BIVIC Bioinformatics

Methodology article

Computing paths and cycles in biological interaction graphs

Steffen Klamt* and Axel von Kamp'

Address: Max Planck Institute for Dynamics of Complex Technical Systems, D-39106 Magdeburg, Germany

Email: Steffen Klamt* - klamt@mpi-magdeburg.mpg.de; Axel von Kamp - vonkamp@mpi-magdeburg.mpg.de
* Corresponding author tEqual contributors

Published: 15 June 2009 Received: 17 November 2008
BMC Bioinformatics 2009, 10:181 doi:10.1186/1471-2105-10-181 Accepted: 15 June 2009
This article is available from: http://www.biomedcentral.com/1471-2105/10/181

© 2009 Klamt and von Kamp; licensee BioMed Central Ltd.

@,

BiolVled Central

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Interaction graphs (signed directed graphs) provide an important qualitative
modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular
networks and can even be useful for predicting qualitative aspects of systems dynamics.
Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles
(feedback loops) and the calculation of shortest positive/negative paths. These computational
problems have been discussed only to a minor extent in the context of Systems Biology and in
particular the shortest signed paths problem requires algorithmic developments.

Results: We first review algorithms for the enumeration of paths and cycles and show that these
algorithms are superior to a recently proposed enumeration approach based on elementary-modes
computation. The main part of this work deals with the computation of shortest positive/negative
paths, an NP-complete problem for which only very few algorithms are described in the literature.
We propose extensions and several new algorithm variants for computing either exact results or
approximations. Benchmarks with various concrete biological networks show that exact results
can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs
can still be treated exactly by a new algorithm combining exhaustive and simple search strategies.
For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we
devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks
(where a comparison with exact results was possible) this algorithm delivered results that are very
close or equal to the exact values. This phenomenon can probably be attributed to the particular
topology of cellular signaling and regulatory networks which contain a relatively low number of
negative feedback loops.

Conclusion: The calculation of shortest positive/negative paths and cycles in interaction graphs is
an important method for network analysis in Systems Biology. This contribution draws the
attention of the community to this important computational problem and provides a number of
new algorithms, partially specifically tailored for biological interaction graphs. All algorithms have
been implemented in the CellNetAnalyzer framework which can be downloaded for academic use at
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html.

Background tionships between biological entities [1]. Different classes
Graphs provide simple but often useful formal represen- of graphs make it possible to incorporate different levels
tation of biological networks capturing one-to-one rela- of knowledge. Protein-protein interaction networks, for

Page 1 of 11

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/181
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19527491
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:181

example, are usually stored as simple undirected graphs.
For studying graph-theoretical properties of metabolic
networks (which are per se hypergraphs) one often uses
directed (and mostly bipartite) graphs. More quantitative
relationships are captured by Bayesian networks, an exam-
ple for directed weighted graphs.

For networks with signal or information flow such as signal
transduction or (gene) regulatory networks, interaction
graphs are the graph model of choice. Interaction graphs
(also termed influence graphs) are directed signed graphs
where each edge (or arc) carries a + or - sign indicating a
directed causal relationship between the two involved play-
ers, e.g. "molecule A activates or inhibits another molecule
B". Interaction graphs are widely used; they serve often as
illustrative maps in databases or textbooks and help to rep-
resent and to interrogate qualitative knowledge. Apart from
statistical properties [2], important functional network
properties can be derived from these models:

a) Feedback loops: they are the sources of complex
dynamics [3,4]. Recently, Kwon and Cho [5] showed that
coherent coupling of feedback loops might be a design
principle of cell signaling networks devised to achieve
robustness.

b) Signaling paths show the different positive and nega-
tive routes along which a molecule can affect another.

¢) Dependency matrix: stores for each ordered pair (A, B)
of nodes an attribute summarizing the global (direct and
indirect) dependence of B upon A [6]. For example, A is an
activator of B if at least one positive path from A to B exists
but no negative one.

d) (Minimal) cut sets: for a given set of feedback loops or
signaling paths one may compute a set of interventions
interrupting the signal flow in them [6].

Even though interaction graphs are qualitative models,
they also play an important role in representing and ana-
lyzing structural relationships of dynamic models. A key
property of systems formally described with ordinary dif-
ferential equations is the Jacobian matrix J(x) and its sign
structure, sgn(J(x)), which gives rise to an interaction
graph: If J,,(x)#0 then an edge from k to i is drawn and
sgn(J;(x)) gives the sign of the edge [4]. In general,
sgn(J(x)) depends on the state x where J(x) is evaluated,
but in many biological examples it is constant for all (pos-
itive) x rendering it a structural invariant. In Systems Biol-
ogy, where the description of kinetic rate laws is usually
hampered by limited knowledge on kinetic parameters
and mechanistic details, such structural invariants provide
a great opportunity to derive network properties that are

http://www.biomedcentral.com/1471-2105/10/181

independent on this uncertain information. In fact, some
fundamental systems properties on qualitative dynamics
can be derived from the underlying interaction graph of

J(x):

e) Multistationarity (the coexistence of at least two steady
states in a dynamic system) requires a positive feedback in
sgn(J(x)) [3.4.7].

f) Another multistationarity theorem has been given by
Craciun et al. [8]. Even though it is based on unsigned
graphs, it requires the analysis of certain cycles in the
graph (which can be mapped back to positive/negative
cycles in the associated interaction graph).

g) Oscillations require a negative feedback of length two
or higher in sgn(J(x)) [4].

h) Systems behave monotone with respect to changes in
the initial conditions if no (undirected) negative cycle is
contained in the interaction graph of J(x) [9].

i) The initial and steady state response of a system upon
perturbations can partially be derived from the interaction
graph [10].

