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Abstract

Background: The detection of which mutations are occurring on the same DNA molecule is essential to predict their
consequences. This can be achieved by phasing the genomic variations. Nevertheless, state-of-the-art haplotype phasing is
currently a black box in which the accuracy and quality of the reconstructed haplotypes are hard to assess. Findings: Here
we present PhaseME, a versatile method to provide insights into and improvement of sample phasing results based on
linkage data. We showcase the performance and the importance of PhaseME by comparing phasing information obtained
from Pacific Biosciences including both continuous long reads and high-quality consensus reads, Oxford Nanopore
Technologies, 10x Genomics, and Illumina sequencing technologies. We found that 10x Genomics and Oxford Nanopore
phasing can be significantly improved while retaining a high N50 and completeness of phase blocks. PhaseME generates
reports and summary plots to provide insights into phasing performance and correctness. We observed unique phasing
issues for each of the sequencing technologies, highlighting the necessity of quality assessments. PhaseME is able to
decrease the Hamming error rate significantly by 22.4% on average across all 5 technologies. Additionally, a significant
improvement is obtained in the reduction of long switch errors. Especially for high-quality consensus reads, the
improvement is 54.6% in return for only a 5% decrease in phase block N50 length. Conclusions: PhaseME is a universal
method to assess the phasing quality and accuracy and improves the quality of phasing using linkage information. The
package is freely available at https://github.com/smajidian/phaseme.
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Findings

Humans as well as many other organisms have a diploid
genome, meaning that there are 2 homologous copies of every
somatic chromosome inherited from mother and father. These
copies include genomic variation including single-nucleotide
variation (SNV) and structural variation (SV) [1–4]. Each varia-
tion represents a difference in a nucleotide(s) unique to each of
the chromosome copies, also called haplotypes [5]. Thus, hap-
lotypes represent the individual copy of each genomic element
and need to be studied independently to investigate the effect
of variations.

Haplotype phase information is essential to understand
where a mutation occurs and to predict their interactions (i.e., if
2 SNVs are on the same DNA molecule) and their potential im-
pact on genes and their expression and thus phenotypes. This is
important for multiple applications and organisms. For humans,
phasing plays an important role in, e.g., Mendelian diseases [6],
cancer genomics [7–9], neurological diseases [10], genetic re-
search, and other medical applications [11, 12]. As an example,
compound heterozygosity shows the importance of phase infor-
mation for relating genotype to phenotype. Numerous examples
of disorders influenced by compound heterozygosity are known
[11]. For example, thiopurine S-methyltransferase (TPMT) is a
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27-kb gene located on chromosome 6p22.3. It is translated into
an enzyme catalyzing S-methylation of thiopurine drugs [13].
These drugs are used as chemotherapeutic and immunosup-
pressant agents in lymphoid malignant neoplasms, leukemia,
and inflammatory bowel disease. The enzyme activity is con-
trolled by the genetic polymorphism of the gene. There are 2
SNPs (rs1800460 and rs1142345) where either are known to affect
the activity of TPMT and cause missense changes [14]. Thus, it is
important to know whether both SNPs exist, and if so whether
they co-occur on the same haplotype (cis) leading to an inac-
tivation of TPMT or not (trans). Patients with low TPMT activity
are at higher risk of life-threatening severe myelosuppression
and hematopoietic toxic effects when treated with conventional
doses of mercaptopurine (or azathioprine) [15, 16].

Currently, we distinguish 4 different approaches to obtain
phasing information [2]:

1. Wet-lab–based phasing is based on mainly 2 different
methods: encapsulation and 3D structure capture [17].
One method is to extract chromosomes when cells are in
metaphase and then microdissect them into subsets [18].

2. Population-based phasing uses linkage information derived
from hundreds to thousands of individuals [19]. However,
this approach misses rare and de novo variants [20]. Fur-
thermore, it requires available population-based sequenc-
ing, which might not be available for many of the non-model
organisms.

3. Parental methods [21] have the advantage to phase entire
genomes but lack the ability to phase de novo mutations (i.e.,
important in many Mendelian diseases). Furthermore, they
require sequencing of the parents, which can be more ex-
pensive and often not applicable.

