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Background: In recent years, digital pathology has been rapidly developing and applied throughout the world.
Especially in clinical settings, it has been utilized in a variety of situations, including automated cancer diagnosis. Con-
versely, in non-clinical research, it has not yet been utilized as much as in clinical settings. We have been performing
automated recognition of various pathological animal tissues and quantitative analysis of pathologicalfindings, includ-
ing liver and lung. In this study, we attempted to construct an artificial intelligence (AI)-based trained model that can
automatedly recognize glomerular lesions in mouse kidneys that are characterized by complex structures.
Materials and methods: By using hematoxylin and eosin (HE)-stainedwhole slide images (WSI) from Col4a3 KOmice as
variation data, normal glomeruli and glomerular lesions were annotated, and deep learning (DL) was performed with
the use of the neural network classifier DenseNet system in HALOAI. The trained model was refined by correcting the
annotation of misrecognized tissue area and reperforming DL. The accuracy of the trained model was confirmed by
comparing theAI-obtained results with the pathological grades evaluated by pathologists. The generality of the trained
model was also confirmed by analyzing the WSI of adriamycin (ADR)-induced nephropathy mice, which is a different
disease model.
Results: Glomerular lesions (including mesangial proliferation, crescent formation, and sclerosis) observed in Col4a3
KOmice and ADRmicewere detected by our trainedmodel. The number of glomerular lesions detected by our trained
model were also highly correlated with that of counted by pathologists.
Conclusion: In this study, we constructed a trained model allowing us to automatedly recognize glomerular lesions in
the mouse kidney with the use of the HALO AI system. The findings and insights of this study will facilitate the devel-
opment of digital pathology in non-clinical research and improve the probability of success in drug discovery research.
Introduction

Digital pathology technologies, including automated image diagnosis
and quantitative analysis of specific pathologicalfindings and tissue classes,
have been rapidly developing in recent years. In clinical settings, auto-
mated diagnosis of gastric cancer,1 colorectal cancer,2 prostate cancer,3

and breast cancer4 have been realized with high accuracy. In addition, au-
tomated detection and quantitative analysis of pathological findings or spe-
cific sites in the tissue are available for the diagnosis of gastropathy,5 bone
tissue,6 and others.

In the field of renal pathology, it has become possible to automatedly
recognize various structures of the kidney (e.g., tubules, tubulointerstitium,
blood vessels, and glomeruli) in renal biopsy specimens,7 glomerular le-
sions including glomerular sclerosis,8,9 endocapillary proliferation,
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basement membrane degeneration, mesangial matrix hyperplasia,
mesangial cell proliferation, and crescent.9

As described above, diagnostic imaging using AI and machine learning
(ML) techniques has recently been developing and applied more widely in
clinical practice. In contrast, in the non-clinical field, automated recogni-
tion has been attempted for tissues and cells that are relatively simple in
structure, such as inflammatory regions in intestinal tissue,10 hepatocyte
hypertrophy,11 and pathological findings in cardiomyopathy.12 However,
automated recognition, automated pathological evaluation, and quantita-
tive analysis in more complex tissues such as the kidneys, have yet to be im-
plemented as pathological evaluation using AI and ML techniques is still
less advanced than in clinical practice. We have performed automated rec-
ognition and quantitative analysis of various pathological tissues in non-
clinical animal models: recognition of bile ducts, lipid droplet sizes in the
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fatty liver, and an area of necrosis in the liver tissue; recognition of tubular
degeneration and basophilic changes, hyaline casts, and glomeruli in renal
tissue; identification of areas of alveolar space, fibrosis, and foamy macro-
phages in lung tissue; identification of areas of red pulp and white pulp,
as well as of the marginal zone in the spleen; and measurement of the size
of adipocytes.13–15

If quantitative analysis utilizing digital pathology technology can be
widely used in pathological evaluation, it is expected to improve the reli-
ability of pathological evaluation data by quantifying conventional qualita-
tive pathological grades, visualizing them numerically, and standardizing
discrepancies in the evaluation criteria that may occur among pathologists.
In addition, automated pathological analysis will reduce the workload of
the pathologist and enable efficient and high-quality evaluations. Thus,
the development of digital pathology is expected to increase the probability
of success in drug discovery research.