Actually all the listed applications of interaction graphs
require either an enumeration of all paths/loops in the
network (a, b, d, f) or the determination of the shortest
positive and shortest negative paths and cycles (or just the
information whether certain paths or cycles exist at all) as
in (¢, e, g h, i). Although of fundamental importance,
these algorithmic problems have so far been discussed
only to a minor extent in Systems Biology. Algorithms for
the enumeration of paths and cycles have been developed
already in the 70s and we will start with a short review on
them. We will also compare these standard algorithms
with an alternative approach proposed recently [6]. The
main part of this work is devoted to the computation of
shortest positive and negative paths and cycles in signed
graphs. Whereas algorithms for the determination of
shortest paths and cycles in unsigned graphs are well-
known and of polynomial complexity, in signed graphs,
this problem (where we have to distinguish between pos-
itive and negative paths and cycles) is much more compli-
cated and is, in general, NP-complete. There are only very
few references dealing with this problem. Here we will
introduce new algorithm variants which provide either, in
polynomial time, approximations of the real shortest
paths and cycles or are improvements for finding the exact
solution. Using various examples of biological interaction
graphs, we demonstrate the performance of these algo-
rithms and show that even in larger networks the exact
solution can be found in reasonable time.

Page 2 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

Results and Discussion

Definitions

We summarize some standard terminology and notations
from graph theory. A graph G = (V, E) consists of a set V of
nodes (vertices) and a set E of edges between those nodes.
Here we are only concerned with finite graphs meaning
that V and E are finite. In undirected graphs, an edge e € E
is a pair of nodes: e = {u, v}; u, v € V, whereas in directed
graphs (digraphs) an edge (or arc) is an ordered pair e = (u,
v) giving it a direction from one node () to another (v).
Edges may have additional properties: In a weighted graph
every edge has a weight (length) represented by a real
number (in general the weight can be zero or negative but
is typically positive). In a signed graph every edge carries
either a + or - sign indicating in biological graphs a causal
relationship between both species. It is possible that the
same pair of nodes may be connected by a positive and
negative edge in parallel. All three edge properties — direc-
tion, weight and sign - can be combined independently
giving rise to different classes of graphs. Herein we will
mainly be concerned with the analysis of signed
(unweighted) digraphs (= interaction graphs), albeit we
will sometimes also refer to methods from the other
classes.

Awalk is an alternating sequence of nodes and edges v, ¢;,
vy, €y ... &, U, (starting and ending with a node) which ful-
fills the condition that the nodes v; ; and v; are connected
by the edge e; (with the appropriate direction in a
digraph). A trail is a walk in which no edge occurs twice.
A path is a trail in which additionally no node occurs
twice. The property that a node must not occur twice is
sometimes emphasized by calling a path 'simple' or 'ele-
mentary'. Here we use the path/trail distinction which
makes the use of additional attributes unnecessary.
Finally, a cycle is a closed trail with no repeated nodes
except for the first and last node which must be identical.

Concrete paths or cycles are here written as alternating
sequences of nodes and arrows, e.g. A > B — C, which
gives a unique identifier for a path or cycle if no parallel
edges exist between the involved nodes.

The length of a path/cycle is calculated by summing up the
edge weights while its sign is obtained by multiplying the
edge signs. A signed digraph is therefore not equivalent to
a weighted digraph with positive and negative edge
weights. We will denote the overall sign of a concrete path
or cycle by a superscript sign at the end node, e.g. A > B
> C—o>A-.

A strongly connected component (strong component, SCC) is a
maximal subgraph of a digraph in which a path between
every pair of distinct nodes exists. The SCCs of a graph can
be computed in linear time with Tarjan's algorithm [11].
In a digraph, every cycle lies in exactly one SCC (either the

http://www.biomedcentral.com/1471-2105/10/181

cycle is itself a SCC because every node can be reached
from any other node or it is embedded in a larger SCC).
Also, every node belongs to exactly one SCC (a single
node can also constitute a SCC, e.g. in a digraph without
cycles every node is a SCC).

An important concept in relation to signed graphs is bal-
ance [12]. A signed undirected graph is called balanced
when every cycle in the graph is positive. A directed graph
is balanced if the underlying undirected graph is balanced
and it is cycle-balanced when all directed cycles are positive
(hence, cycle-balance is weaker than balance). It can be
proven that a signed digraph G is cycle-balanced if and
only if every SCC of G is balanced (Theorem 13.11, [12]).

Algorithms for enumeration of paths and cycles

When we are interested in a full enumeration of paths and
cycles we need not to distinguish between unsigned and
signed graphs. For the latter, paths and cycles can always
be computed in the underlying unsigned graph and the
overall sign for each path and cycle can easily (in linear
time) be attributed afterwards by counting the negative
edges involved in the path or cycle.

All paths starting in a certain (seed) node can be generated
by performing a breadth-first or depth-first traversal start-
ing from that node. Although this method is easy to
implement, the number of paths in a graph can, depend-
ing on its structure, quickly explode which can make
exhaustive enumeration impractical.

Specialized algorithms for the enumeration of all cycles in
a digraph have been developed by various authors, e.g.
Tarjan [13] and Johnson [14]. They typically rely on back-
tracking strategies and reduce the search space through
temporary blocking of nodes. Johnson's algorithm is the
more efficient variant and has a time complexity that is
proportional to the number of cycles in the graph where
the proportionality constant is the number of nodes and
edges (i.e. the algorithm is linear in the output size but
usually exponential in the input size because the number
of cycles can increase exponentially with network size). In
particular, Johnson's algorithm successively determines
the strongly connected components of the graph and
removes previous start nodes so that the next iteration
leads to new cycles.

Since there can be a great number of paths and cycles in a
graph and often not all of them are relevant for the ques-
tion at hand we devised an algorithm that allows one to
restrict the paths and cycles to be computed. Nodes and
edges that must be passed through are termed obligatory
nodes and edges. An obligatory edge can be directly trans-
formed into two obligatory nodes by making its start and
end node obligatory. In addition, all other outgoing edges
of the start node and all other incoming edges of the end

Page 3 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

node can be deleted. When enumerating cycles it is now
sufficient to process the strongly connected component
that contains all obligatory nodes (if obligatory nodes
occur in different SCCs then no cycles containing all these
nodes exist). Before paths are enumerated, all nodes that
can neither reach nor be reached from any of the obliga-
tory nodes are deleted. Reachability is thereby tested by
executing an (inexpensive) normal shortest-path algo-
rithm before the enumeration (edge signs are ignored in
this case). In addition, reachability can be exploited to
reduce the search space when the end nodes of the paths
are restricted (e.g. when the paths from A to E in Figure 1a
are to be enumerated, it is not necessary to follow the edge
from A to B because no path from B to E exists).

