhancement
of 10 provided by this operation is detailed in the introduction. Note that the validation
ensures that there is a current present at X and not at any of the six Xs. Hence, VR!X’-R!X was
used because the primary contributor to all of the VR!X’-R!X values was due to the current
at X. Because the current at X must dominate any current present at any of the Xs, the
ability of the method to identify two currents near each other was limited to twice the
distance—X–X’, i.e., 2 mm.

Appendix C. : The Referee Consensus Method—Advantages

Akin to beamformers, the filters used in the referee consensus method were generated
in sets, seven at a time. However, unlike standard filters which were optimized to yield
source space measures at the target/test location, X, all seven referee consensus filters
were optimized to yield source space measures at referee locations remote from the test
location X.

Note that the estimated neuroelectric currents are two-dimensional vector quanti-
ties [4]. For the purpose of intelligibility, they were treated as scalars in the following
explanation without loss of generalization.



Med. Sci. 2021, 9, 20 27 of 30

For a particular referee location, R, all of the filters have gain 1.0 at R. There was one
filter that was constrained to have zero gain at X—filter PR!X. This filter, designated as “R
not X”, was optimized to measure the signal at the referee location but with no contribution
from activity at X. There are six other filters, each constrained to have zero gain at one of
the six points 1.0 mm away from X along the x-, y-, or z-axis. Hence, these filters were also
optimized to measure the signal at the referee location but with no contribution from one
of the locations 1 mm away from X along one of the coordinate axes.

These seven filters were used to generate six difference filters—e.g., PR!X’-R!X, where X’
is the location +1 mm away from X along the x-axis. Note that the difference filters were
constrained to have zero gain at the referee location and near equal but opposite gains
at X and the location 1 mm away. Hence, they were optimized to measure the difference
between the signals at X and at a location 1 mm away. The magnitude of the gain of these
filters at these two “differential” locations was typically 0.05–0.08 [64], (Figure 6). Note
that the differencing delivers signal/noise enhancement of about 2.0 in measuring the
differential between activity at X and activity 1 mm from X.

Conceptually, this approach to source space measurement is upside down. The filters
for the location at which measurements are made do not have gain 1.0 at the test location,
X, as is the standard, but rather have zero gain either at X or very near it. The power of
this approach comes from the use of families of these filters to develop a consensus decision
on the question: is there or is there not a neurolectric current at the test location, X? For
example, the filters PR!X’, PR!X, and PR!X’-R!X were each applied to an 80 msec MEG data
segment to yield three 80 msec data traces, VR!X’, VR!X, and VR!X’-R!X. If VR!X’-R!X • VR!X’ >
VR!X’-R!X • VR!X, then there is a current at X from the “point of view” of referee R.

Note the number of MEG measures used to assess this inequality between two
numbers—i.e., the two dot products. Each element of each of the Vs is the dot prod-
uct of the corresponding filter with the 306 MEG measures for a single time point. Were
both the filter weights and the MEG measures uncorrelated and normally distributed,
the signal/noise enhancement due to the filtering operations would be approximately
sqrt(306) ≈ 17. To account for the certain significant departure from both assumptions, we
divided the 306 degrees of freedom by 10 as a nominal correction to this estimate. Hence,
we estimated the signal/noise enhancement due to the filters as sqrt(30) ≈ 5.

For the decision dot product, i.e., for evaluation of VR!X’-R!X • VR!X’ > VR!X’-R!X •
VR!X, each V was composed of 80 such filtered MEG measures. Hence, the numbers
VR!X’-R!X • VR!X’ and VR!X’-R!X • VR!X are each obtained using 306 × 80 = 24,480 degrees
of freedom. By the same reasoning as above, with the same factor of 10 for nominal
correction, the estimated signal/noise enhancement due to the filters and the use of the
80-point times series is sqrt(2448) ≈ 50. Note that this estimate ignores the factor of
2.0 signal/noise enhancement inherent in the difference filter. Note too that this high-
signal/-noise enhancement applies only to the numbers used in evaluating the inequality,
not to the individual current amplitude measures—i.e., the elements of the Vs. This is why
the emphasis in this paper is on the direct results of those decisions—i.e., the counts of
validated neuroelectric currents.

There are 1080 binary decisions computed for a test location, X. One for each of the
two orthogonal orientations for each 90 referee location and one for each of the six Xs. The
collection of 2 × 90 × 6 = 1080 decisions provides a cost function that is used to assess the
consensus: is there or is there not a neuroelectric current at X? This procedure is robust
enough to use 10−12 as the threshold p-value to accept X as a true source of a detectable
magnetic field. If and only if this probabilistic threshold is met were the 1080 outputs of
the difference filters, the VR!X’-R!X values, combined by an eigenvector calculation, which
is akin to averaging [Appendix B] to generate an estimate of the 80-point time course for
the current.

Computation for each of these decisions generated its own optimal difference filter,
PR!X’-R!X, and corresponding optimal 80-point current time series estimate, VR!X’-R!X. As
detailed above, the signal/noise enhancement estimate for the elements of the Vs, i.e., the
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current magnitude measures, are modest, ≈5, and likely comparable to those for most
filtering methods. However, the estimate obtained by this average-like operation over 1080
such difference filters again enhances the signal/noise by an additional factor of perhaps
sqrt(1080/10) ≈ 10, producing total signal/noise enhancement for the current time series
waveform estimate of about 50.
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