4. Single individual haplotyping (SIH), or haplotype assembly,
is the most comprehensive approach because it includes de
novo mutations and rare variations, but it is often hindered
by fragmentation [1]. HapCut2 [22] and WhatsHap [23] are
the 2 most commonly used algorithms for this approach
capable of utilizing Illumina, Pacific Biosciences (PacBio),
Oxford Nanopore Technologies (ONT), 10X Genomics, and
HiC information. In short, these approaches rely on aligned
reads to a reference genome from which the SNVs and their
genotypes are inferred. Subsequently, the SIH methods clus-
ter the reads along the heterozygous SNV into 2 groups cor-
responding to the 2 haplotypes. The resulting VCF file re-
ports SNVs with their phasing information, which includes
the assignment of each SNV to a phase block. It is impor-
tant to note that the relationship between individual phase
blocks remains undetermined [2].

Based on the above information, SIH methods are important
and necessary for a better understanding of the genome at hand.
However, it remains tedious to impossible to assess the accuracy
and even the performance of individual samples. Generally, all
of them may be hindered by inaccurate results, which includes
errors in the grouping of reads leading to incorrectly assigned
SNVs (flip errors) or inaccurately joined haplotypes (switch er-
rors). Currently phasing is often evaluated solely on the basis of
its phasing length, e.g., N50. Phasing N50 is the minimum phase
block length, where the sum of its phase blocks with all larger
phase blocks spans ≥50% of the total phase length. Similar to as-
sembly methods however, N50 does not represent the accuracy
or quality of a result. In addition, most phasing methods do not
provide a quality score to assess the reliability of the phasing it-
self, making it near impossible for users to assess the quality or
correctness of their results.

To solve these problems and limitations we developed
PhaseME, a method to automatically estimate the quality of the
SIH results and report multiple statistics to enable a deeper un-
derstanding for a broad range of users. This is done on the ba-
sis of population data to assess the accuracy of common vari-
ations across the individual phasing information. Furthermore,
PhaseME can detect phasing errors and highlight their locations.
If desired, PhaseME continues to correct the detected phasing
errors and generates a report of the improvement and impact
of these changes. Thus, PhaseME is unique in its usability and
application because it provides more insights into the phasing
accuracy per sample. To the best of our knowledge, there exists
only 1 other highly specialized tool, which requires population
information together with Hi-C data to correct SIH phasing and
does not provide insights in the phasing results [24]. In the fol-
lowing, we describe the features of PhaseME and its applications
for different technologies based on SIH phasing for HG002. We
assess the performance of PhaseME based on parental phasing
information from Genome in a Bottle (GIAB) [25] across 5 dif-
ferent sequencing technologies. It is worth noting that parental
data also have some limitations (e.g., de novo mutations); how-
ever, HG002 is a healthy individual that is well studied.

PhaseME

PhaseME reduces phasing errors by exploiting population in-
formation. Figure 1 gives an overview of the 3 main steps of
PhaseME. First, PhaseME requires the phased SNVs VCF file for
an individual obtained from an SIH method, which is compared
to precomputed linkage information that is available per ethnic-
ity (see the Methods section for details).

Second, PhaseME returns an in-depth quality assessment
report of the phasing result to provide a detailed overview.
PhaseME calculates the quality ratio across phase blocks based
on the previously obtained linkage information. Here, for each
phase block, we compute the ratio of SNVs with no conflict over
all SNVs and report the mean per chromosome. Thus, 0 repre-
sents the lowest accuracy, while 1 indicates that everything is
supported by the linkage information and more likely correct.
PhaseME further reports the N50 of phase block length in kilo-
base pairs, the number of phased and non-phased heterozygous
and homozygous variants, mean phase block quality, and phase
rate (see the Quality assessment based on PhaseME subsection
and Methods section for details).

Third, PhaseME corrects the previously identified SNVs that
are in conflict with the linkage information. We distinguish
small (2–20 bp) and large (≥21 bp) switch errors that represent
a stretch of incorrectly phased SNVs, and thus PhaseME splits
the existing phase block into 2 at the first conflicting SNV (see
the section on error correction for details).