In Klamt et al. [6] it was shown that path and cycle enu-
meration can be achieved alternatively by elementary-
modes computation, which is a procedure that is often
used in the analysis of metabolic networks [15]. Briefly,

a) b)

-

Figure |

http://www.biomedcentral.com/1471-2105/10/181

elementary modes (EMs) can be seen as a formalization of
metabolic pathways in which substrates are converted
into products while intermediary metabolites are strictly
balanced (so-called steady state condition). If irreversible
reactions are part of an EM then they can only operate in
their specified directions. As third condition, EMs are sup-
port-minimal, i.e. if a reaction from an EM is removed the
remaining reactions of the mode are not able to assemble
a pathway fulfilling the steady-state and reversibility con-
dition. Cycle enumeration can be mapped to elementary-
modes computation because (directed) cycles can algebra-
ically be represented in an equivalent way as EMs. One
considers vectors ¢ (so-called circulations) with |E| ele-
ments fulfilling a conservation-law (equivalent to the
steady-state property of EMs)

Example graphs illustrating the different stages and possible problems when searching for shortest paths in
signed graphs (for discussion see main text). Edges with arrows are positive, those with bars are negative. In Figure le, a

negative path from A to B with length 7 is indicated.

Page 4 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

(with N being the incidence matrix of the graph) and a
directionality (positivity) condition (equivalent to the
irreversiblity constraints in EMs)

c20.

The solution space of this linear equality/inequality sys-
tem defines a polyhedral cone whose extreme rays (which
fulfill a similar minimality condition as EMs) correspond
to the cycles of the graph. Since elementary modes corre-
spond also to the extreme rays (of the so-called flux cone
associated with a stoichiometric network) we could make
use of the elementary-modes algorithm and thereby ben-
efit from recent improvements [15-17]. As shown in [6],
elementary-modes computation could also be used for
enumerating of paths. In a later section ('Performance')
we will briefly investigate whether it pays off to use such a
strategy for path/cycle enumeration or whether regular
graph-algorithms perform better.

Algorithms for computing shortest signed paths and cycles
The determination of shortest paths in weighted unsigned
digraphs is a well-known problem which can be efficiently
solved e.g. with Dijkstra's algorithm [18]. If the graph is
unweighted (i.e. all edges have the same weight) then even
a simple breadth-first search can be used. Shortest-paths
algorithms usually determine the paths that originate from
a fixed start node (single-source problem). In order to cal-
culate the shortest paths between all pairs of nodes the sin-
gle-source problem can be simply iterated over all nodes in
the graph. Typically, a shortest path algorithm also calcu-
lates the shortest cycle back to the start node. Therefore
only the shortest path problem is discussed here.

In general, somewhat surprisingly, even the existence prob-
lem for negative or positive paths and cycles (between given
start and end nodes) in signed digraphs is NP-complete [19].
Obviously, by neglecting the edge signs we could still com-
pute the shortest paths in the underlying unsigned graph. For
a given pair of nodes, we can then easily check whether this
path is positive or negative. The difficulty in the general case
is to find then the shortest path of the opposite sign. How-
ever, it is possible to determine the shortest positive and
shortest negative paths (and therefore existence) in polyno-
mial time when either the graph does not contain any nega-
tive cycles (double-label algorithm; see below) or when the
graph is undirected. In the latter case the graph is trans-
formed into an unsigned undirected graph by splitting each
edge with a positive sign into two edges with half the weight
of the original edge. For this type of graph a polynomial time
algorithm has been devised that calculates the shortest paths
with an even or odd number of edges [20]. Shortest paths
with an even number of edges are then the shortest positive
paths and those with an odd number of edges the shortest
negative ones.

http://www.biomedcentral.com/1471-2105/10/181

Since herein we are interested in signed directed graphs we
cannot use these polynomial algorithms. However, as
mentioned above, signed digraphs not containing nega-
tive cycles can be treated exactly with the polynomial dou-
ble-label algorithm.

Double-label algorithm (DLA)

The double-label algorithm (DLA, [21]) is a modification
of Dijkstra's shortest path algorithm. Dijkstra's main pro-
cedure determines the shortest paths from a selected start
node to the other nodes (single-source problem). This
procedure is repeated for every node in the graph when
dealing with the all-pairs problem. During its operation,
the shortest paths to the other nodes are calculated
whereby the path lengths of the shortest paths succes-
sively increase. The algorithm keeps track of the currently
known shortest distances from the start to every other
node as well as (optionally) backward pointers that can be
used to reconstruct the actual path.

In a signed graph it is necessary to store in each node both
the length of the shortest positive (L*) and of the shortest
negative (L) path together with the associated backward
pointers. This is the main feature of the DLA (for pseudo-
code see Additional file 1 sectionl). During the elonga-
tion step, it is now necessary to combine the current short-
est positive and/or negative path with all positive and
negative edges to test which combination yields a shortest
positive or negative path to a neighboring node. Assume
we want to compute the shortest positive and negative
paths from A to all other nodes in Figure 1a. Since we con-
sider an unweighted graph the DLA can run as a breadth-
first search. After the first iteration it delivers A — B+ (L+(A,
B) =1) and A —» D+ (L*(A, D) = 1), after the second itera-
tionA - B — C+(L*(A,C)=2)andA—> D > E (L (A E)
= 2), and after the third iteration A > D —» E — C(L (A,
C) = 3). The latter path is of length three and thus longer
than the path leading from A to C via B, however, the DLA
keeps for each node the length of the shortest positive and
shortest negative path separately ("double label") and for
C we thus finally have: L*(A, C) = 2 (with backward
pointer to B) and L(A, C) = 3 (with backward pointer
to E).