In this study, we attempted to automatedly recognize various glomeru-
lar lesions in themouse renal tissue (that is composed of complex structures
and a wide variety of cell types), by using the pathological image analysis
software HALO AI,16 which is aimed for use in the pathology assessment
of animal disease models.

Materials and methods

Formalin-fixed, paraffin-embedded tissue samples were prepared and
hematoxylin and eosin (HE)-stained histological specimens from Col4a3
KO (129-Col4a3tm1Dec/J; 9–11-weeks-old, Charles River Laboratories
Fig. 1. Annotated images of glomeruli and tubules in pathological findings in Col4a3 K
crescent formed glomeruli (C, purple), glomerulosclerosis (D, blue), hyaline casts (E,
cells (F, red) were classified by using the HALO AI system. Scale bar: 100 μm. (For inte
the web version of this article.)
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Japan, Inc., bred in polycarbonate cages with γ-sterilized feed CRF1 (Orien-
tal Yeast Co. Ltd.) and water ad libitum, ethics approvEd.) and wild-type
(WT) mice were used to construct a trained model. Digital whole slide im-
ages (WSI) were acquired by virtual microscopy (Aperio AT2, Leica
Biosystems, Wetzlar, Germany). By using DenseNet of the image analysis
platform HALO (version 3.1; Albuquerque, NM), the images of normal glo-
meruli and mesangial proliferated glomeruli, crescent formed glomeruli,
glomerulosclerosis, hyaline casts, blood vessels, and tubules were anno-
tated (Fig. 1), and subjected to deep learning (DL) until convergence to a
cross-entropy that was <0.1. WSI were then analyzed by the trained
model, and pathologists visually confirmed the results. In the cases in
which the auto-recognized regions were misrecognized, the regions were
corrected or appropriately annotated, and then the DL was performed
again. As described above, to construct the trained model for the automated
recognition, the cycle of annotation, DL, analysis, and correction/addition of
annotations was repeated. To improve the recognition accuracy, the cycle
was repeated until the number of misrecognized regions was reduced to an
absoluteminimum, or until the analysis results did not change evenwhen fur-
ther DL was performed. The cumulative number of annotations were 785 for
normal glomeruli, 409 for mesangial proliferated glomeruli, 233 for crescen-
tic glomeruli, and 120 for glomerulosclerosis. Finally, it has taken about
10 days and 2 562 449 iterations to train the AI. The recognized glomeruli
with an area of less than 1000 μm2 were excluded from the analysis, as
often they are shown not to be glomerulus or their lesions are unclear.

HE-stained pathological images of Col4a3 KO and ADR mice were
automatedly analyzed, and their glomerular lesion rates (the number of
O mice. Normal glomeruli (A, yellow), mesangial proliferated glomeruli (B, green),
orange), tubules (E, pink), degenerated tubules (B, D, E, sky blue), and red blood
rpretation of the references to colour in this figure legend, the reader is referred to
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glomeruli demonstrating each type of glomerular lesion divided by the total
number of glomeruli in the renal tissue of each individual mouse) were cal-
culated. The actual glomerular lesion rates were also calculated by visually
evaluating the glomeruli, and the correlation between the results of the mi-
croscopic observation grading performed by pathologists and the glomeru-
lar lesion rate recognized by HALO AI was confirmed. Furthermore, the
distribution of glomeruli based on the glomerular area for each class of
the assessed glomerular lesions was calculated and shown as a histogram.