Quality assessment based on PhaseME

As highlighted above, it is essential to obtain insights into the
phasing quality. PhaseME is designed with this as its main ap-
plication and to provide an easy-to-understand and comprehen-
sive quality report across the phasing results. We outline the
provided summaries below based on SIH results for HG002 from
GIAB [26] (see Methods section).

We used PhaseME to compare and assess the quality of the
phasing across ONT, PacBio continuous long reads (CLR), PacBio
HiFi [27], 10x Genomics, and Illumina based on available link-
age information (see Data description in Methods section). For
each SNV, we consider the linkage information obtained from
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Figure 1: Summary of PhaseME. PhaseME consists of 3 steps: extracting population information, quality assessment, and phase error correction. Avg.: average; chr.:

chromosome; het.: heterozygous; hom.; homozygous; num.: number; pos.: position; var: variant.

the 1000 Genomes Project of the population data if it is in con-
flict (i.e., mismatched) or in agreement (i.e., matched). Thus the
higher the number of matched SNVs, the better is the phase
quality of the phase block.

To inspect the haplotype length, PhaseME reports (i) N50 of
phase block length in kilobase pairs, which highlights the over-
all length of the phasing; (ii) number of phased and non-phased
heterozygous variants, which illustrates the completeness of the
phasing; (iii) number of homozygous variants; (iv) the phase rate
to indicate the proportion of phased regions for each chromo-
some; and (v) the mean phase block quality to indicate the agree-
ment with the linkage information. The detailed definition of
each criterion is provided in the Methods section. On the basis of
this report, one can determine the phasing quality for each chro-
mosome and phase block of the sample at hand. Each of these
statistics is automatically generated and provided by PhaseME
in the quality assessment report file.

As expected we observed the smallest N50 phase block length
for Illumina (1.3 kb) and a high N50 for 10x Genomics (10.9
Mb), but interestingly even higher for ONT (15.6 Mb) (Fig. 2A).
PacBio CLR (369.3 kb) or PacBio HiFi (314.3 kb) showed similar
phase block N50. One likely reason is the longer read lengths of
the technologies compared with PacBio. Interestingly PhaseME

highlights a higher number of heterozygous SNVs for 10x Ge-
nomics (2,890,988) followed by ONT (2,807,291), whereas we ob-
served a lower number of heterozygous SNVs for PacBio CLR
(2,520,418), HiFi (2,418,009), and Illumina (1,522,191) (see Fig. 2B).
For 10x Genomics the rate of non-phased heterozygous SNVs is
also high in contrast to ONT (Fig. 2C). The results of PhaseME
show that the mean phase block quality was the highest for HiFi
(0.994), similar to Illumina (0.9936), followed by 10x Genomics
(0.985), ONT (0.983), and CLR (0.978). We observed a lower phase
quality for chromosome 9 when using ONT and 10x Genomics
data (see Fig. 2D). However, we did not observe that this affects
the same regions. We investigated the source of this error for
ONT and 10x Genomics on chromosome 9. When we compared
the SNV calling to the GIAB gold standard [28], we found lower
precisions for the ONT (0.67) and 10x Genomics (0.71) call sets.
This highlights a larger number of falsely called SNVs for ONT
(64,496 SNVs) and 10x Genomics (61,392 SNVs), which may lead
to confusions during the phasing, whereas CLR (56,799 SNVs), Il-
lumina (44,932 SNVs), and HiFi (29,995 SNVs) had lower rates of
false-positive SNVs (see Supplementary Table 3).