The DLA delivers exact results in polynomial time if the
signed digraph does not contain negative cycles (as in Fig-
ure 1a). It usually fails if negative cycles are present as
illustrated by the graph in Figure 1b (an extension of Fig-
ure 1a): Assume we are interested in the shortest paths
leading from A to B. During the 4-th iteration, the stand-
ard DLA runs into a negative trail from A to B via A —» B
— C > F - B-containing the negative cycle B> C —> F —
B- thus visiting B twice. In its simplest form, the DLA
would report a negative path from A to B of length 4
which is apparently wrong.

Page 5 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

In fact, in the most general case, what the simple DLA
(correctly) computes are the shortest positive/negative
walks where nodes and even edges may be visited twice
(e.g. when searching for the shortest negative path from G
to F in Figure 1c¢). Only if no negative cycle is present in
the graph these walks coincide automatically with the
shortest positive and shortest negative paths. This raises
the question why negative cycles are problematic when
determining shortest paths. First of all, consider an acyclic
digraph: Assume that the shortest positive and negative
paths from A to B and from B to C are known (possibly
only one sign variant for each of the two paths exists).
With this information the shortest positive or negative
path from A to C via B can directly be constructed (possi-
bly both sign variants). This circumstance is exploited by
the shortest path algorithms and makes it unnecessary to
search through all possible paths for the shortest one. Pos-
itive cycles do not pose a problem because they would
only elongate (with the same sign) an existing shortest
path and therefore do not prevent the identification of the
shortest path even if the search algorithm does not explic-
itly employ checks to avoid cycles. In contrast, a negative
cycle, can transform a path from a node X to a node Y into
a walk from X to Y (with some nodes/edges visited twice)
having the opposite sign. Simple DLA does not employ
checks for cycles and such a walk could thus wrongly be
reported as a shortest path if the real shortest path is
longer or, even worse, if no such path exists. However, this
can only happen at all for a given pair of nodes if the
graph contains a negative cycle and if both a positive and
a negative edge sequence between them is reported by the
DLA. In this case the shorter of the two is certainly a cor-
rectly identified path while the longer sequence could be
a walk with repeated nodes/edges. The determined length
of the latter can therefore only serve as a lower bound
(which implies that no path exists if this bound is «©). A
small modification by which a shortest path can often cor-
rectly be found even when a shorter walk exists is
described in the following section.

Note that a different problem is posed by negative edge
weights in unsigned weighted digraphs: If a cycle is present
whose sum of edge weights is negative then a shortest path
algorithm is in danger of repeatedly traversing such a cycle
thereby shortening the path length indefinitely. Special
shortest paths algorithms can detect such situations (e.g.
Bellman-Ford). However, negative cycles characterized by
a negative sum of edge weights should not be confused
with negative cycles considered here which arise by multi-
plication of edge signs.

Double-label algorithm with check for cycles (DLACC)

During each elongation step in the double-label algo-
rithm the backward pointers can be used to check whether
the current edge sequence closes a cycle and is thus a trail
that can be discarded (in simple DLA, this trail might

http://www.biomedcentral.com/1471-2105/10/181

potentially be extended to a walk). This strategy has been
employed by Klamt et al. [22]. Applied to Figure 1b, the
cycle in the trail A > B — C — F —» B-would be detected
and a negative path from A to B would thus not be
reported by the DLA. The modifications needed to extend
single-source DLA to DLACC are explained in more detail
in Additional file 1 (sections 1 and 2).

DLA with cycle check (DLACC) is still polynomial in time,
however, even a check for cycles cannot avoid that the
DLA may fail to detect the correct shortest paths. This is
illustrated in Figure 1c: In this expanded version of Figure
1b, a negative path from A to B exists, namely A > G > H
— C - F - B, but it would not be identified for the fol-
lowing reason: when looking at the shortest paths to/from
intermediate node C these are A—>B - CtandC > F —»
B-which together would include a cycle (B > C - F —> B
). Therefore, DLACC would correctly discard this trail. Yet,
when looking at intermediate node G or H it becomes
clear that the correct shortest negative path form A to B
could be composed by adding the shortest positive path
from A to G or H and the shortest negative path from there
to B.

To summarize, for a given pair of nodes, the DLACC can
miss existing paths or deliver longer path lengths than the
real shortest if the following three conditions are fulfilled:
(i) the graph has a negative cycle, (ii) positive and nega-
tive paths between both nodes exist, and (iii) there is a
segment on a real shortest path that itself is not shortest,
i.e. if a shortest signed path from A to B can be written as
A—> .. >X-> ..>Y—>..> Bso that the segment X >
... > Y is not a shortest path (with the respective sign)
from Xto Y.

DLACC with transitive inference (DLACC-TI)

The DLACC extension described in the following delivers
correct results (still in polynomial time) also for Figure 1c.
Note that for this extension the single-source DLACC must
have been applied to every node in the graph. First of all, if
the graph contains a negative cycle it is ensured that the
DLACC will identify at least one negative cycle, namely one
with shortest length in the whole network. As stated above,
for a given pair of nodes, the DLACC may have missed exist-
ing paths or may have delivered longer path lengths if posi-
tive and negative paths between the start and the end node
exist. The unsigned shortest path length will always correctly
be identified during the DLACC (it is attributed to either the
shortest positive or shortest negative path). Therefore, for all
those pairs (A, B) of nodes between which at least a positive
path (with length L+) or a negative path (with length L') has
been found with DLACC we check for the longer path length
max(L;, L+) (allowing also o for one of the two) whether
shorter paths can be constructed by concatenating shortest
paths that run via any of the other nodes between A and B.
This means that positive/negative shortest paths candidates

Page 6 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

are constructed by concatenating the appropriate positive/
negative shortest paths from A to X and X to B where X can
be any node except A or B (complexity for the whole network
is still polynomial: O(|V|3)). If such a candidate - identified
by transitive relationships — does not contain a cycle and is
shorter than the previous shortest path, then the candidate
replaces the previous one. The pseudo-code for this transitive
inference is given in Additional file 1 (section 3). In Figure
1¢, the negative path from A to B via G, H, C and F would
now be identified: DLA with cycle check delivers L+(A, B) = 1
and L-(A, B) = co. We would therefore search for a smaller L-
(A, B). Wesee that L+(A, G) =1 and L/(G, B) = 4. Hence, there
might be a path with L-(A, B) = 5. Using the backward point-
ers we have to check that the concatenated path does not
involve a cycle (as is the case here) and then we have con-
firmed that L-(A, B) = 5.