Finally, to verify the generality of the trained model, we analyzed HE-
stained pathology images of adriamycin (ADR)-induced nephropathy
mice (12-weeks-old Balb/c, CLEA Japan, Inc., ADR was administered intra-
venously at a dose of 10 mg/kg, feed CRF1 and water ad libitum, ethics ap-
proved), and performed the same data analysis as in the case of the Col4a3
KO mice.

Glomerular lesion rates were expressed as mean ± standard error, and
differences between theWT anddisease groupswere compared by perform-
ing a Student's t-test with EXSUS Ver. 10.1.6.

Results

The Col4a3 KO mouse is a disease model of the Alport syndrome. The
lack of collagen type IV α3 chain causes the formation of an immature
Fig. 2.Representative images of renal pathologicalfindings inCol4a3KOmice. Images ob
glomerulus (C), hyaline casts (B, D, red arrow), dilated tubules (B, arrowhead), crescent
50 μm (C, D). (For interpretation of the references to colour in this figure legend, the re
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glomerular basementmembrane, thereby leading to end-stage renal failure.
The formation of crescent is mainly caused in the form of a glomerular le-
sion. In addition, the disease is characterized by intense tubulointerstitial
lesions that may lead to the development of chronic kidney disease
(CKD).17

Tubular damage (including dilation and degeneration), hyaline casts,
cellular infiltration of the tubulointerstitium, and glomerular lesions (in-
cluding mesangial matrix expansion, crescents, and consequent sclerosis)
were observed in Col4a3 KO mice. No lesions were observed in WT mice
(Fig. 2).

To confirm the recognition accuracy of the trained model, various le-
sions of the glomeruli in the renal tissues of Col4a3 KO mice were
automatedly recognized, and the ratio of the number of glomeruli express-
ing each lesionwas calculated (Fig. 3). No glomerular lesions were detected
in WT mice of both sexes. In Col4a3 KO mice, in contrast, 35.5% (±3.9%)
ofmale and 40.1% (±4.8%) of femalemice hadmesangial proliferated glo-
meruli, 38.2% (±1.5%) of male and 31.3% (±4.0%) of female mice had
crescent formed glomeruli, and 1.5% (±0.0%) of male mice had
glomerulosclerosis in all glomeruli in a specimen of the kidney (Fig. 3A–
C). These results were correlatedwith the results graded by the pathologists
(Fig. 3D–F). Furthermore, the rates of each glomerular lesion recognized
and quantified by HALO AI also highly correlated with the actual
tained fromwild-type (WT) (A, C) andCol4a3KO (B, D)mice are compared. Normal
formed glomerulus (D, arrow) are highlighted. Scale bar represents 200 μm (A, B) or
ader is referred to the web version of this article.)



Fig. 3. The ratios of the number of glomeruli within each lesion as classified automatedly by HALO AI and their correlation to pathological grades in wild-type (WT) and
Col4a3 KO mice. Each dot represents the value of an individual mouse. Glomerular lesion rates in renal tissue specimen (A-C) are presented, where “WT” denominates
wild-type mice (n = 6 per sex), and “Homo” denominates Col4a3 KO mice (n = 6 per sex). Red bars represent the mean ± SE. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
versus WT. The correlation of the ratio of glomerular lesions for a number with pathological grades (D\\F) are presented where “–” denotes no change, “±” denotes very
slight changes, “+” denotes slight changes, and “++” denotes moderate changes in the pathological grade as assessed by microscopy. Mesangial proliferated glomeruli
(A, D), crescent formed glomeruli (B, E), and glomerulosclerosis (C, F) rates are represented. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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glomerular lesion rates counted by the pathologists (Fig. 4). Finally, the ac-
curacy for the recognition of all glomeruli in this study was around 90%
(data not shown).