It is interesting to note that the PacBio CLR data show a lower
N50 and a lower phase accuracy compared with ONT. However,
this might be explained by the fact that CLR data are from 2015
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Figure 2: Phasing quality overview. Quality of reconstructed haplotypes for HG002 by WhatsHap across the different technologies: 10x Genomics, ONT, PacBio CLR,

PacBio HiFi, and Illumina. (A) N50 of phase block length in kilobase pairs (in logarithmic scale). (B) Number of phased heterozygous variants for each technology,
highlighting a higher number of heterozygous SNVs in general for 10x Genomics and ONT. (C) Comparison of the non-phased heterozygous variations along the
chromosomes. (D) Mean phase block quality and (E) phase rate based on the 5 technologies.
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and were generated with the RSII instrument for GIAB [25].
Another important observation is that the ONT data had the
largest N50 phase length but were also quite accurate, being
only 0.11 behind the HiFi reads, which were the most accurate
but had an almost 60 times reduced N50. Another important
metric for assessment of phasing completeness is phase rate,
which represents the fraction of regions phased along the
genome. Fig. 2E shows the results based on the PhaseME report
across the technologies. 10x Genomics (0.947) and ONT (0.949)
had the highest phase rate. This is followed by CLR (0.75), HiFi
(0.69), and Illumina (0.145), probably strongly related to the
molecule/read size and their higher number of heterozygous
SNVs. Illumina (0.26) showed the highest ratio of non-phased
heterozygous SNVs, followed by 10x Genomics (0.22) and ONT
(0.01). For PacBio we observed a lower ratio with CLR (0.0034)
and HiFi (0.0032) (see Fig. 2C).

Phasing error correction

Phasing errors lead to the misassignment of mutations to the
wrong haplotype. PhaseME aims to correct larger switch errors
because the linkage data does not provide sufficient resolution
to correct single flip errors. To detect switch errors, PhaseME
considers mismatches indicated by upstream SNVs to improve
the signal. PhaseME requires a minimum of 2 mismatches and
considers the ratio between matching and mismatching linkage
information for the SNVs. If this ratio (matches/mismatches)
< 1 (by default), then PhaseME breaks the section in 2 separate
phase blocks with the first conflicting SNV as the start of the
new phase block.

We benchmark the error correction ability of PhaseME
across different sequencing technologies (ONT, PacBio HiFi,
PacBio CLR, 10x Genomics, and Illumina) on the basis of a male
Ashkenazi proband, HG002 (NA24385) from the GIAB repository
and compared the results to the parental phasing information
based on Illumina SNVs [25] (see Benchmarking of phasing data
in Methods section). Note that HG002 is not included in the
population dataset (1000 G data) that was used to obtain the
linkage information.

We also consider the Hamming error rate [29] to evaluate the
phasing, which shows the fraction incorrectly phased over the
total number of phased heterozygous variants (see Methods sec-
tion). ONT (0.203) has the highest Hamming error rate followed
by 10x Genomics (0.073), PacBio CLR (0.0389), PacBio HiFi (0.0098),
and Illumina (0.00645) with the smallest Hamming error rate.
This seems a bit contradictory to our previous results where ONT
had a high average phasing quality (Fig. 2D). This is likely due
to higher switch error rates in ONT (780) vs the other technolo-
gies PacBio CLR (497), PacBio HiFi (230), and 10x Genomics (50).
Clearly, these errors are also related to the overall size of phase
blocks where ONT (15.6 Mb) and 10x Genomics (10.9 Mb) had the
longest N50. For short 2–20 bp switches, we observed the high-
est number of errors for Illumina (1,700) followed by CLR (1,452),
10x Genomics (1,356), ONT (698), and PacBio HiFi (455). We did
not observe a correlation between the number of long switch er-
rors and the length of phase blocks (Spearman correlation test
P-value = 0.14 [ONT], 0.19 [10x Genomics], 0.69 [PacBio CLR], and
0.66 [PacBio HiFi]), which thus explains the different results (see
Supplementary Fig. 1).

PhaseME overall reduced the phasing errors based on the
linkage information. Fig. 3 shows the results of improving the
phasing and effect on phase block length for PhaseME. For the
Hamming error rate, we observed on average a 22.4% reduction
in errors across the technologies based on the evaluation