Unfortunately, the result of the DLACC with transitive
inference in postprocessing (DLACC-TI) is, in general, still
only an approximation of the true values as can be illus-
trated with the further extended graphs in Figures 1d and
1le. In Figure 1d the shortest negative paths from G or H to
B would run via A (as stored in the backward pointers).
Therefore, the shortest negative path from A to B can not
be composed by concatenating shortest paths to/from any
other nodes (because they would all contain a cycle)
resulting in L-(A, B) = o instead of 5. In Figure 1e, a nega-
tive path from A to B with length 7 exists which will be
returned by the DLACC as the current shortest path. Then,
a negative path from A to B via [, J, K will be found by the
transitive inference. As the latter path is shorter (6) it
replaces the one found by DLACC. However, the real
shortest path is even shorter (length 5), which means that
the length of the found path is only an upper bound for
the length of the real shortest path - and this holds for all
values found by transitive inference. Again, negative cycles
are the cause that we can only give upper bounds (and
sometimes even miss the existence of a positive or nega-
tive path). However, in realistic biological networks, it
turns out that the results of the DLACC-TI are often close
(or even equal) to the exact values (see below).

To summarize, the DLACC-TI is an approximative
approach with polynomial complexity. It combines the
output of the DLACC with a search for transitive relation-
ships that can lead to the identification of paths missed
during DLACC. The length it returns for each pair of nodes
is exact for the minimum of L-and L+, and an upper bound
for the other. The latter could be combined with the lower
bounds that can be found with simple DLA: If both
bounds are finite and coincide then the DLACC-TI has
found a shortest path.

Exhaustive search and existence of negative cycles
Hansen [21] describes a branch-and-bound strategy that
can be used to augment the DLA to identify walks for

http://www.biomedcentral.com/1471-2105/10/181

which a new search has to be conducted to find the real
shortest paths. However, in a first naive implementation
this strategy turns out to be very inefficient. In order to get
the exact shortest paths length we apply an exhaustive
traversal working in a depth-first manner and storing for
each node the current shortest positive and negative dis-
tance to the start node. It is easy to implement, requires
only a linear amount of memory and turns out to be still
sufficiently fast for many of the networks that we have
analyzed (see below). Pseudo-code for a single-source
implementation (which can easily be extended to the all-
pairs-problem) is given in Additional file 1 (section 4).

However, exhaustive search may sometimes be impracti-
cable because of combinatorial explosion of paths to be
visited. As mentioned above, calculating shortest positive
and negative paths in digraphs is only hard when negative
cycles are present, i.e. if at least one SCC of the graph is not
balanced (cf. Definitions). Whether this is the case is easy
to decide by testing every SCC with a simple linear-time
algorithm for balance [23]. Briefly, this algorithm
employs a breadth-first search which determines whether
or not between some pair of nodes two paths with differ-
ent signs exist. If such paths can be found it can be con-
cluded that a negative cycle exists and that the SCC is
unbalanced (otherwise it is balanced). Alternatively, as
mentioned above, the DLACC reports automatically
whether a negative cycle exists in the network or not (but
its complexity is polynomial, not linear).

Two-step algorithm (TSA): exact computation of path lengths
combining exhaustive and simple search

The considerations above suggest a method to improve
the exact calculation of shortest paths and cycles in signed
digraphs (described in the following with respect to the
all-pairs problem). First of all, the unbalanced SCCs in the
graph are determined (by definition a SCC that consists of
a single node is viewed as balanced). Then, separately for
each unbalanced SCC, the shortest paths and cycles
between the nodes of the SCC are calculated with an
exhaustive search (e.g. depth-first traversal as mentioned
above). With this information, the nodes and edges of the
unbalanced SCCs are then replaced in the following man-
ner (cf. Figures 1d and 2 and Additional file 2): First of all,
each node X is split into two variants X and X'. All incom-
ing edges to X from outside the SCC are connected to X
whereas the edges going out of the SCC from X now start
from X'. The node X is then connected with all other
nodes Y' of the SCC with edges that carry the weight of the
shortest positive and/or negative paths between the nodes
X and Y. In addition, a positive edge X — X' with weight
zero is added for every pair of split nodes. The resulting
transformed graph is free of negative cycles and e.g. the
DLA (here applied on a signed digraph with positive
weights) can now be used to calculate the remaining
shortest positive and negative paths (check for negative

Page 7 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

cycles is not necessary). A split node is handled in the fol-
lowing way when reading the results: If the path starts at a
split node then the X variant is chosen and if it ends at
such a node the X' variant is selected. This two-step algo-
rithm (TSA) relies on the fact that a path can pass through
any given SCC only once. The reason is that if a path
would run through the same SCC twice then the subpath
between the two intersections with the SCC would have to
be part of this SCC (contradiction). A summary of this
procedure is given in Additional File 1 (section 5).

The strategy outlined above shows its largest effect if the
network has several smaller SCCs that are separated by
regions without cycles. One particular favorable situation
is the following: Suppose there are two unbalanced SCCs
in the graph and the nodes of the second SCC are reacha-
ble from the first SCC (and not vice versa; this is in any
case impossible because otherwise the two SCCs would be
one giant SCC). If an exhaustive search is applied to the
whole graph, then the two SCCs act like a large one
because for every path that runs through the first SCC all
possible continuations through the second SCC need to
be followed. With the strategy above, both SCCs can be
independently preprocessed, which in this case can signif-
icantly decrease the number of paths that need to be
explored.