To investigate the generality of the trained model, we subsequently an-
alyzed another nephritis model: the ADR-induced nephropathy mice,
which is a model of focal segmental glomerulosclerosis, and a well-
established rodentmodel of CKD. Themodel is characterized by glomerular
lesions, such as the disruption of the filtration barrier of basement mem-
brane, followed by the development of tubulointerstitial inflammation
and fibrosis.18

In ADR mice, tubular damage (including dilation), hyaline casts, cellu-
lar infiltration of the tubulointerstitium, and glomerular damage (including
mesangial proliferation and sclerosis) were observed (Fig. 5).

The results of the automated recognition of glomerular lesions in ADR-
induced nephropathymice by using our trainedmodel were shown (Fig. 6).
No glomerular lesions were detected in WT mice. Contrastingly, in ADR
mice, 25.41% (±4.17%) of mesangial proliferated glomerulus and
15.37% (±3.15%) of glomerulosclerosis were detected for total glomerular
number in a specimen of the kidney (Fig. 6A, B). These quantitative results
also tended to correlate with the pathological grades evaluated by patholo-
gists (Fig. 6C, D).
4

The distribution according to the glomerular area for each class of glo-
meruli with various lesions is shown in Fig. 7. In Col4a3 KO mice as com-
pared to WT mice, it is indicated that the number of normal glomeruli
decreased, and that of glomeruli with lesions increased. The area of the glo-
meruli with lesions, especially that of the crescent, was larger than the nor-
mal glomeruli respective one (Fig. 7A, B). In ADR-induced nephropathy
mice, the number of normal glomeruli decreased, and that of the glomeruli
with lesions increased. Moreover, the number of mesangial proliferated
glomeruli with a large area increased, as compared to that of control mice
(Fig. 7C, D).

Discussion

We have succeeded to automatedly recognize normal glomeruli,
mesangial proliferated glomeruli, crescent formed glomeruli, and
glomerulosclerosis in WSI of mouse renal specimens, by using DL. We were
able to be automatedly recognize glomerular lesions in several pathological
mouse models, and the results were generally and highly correlated with
the conventional pathological grading results generated by microscopy.

The recognition accuracy for each class of glomeruli with lesions was fi-
nally around 90%, and some glomeruli were recognized as a mixture of



Fig. 4.The correlations between the numbers of glomerular lesions, as counted byHALOAI and pathologists inwild-type (WT)mice andCol4a3KOmice. Each dot represents
the value obtained by an individual mouse, and the dotted line represents an approximate straight line. The numbers of normal glomeruli (A), mesangial proliferated
glomeruli (B), crescent formed glomeruli (C), and glomerulosclerosis (D) are presented. Notes: R2 stands for the correlation coefficient; WT (n = 12) and Col4a3 KO (n
= 12) mice are examined.
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multiple lesions. To recognize and analyze these lesions in a fully auto-
mated manner, it is necessary to further improve the recognition accuracy.
When constructing a trainedmodel by using DL for automated recognition,
the amount of image data to be trained and the number of the patterns of
these pathological findings greatly affect the recognition accuracy.19,20 In
this respect, the number of annotated glomeruloscleroses was smaller
than that of other classes of glomeruli; as a result, the training of the AI
for glomerulosclerosis may be insufficient. To refine the trained model, it
needs to be trained by more tissue image data with glomerulosclerosis.
For the aspect of versatility, it is necessary to verify whether the trained
model can be applied to the tissues of other animals such those of rats
and humans, although we have constructed the trained model that
automatedly recognized the glomerular lesions of mice in this study. In
human renal pathology, it has been already attempted to automatically rec-
ognize glomerular lesions.9 One of the problems in recognizing and analyz-
ing tissue classes and pathological findings by using AI/DL is the difficulty
5

in validating the trainedmodel. Evenwhen a commercial system likeHALO
AI is used, the quality of automated recognition will vary depending on the
variation and number of image data used for training, the facility, and the
pathologist. The criteria for standardizing these differences have not yet
been established, but will be defined with the development of image anal-
ysis research using AI in the future.