compared to the parental phasing information (see Methods).
For ONT (34.3%), the reduction was the highest, followed by 10x
Genomics (25.1%), PacBio HiFi (24.5%), PacBio CLR (20.8%), and
Illumina (16.8%). Fig. 3 shows the improvement of long switch
errors (≥21 SNVs). Here PhaseME reduced the error for the ONT
data set from 780 down to 647 (17.1%). This resulted in a reduced
N50 from 15.6 Mb down to 6.3 Mb. For CLR, PhaseME decreased
the long switch errors by 46.0%, which led to a decrease of
phasing N50 from 369.3 to 339.1 kb. For 10x Genomics we
could improve the phasing by 23.5% with a reduced N50 from
10.9 to 5.9 Mb. The number of long switch errors for HiFi was
reduced by 54.6% (see Fig. 3), which leads to a reduced N50 from
314.3 to 300.3 kb. For Illumina we observed a 61.5% decrease
of long switch errors in return of 9.8% decrease in N50 (from
1.3 to 1.2 kb). Next, we evaluated PhaseME for short switches
(2–20 bp). Here, the linkage data does not provide the resolution
to improve most of them. Thus, the number of short switches
is decreased for Illumina (47.0%), CLR (22.4%), HiFi (18.6%), and
10x Genomics (1.5%). However, our comparisons to the parents
indicated that for ONT we actually introduced 6.6% of short
switch errors (see Table 1). Thus, we provide parameters to
adjust PhaseME (see Supplementary Table 2).

We implemented 2 modes to further ease the use of PhaseME
for non-expert users. We recommend following the instructions
to obtain linkage information for each sample. Nevertheless,
to simplify the use of PhaseME, we also investigated the use
of precomputed linkage maps. We computed the linkage map
based on SNPs for a given ethnicity. Here we use the SNPs
with the allele frequency in the European populations (VCF tag:
EUR AF) greater than 0.01. The number of long switch errors
for PacBio HiFi and CLR are only improved by 22.6% and 20.9%,
while the mean phase block length is 75.2 and 83.2 kb, respec-
tively. For ONT PhaseME improved 10.6% of the number of long
switch errors, leading to a mean phase block length of 355.1 kb.
Further adjustments of the minimum allele frequency did not
provide significant improvements (Supplementary Tables 1
and 2). Therefore, we recommend that only non-expert users
use the precomputed linkage maps, but we suggest following
our guidelines to obtain a sample-specific linkage map once
larger errors are initially detected. PhaseME can compute a
rapid quality assessment where the run time depends on the
size and number of phase blocks. For these data sets, PhaseME
took between 9 (HiFi) and 467 minutes (Illumina) to compute
the quality assessment results (see Table 1). For the error
correction steps, PhaseME is optimized to run multiple times
with different parameters and only requires between 4 (HiFi
or CLR) and 18 minutes (Illumina). The program was run on a
Linux machine with 16 GB memory using a single CPU (AMD,
1.4 GHz) but typically requires ≤3 GB of memory. However,
we note that using Shapeit to obtain linkage-based phasing
information might have a higher memory consumption.

Additionally, PhaseME can also utilize the parental informa-
tion to correct the sample phasing. Here PhaseME uses the SNV
information of the parents to assign all overlapping SNVs of
the offspring to the haplotype and vice versa for the maternal
overlapping SNVs. We do not consider SNVs without overlap or
overlapping both parental SNV sets. In contrast to the linkage
mode, we only flip the SNVs according to the parental signal
(see Supplementary Fig. 2). We did not benchmark the parental
phasing because we are using this strategy as evaluation of the
population-based phasing.

PhaseME represents a versatile and easy-to-use method to
obtain insights into the phasing performance independent of
the underlying sequencing technology. It allows non-expert
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Figure 3: Phasing improvement. Comparison of raw haplotypes and improved haplotypes in terms of number of long switches (sw.) and average (av.) phase block length

(bl. len.) (kb) for 5 datasets: ONT, PacBio HiFi, PacBio CLR, 10x Genomics, and Illumina. Precomputed with the allele frequency in the European populations (VCF tag:
EUR AF) greater than 0.01.
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Table 1: Summary of results using PhaseME including short (2–20 bp) and long (≥21 bp) switches and the corresponding run time in minutes

Technology
Short switch Long switch Run time (min)

Raw Change (%) Raw Change (%)
Quality assessment

step Error correction step

ONT 698 +6.6 780 −17.9 120 6
PacBio CLR 1,452 −22.4 497 −46.0 10 4
PacBio HiFi 455 −18.6 230 −54.6 9 4
10x Genomics 1,356 −1.5 50 −23.5 135 7
Illumina 1,700 −47.0 13 −61.5 467 18