A G H

S

Figure 2

The graph of Figure 1d transformed for the calcula-
tion of shortest paths with the two-step algorithm
(TSA). The positive edges X - X' (X € {A, B, C, G, H, F})
with zero weight are not displayed to reduce clutter (cf.
Additional file 2). The shortest negative path from Ato Bis A
— H' — C — B' with a length of 5. Note that the lengths of
the (shortest) cycles is computed during the exhaustive
search and not displayed in this transformed (acyclic) graph.

http://www.biomedcentral.com/1471-2105/10/181

Implementation

The described algorithms for cycle and path enumeration
and for shortest path computation in signed graphs have
been implemented within the framework of CellNetAna-
lyzer (CNA, [22]), a MATLAB toolbox with graphical user
interface for network analysis in Systems Biology (free

download for academic use via http://www.mpi-magde
burg.mpg.de/projects/cna/cna.html). CNA calls these

algorithms within several routines and they are also avail-
able via CNA's application programming interface.

Performance

Below we discuss benchmark tests of the shortest signed
paths and path/cycle enumeration algorithms. Regarding
the running times it has to be taken into account that they
are implemented with the MATLAB scripting language to
make them readily available for CellNetAnalyzer. The per-
formance of such scripts is usually significantly lower than
when using compiled languages such as C or C++. How-
ever, even though the absolute running time should not
be considered as state-of-the-art it does allow for a relative
comparison of the different algorithms.

We used various test networks for evaluating the perform-
ance:

(1) T-cell: interaction graph of a recently published logical
model for T-cell receptor signaling [24].

(2) EGFR: interaction graph of a model for EGFR/ErbB sig-
naling constructed in our group [25].

(3) T-cell+EGFR: an artificial interaction graph (with bio-
logical characteristics) constructed by linking each node
of the output layer of the T-cell network to three randomly
selected nodes in the input layer of the EGFR network.

(4) Regulon DB 6.2 [26]: This database contains informa-
tion about transcription factors and their targets in E. coli.
Only evidence-based regulation rules where factor and
target have associated Blattner numbers and a definitive +
or - sign are considered here. For the six transcription fac-
tors that consist of two subunits each subunit alone is
considered to be able to exert the regulation.

(5) Hippocampal CA1 neuron [27]: The interactions in
this network represent signaling pathways and cellular
machines of this neuron. Only interactions with a defini-
tive + or - sign are considered here.

(6) Cancer signaling network [28]: This network contains
genes and their products which have been found to be rel-
evant during cancer development. Only interactions with
a definitive + or - sign are considered here.

Page 8 of 11

(page number not for citation purposes)

http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html

BMC Bioinformatics 2009, 10:181

The number of nodes and edges in the networks are
shown in Table 1.

Enumeration of paths and cycles

CNA performs breadth-first traversal for the enumeration
of paths. In particular, options to restrict start- and end-
nodes or the path length are provided as well as the possi-
bility to calculate only those paths that run via certain
nodes and/or edges. For performance measurements the
calculation of input-output (I/O) paths is used. These
paths connect input nodes (nodes without incoming
edge) with output nodes (nodes without outgoing edge).
Input and output nodes define the boundaries of the net-
work model. It can be seen in Table 1 that the enumera-
tion of I/O paths is possible - partially in seconds - in
medium-scale networks (e.g. EGFR, T-cell). As can also be
seen elementary-modes calculation of the paths falls
quickly behind breadth-first traversal when the network
gets larger (Regulon DB). Note that the number of I/O
paths do not simply correlate with the number of nodes
and edges in the graph: Although the Regulon DB network
has many more nodes and edges than the EGFR network,
the latter contains many more I/O paths. In the CA1 neu-
ron, although having fewer nodes and edges than Regulon
DB, there are so many I/O paths that full enumeration
becomes impractical.

For the enumeration of cycles, CNA now uses Johnson's
algorithm. We briefly compare its performance to enu-
meration via elementary-modes (EM) computation. It can
be seen in Table 1 that for cycle enumeration Johnson's
algorithm is more efficient, but EM calculation is also

Table I: Benchmarks for path and cycle enumeration

http://www.biomedcentral.com/1471-2105/10/181

practical as long as the number of cycles is not too high.
Again, the performance of EM calculation deteriorates
quickly for larger networks. More importantly, the run-
ning time of Johnson's algorithm is known to scale line-
arly with the number of cycles whereas the scaling
behavior of EM calculation is still an open question.

Shortest paths and cycles in signed (interaction) graphs
The following algorithms for computing the shortest pos-
itive/negative paths and cycles are implemented in CNA:

e Double-label algorithm with cycle check (DLACC),
optionally with transitive inference in postprocessing
(DLACC-TI).

e Exhaustive search with depth-first traversal (DFT).

e Two-step algorithm (TSA, mixture of exhaustive
search and double-label algorithm).

We compared the performance of these algorithms for the
all-pairs problem in the respective test networks (Table 2).
Surprisingly, exhaustive search (and thus an exact calcula-
tion of all path lengths) is possible in five of the six net-
works. In the smaller networks (EGFR and T-cell), it
requires less than one second and is even faster than
DLACC-TI and TSA, since the latter need a certain demand
of overhead. This becomes even more significant in the
case of Regulon DB. This network contains only 132
cycles which indicates that the network has a rather sim-
ple (flat) structure and explains why the exhaustive search
is very fast despite the large number of nodes and edges.