In this study, it was possible to quantify the area of each glomerulus by
automatedly recognizing the glomerulus through the use of HALO AI.
Therefore, we could express the glomerular size for each glomerular lesion
class as a histogram. In nephritis models, abnormal glomeruli appear as the
disease progresses.17,18 The number of normal glomeruli decreased, and
that of glomeruli with lesions increased in the nephritis model. Further-
more, most of the glomeruli with lesions had a larger area, which is consid-
ered to be due to the proliferation of lesion components such as the
mesangium and the crescent. This is a new insight for the quantification
of the glomerular size that cannot be obtained by qualitative evaluation.



Fig. 5. Representative images of renal pathological findings of adriamycin (ADR) mice. Control mice (A, C) and ADR mice (B, D) were examined. Normal glomerulus (C),
hyaline casts and dilated tubules (B), as well as glomerulosclerosis (D, arrowhead) are presented. Scale bars represent 200 μm (A, B) or 50 μm (C, D).
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Thus, in addition to the recognition of the glomerular lesion, the quantita-
tive analysis of the size will enable a more detailed investigation of the dis-
ease severity and of the effects of drugs.

As far as the pathological evaluation is concerned, the AI-based tissue
recognition and quantitative analysis have the potential to detect subtle dif-
ferences and trends in lesions that cannot be detected by conventional
human observation. Quantitative analysis of pathological images by using
HALO AI and other AI/DL technology-based systems (such as the trained
model we have constructed specifically for the automated recognition of
glomerular lesions), makes it possible to instantly evaluate and quantify
all glomeruli on a section of renal tissue. In other words, compared to the
conventional qualitative pathological evaluation undertaken by micros-
copy, it enables a more efficient and accurate evaluation that does not de-
pend on the skill of the pathologist.

We intend to develop a trained model that automatedly recognizes not
only glomerular lesions, but also tubular damage and inflammatory cell in-
filtration, and to eventually establish an automated recognition trained
model that can be applied to all non-clinical nephropathy models in the
future.
6

The experience and the know-how gained by constructing trained
models for the automated recognition of pathological findings in renal tis-
sues (which have complex structures) can be greatly applied to the auto-
mated recognition and quantitative analysis of pathological findings in
other organs. This is expected to lead to the spread of digital pathology in
non-clinical research, and to the enrichment of pathological evaluation
data as well as to the improvement of the data reliability.

Conclusion

We have constructed the trainedmodel to automatedly detect glomeru-
lar lesions in the mouse kidney. As we refine the trained model to be avail-
able for the analysis of all non-clinical nephropathy models, the experience
and know-how gainedwill be highly applicable to the quantitative analysis
of various tissues in the future.

The dissemination and the development of digital pathology technolo-
gies are highly expected to solve the problems encountered in conventional
visual pathological evaluation, and will contribute to the improvement of
the probability of success in drug discovery research.



Fig. 6. The ratio of the number of glomeruli within each lesion that is classified automatedly by HALO AI, and the correlation of this ratio to the pathological grades in wild-
type (WT) and adriamycin (ADR) mice. Each dot represents the value corresponding to an individual mouse. Glomerular lesion rates in renal tissue specimens are presented
(A, B). Red bars represent the mean ± SE. ∗∗p < 0.01; ∗∗∗p < 0.001 versus control. Correlation of the ratio of glomerular lesions with pathological grades (C, D), where “–”
denotes no change, “±” denotes very slight changes, and “+” denotes slight changes in the pathological grade as assessed by microscopy. The mesangial proliferated
glomerular lesion (C) and the glomerulosclerosis (D) rates are examined. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7.Histogram of the glomerular area for each class of glomeruli, as calculated by HALO AI for wild-type (WT) (A) and Col4a3 KO (B), control (C) and adriamycin (ADR)
(D) mice. The numbers representing normal glomeruli (yellow), mesangial proliferated glomeruli (green), crescent formed glomeruli (purple), and glomerulosclerosis (blue)
are highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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