Network Nodes Edges Enumeration of cycles Enumeration of input-output paths
Number of cycles EMC Johnson Number of I/O paths EMC Breadth-first

[s] [s] 1 [s]

T-cell 94 138 100 0.1 0.04 8058 098 0.27

EGFR 106 230 237 0.15 0.07 384766 131 21

T-cell+EGFR 200 410 337 60+09 0.14+0.0l n/a n/a n/a

Regulon DB 1493 3565 132 194 0.77 44194 4716 38

CAIl neuron 512 1047 n/a n/a n/a n/a n/a n/a

Cancer signaling 1240 3144 n/a nfa n/a n/a n/a nfa

The running times when using elementary modes computation (columns "EMC") are compared with those of the graph-algorithms (Johnson's
algorithm and breadth-first search, respectively). The number of edges refers to unique edges (parallel edges with the same sign and half-edges are
removed before calculation). The values for the combined network "T-cell+EGFR" are mean and standard error over ten runs with different
random connections between the two networks. An entry n/a indicates that the procedure quickly ran out of memory (3 GB) because of a
combinatorial explosion of paths or cycles. The platform used was MATLAB 2006 b under 32 bit Linux with an Intel E6600 processor.

Page 9 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

http://www.biomedcentral.com/1471-2105/10/181

Table 2: Benchmarks for calculation of shortest signed paths between all pairs of nodes.

Network Number of uSCCs (with number of nodes) Algorithm

approximation with DLACC-TI TSA DFT

[s] Tl corrections remaining errors [s] [s]
T-cell I (33) 0.79 71 2 0.34 0.02
EGFR 1 (33) 1.18 183 | 0.6l 0.26
T-cell+EGFR 2 (33, 33) 6.0+004 87979 30 3.1 £0.03 419+82
Regulon DB 1 (30) 103 145 0 11.8 1.0
CAIl neuron I (154) 25 1869 43* 582% 2213*
Cancer signaling 4 (2, 2, 2, 445) 243 2161 n/a >12h >I2h

The running times for the different algorithms are shown and the quality of the approximation with DLACC-TI is assessed. Also, the number of
uSCCS in the networks together with the number of nodes that they contain is shown. In the column "T| corrections" the number of shorter paths
that can be identified with transitive inference after having run DLACC is given. The "remaining errors" column shows how many shortest paths
(after the Tl step) differ in their length compared to the exact results delivered by TSA or DFT. When an algorithm ran longer than 12 hours it was
considered impractical and terminated. Therefore, no exact results were determined for the cancer signaling network and consequently the quality
of the approximation with DLACC-TI cannot be given (*) For the CAl neuron, the search depths in the two-step algorithm and in the exhaustive
search were limited to length |8 to make calculations practicable. Therefore some paths may have been missed. The longest shortest path identified
for this network with the DLACC-Tl is also of length 8. The computational environment is the same as in Table I.

The DLACC-TI algorithm delivering approximative results
performs sufficiently well in all networks, in particular in
the cancer signaling network where an exact result could
not be obtained in reasonable time with exhaustive search
or TSA. Only the DLACC-TI can be applied here to get an
approximative solution. In general, as can be seen by the
number of corrections, transitive inference in postprocess-
ing may strongly reduce the number of incorrect results
delivered by the DLACC (especially in the case of the CA1
neuron). Furthermore, the number of remaining errors
after DLACC-TI (we can compare the results with those
from the exact algorithms except in the cancer signaling
network) is very low or even zero (Regulon DB). We con-
jecture that this is a general property of biological signal-
ing and regulatory networks and is due to the relatively
low number of negative feedback loops (compared to
what is theoretically possible).

The TSA best exploits situations where at least some SCCs
are connected as in the T-cell+ EGFR example. T-cell and
EGEFR alone comprise only one single SCC where TSA can-
not lead to a better performance. However, TSA can also
be favorable when the search depth is restricted in compli-
cated networks because it is then sufficient to restrict the
search depth only when traversing the unbalanced SCCs.
This is demonstrated for the CA1 neuron where the two-
step algorithm with restricted DFS search achieves the
same result as a restricted DFS search of the whole net-
work but uses only one quarter of the computation time.

Conclusion

The enumeration of paths and cycles (feedback loops)
and the calculation of shortest positive/negative paths in
interaction graphs are fundamental issues in Systems Biol-
ogy. Enumeration of paths (breadth-first search) and
cycles (Tarjan's and Johnson's algorithm) are standard
problems in graph theory. We compared it with enumer-
ation by elementary-modes computation, an algebraic
technique borrowed from metabolic network analysis. It
turns out that algorithms exploiting explicitly the graph
structure (where each edge connects two nodes) are supe-
rior to the more general elementary-modes approach
which has been developed for hypergraphs where hyper-
edges (such as the bi-molecular reaction A+B — C+D)
may connect more than two nodes.

Apart from full enumeration of paths and cycles, we iden-
tified the calculation of shortest positive/negative paths
and cycles in (signed) interaction graphs as a key problem
for many applications. In contrast to standard shortest
path computation, this problem is NP-complete and only
very few algorithmic approaches have been described in
the literature so far. We proposed here extensions and sev-
eral new algorithms, for both computing exact results (in
smaller and medium-scale networks) and approximations
(in large-scale networks). Benchmarks in realistic biologi-
cal networks showed that exact results can be obtained in
networks with up to several hundreds nodes and interac-
tions, a property which one would not expect in random

Page 10 of 11

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:181

networks. A class of even larger graphs can still be treated
exactly by the two-step algorithm combining exhaustive
and simple search strategies. Finally, an approximative
algorithm (with polynomial complexity) for large net-
works (where exact solutions cannot be obtained in rea-
sonable time) was introduced herein which seems to
deliver results that are very close or even equal to the exact
values. Again, this phenomenon can probably be attrib-
uted to the particular topology of cellular signaling and
regulatory networks which contain only a relatively low
number of negative feedback loops.

All algorithms described herein have been implemented
in the CellNetAnalyzer framework http://www.mpi-
magdeburg.mpg.de/projects/cna/cna.html and are thus

publicly available for biological network analysis.

Authors' contributions

SK initiated this study. Both authors contributed equally
in developing, implementing and testing algorithms and
in writing the paper. Both authors read and approved the
manuscript.

Additional material

Additional file 1

Pseudo-code. Pseudo-codes of shortest paths algorithms in signed directed
graphs discussed in the main text.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-181-S1.pdf]

Additional file 2

Adjacency matrices for transformed graph. Adjacency matrices (for pos-
itive and negative edges) for the transformed graph in Figure 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-181-S2.pdf]

Acknowledgements

This work was supported by the German Federal Ministry of Education and
Research (funding initiatives "HepatoSys" and "FORSYS"), by MaCS (Magde-
burg Centre for Systems Biology) and by the Ministry of Education of Sax-
ony-Anhalt (Research Center "Dynamic Systems").

References

I. Huber W, Carey V], Long L, Falcon S, Gentleman R: Graphs in
molecular biology. BMC Bioinformatics 2007, 8(Suppl 6):S8.

2. Barabasi AL, Oltvai ZN: Network biology: understanding the
cell's functional organization. Nat Rev Genet 2004, 5:101-113.

3. Cinquin O, Demongeot J: Positive and negative feedback: strik-
ing balance between necessary antagonists. | theor Biol 2002,
216:229-241.

4. Thieffry D: Dynamical roles of biological regulatory circuits.
Brief Bioinform 2007, 8:220-225.

5. Kwon YK, Cho KH: Coherent coupling of feedback loops: a
design principle of cell signaling networks. Bioinformatics 2008,
24(17):1926-1932.

20.

21.

22.

23.
24.
25.

26.

27.

28.

http://www.biomedcentral.com/1471-2105/10/181

Klamt S, Saez-Rodriguez], Lindquist JA, Simeoni L, Gilles ED: A
methodology for the structural and functional analysis of sig-
naling and regulatory networks. BMC Bioinformatics 2006, 7:56.
Soulé C: Graphic requirements for multistationarity. C R Biol
2006, 329(1):13-20.

Craciun G, Tang Y, Feinberg M: Understanding bistability in
complex enzyme-driven reaction networks. PNAS 2006,
103:8697-8702.

Sontag ED: Molecular systems biology and control. European
Journal of Control 2005, 11:396-435.

Maurya MR, Rengaswamy R, Venkatasubramanian V: A systematic
framework for the development and analysis of signed
digraphs for chemical processes. |. Algorithms and analysis.
Ind Eng Chem Res 2003, 42:4789-4810.

Tarjan RE: Depth-first search and linear graph algorithms.
SIAM Journal on Computing 1972, 1:146-160.

Harary F, Norman RZ, Cartwright D: Structural Models: An Introduction
to the Theory of Directed Graphs Wiley, New York; 1965.

Tarjan RE: Enumeration of the Elementary Circuits of a
Directed Graph. SIAM | Comput 1973, 3:211-216.

Johnson DB: Finding all the Elementary Circuits of a Directed
Graph. SIAM | Comp 1975, 4:77-84.

Klamt S, Gagneur], von Kamp A: Algorithmic approaches for
computing elementary modes in large biochemical reaction
networks. | Syst Biol (Stevenage) 2005, 152(4):249-255.

Urbanczik R, Wagner C: An improved algorithm for stoichio-
metric network analysis: theory and applications. Bioinformat-
ics 2005, 21:1203-1210.

Terzer M, Stelling J: Large-scale calculations of elementary flux
modes with bit pattern trees. Bioinformatics 2008, 24:2229-2235.
Dijkstra EW: A note on two problems in connection with
graphs. Numerische Mathematik 1959, 1:269-271.

Lapaugh AS, Papadimitriou CH: The even-path problem for
graphs and digraphs. Networks 1984, 14:507-513.

Grotschel M, Pulleyblank WR: Weakly bipartite graphs and the
max-cut problem. Oper Res Lett 1981, 1:23-27.

Hansen P: Shortest paths in signed graphs. In Algebraic Methods
in Operations Research Edited by: Burkard, et al. North-Holland Math.
Stud., 95. Ann. of Discrete Math., 19. North-Holland, Amsterdam;
1984:201-214.

Klamt S, Saez-Rodriguez |, Gilles ED: Structural and functional
analysis of cellular networks with CellNetAnalyzer. BMC Sys-
tems Biology 2007, 1:2.

Loukakis E: A Dynamic Programming Algorithm to Test a
Signed Graph for Balance. Int | Comput Math 2003, 4:499-507.
Saez-Rodriguez), et al.: A logical model provides insights into T-
cell receptor signaling. PLoS Comput Biol 2007, 3(8):el63.
Samaga R, Saez-Rodriguez |, Alexopuoulos L, Sorger PK, Klamt S:
The logic of EGFR/ErbB signaling: Theoretical properties
and analysis of high-throughput data. PLoS Comp Biol in press.
Gama-Castro S, et al.: RegulonDB (version 6.0): gene regulation
model of Escherichia coli K-12 beyond transcription, active
(experimental) annotated promoters and Textpresso navi-
gation. Nucleic Acids Res 2008:D 120-4.

Ma'ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler
B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolo-
vitzky GA, Blitzer RD, lyengar R: Formation of regulatory pat-
terns during signal propagation in a Mammalian cellular
network. Science 2005, 309(5737):1078-1083.

Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, Zhang S, Liu L, Lu
M, O'Connor-McCourt M, Purisima EO, Wang E: A map of human
cancer signaling. Mol Syst Biol 2007, 3:152.

Page 11 of 11

(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-181-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-10-181-S2.pdf
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17903289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17903289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17626067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18596076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18596076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16464248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16464248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16464248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16735474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16735474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15539452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15539452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18676417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18676417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17408509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17722974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17722974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18158297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18158297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18158297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18091723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18091723

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Definitions
	Algorithms for enumeration of paths and cycles
	Algorithms for computing shortest signed paths and cycles
	Double-label algorithm (DLA)
	Double-label algorithm with check for cycles (DLACC)
	DLACC with transitive inference (DLACC-TI)
	Exhaustive search and existence of negative cycles
	Two-step algorithm (TSA): exact computation of path lengths combining exhaustive and simple search

	Implementation
	Performance
	Enumeration of paths and cycles
	Shortest paths and cycles in signed (interaction) graphs

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