A negative value indicates improvement, while a positive value represents an introduction of false cuts compared to the parental information. For short switches, we
observed a lower performance due to the low resolution of linkage data compared to the long switch errors. For the runtime the quality assessment part takes longer
as it includes the detection of the errors.

users to gain valuable insights into the data set and the correct-
ness of the phasing given an available linkage map. Here we have
shown the performance of PhaseME based on HG002 across 5
different sequencing technologies, demonstrating a significant
improvement over long switch errors. Smaller errors in phas-
ing remain a challenge due to the lower resolution of linkage
data. These can, however, be improved using parental phasing.
Consequently, we did not attempt to correct single SNV phasing
errors. To enable utility to a broader range of users we have pro-
vided precomputed linkage maps that can be used to obtain an
initial improvement and insight, but we highly recommend that
users compute the linkage map specific to their study/sample.
PhaseME is capable of being run on multiple organisms and
functions irrespective of the phasing method.

Methods
PhaseME prerequisites

PhaseME requires phased VCF files as input, which need to fol-
low the VCF standards 4.1 or newer [30]. For processing, PhaseME
requires tags (PS and GT) to identify the phase blocks and geno-
types such as 0|1 or 1|0 to indicate the haplotypes per SNV.
PhaseME is written in Python3 and requires the Numpy package.

To exploit population information and obtain the linkage in-
formation, we used Shapeit2 (version v2r900) [31] based on the
1000 Genome dataset [25]. Because the Shapeit2 package needs
phased data per chromosome, we split the input VCF file into 22
VCF files corresponding to 22 chromosomes. We also removed
non-genotyped variants from each VCF. Using the “-check” sub-
program of Shapeit2 with “–input-vcf” option, we report the
missing variants in the reference panel, which is then excluded
using the “–exclude-snp” option of Shapeit2. Then we generate
a haplotype graph, which is a compact format of population in-
formation using the “–output-graph” option accompanying the
genetic map with “-M” and phased haplotype, legend, and sam-
ple names with “–input-ref” options. Then using the “-convert”
subprogram of Shapeit2, we sample the haplotype graph and
generate haplotype samples (default 500 times). Subsequently,
haplotype samples are used to generate a pair list inspired by
Bansal [24]. Each element of the list contains the positions of 2
SNVs and the relation of their phased GT. If the phasing of 2 vari-
ants in 90% of samples are identical (or opposite), we will report
them in the pair list.

Definition of quality criteria

Most of the measurements reported by PhaseME are self-
explained such as the number of heterozygous SNVs, phased

SNVs, N50 phasing, and non-phased heterozygous SNVs to give
insights into the phasing performance. Nevertheless, a few met-
rics exist that we describe here in detail.

For calculating the mean phase block quality, we averaged
the ratio of the number of non-conflicting SNVs over the all
SNVs along each chromosome based on the linkage informa-
tion. Phase rate is calculated by dividing the summation of phase
block length by the difference in the position of last and first
SNVs of the chromosome.

Data description

The raw reads were obtained from GIAB ftp [32] (ONT [33], Illu-
mina [34], PacBio Hi-Fi [35], and PacBio CLR [36]). The ONT and
PacBio reads were aligned using NGMLR [37] to the human ref-
erence genome (HG19). Subsequently, we identified SNVs using
the Clair2 package [38]. For Illumina, we used xatlas for calling
SNVs [39]. We used WhatsHap [23] to phase the SNVs based on
sequencing reads. The phased data of 10x Genomics were down-
loaded from GIAB ftp [40].

We downloaded 1000 Genome data phase 3, including 2,504
samples [41]. The population information was downloaded from
[42] including phased haplotype in IMPUTE format (that con-
sists of 0 s [reference allele] and 1 s [alternate allele]), the legend
file in IMPUTE format including the genomic position of vari-
ants, the reference and alternate allele in base, the allele fre-
quency in populations, and the genetic map file in IMPUTE for-
mat of physical positions in NCBI b37 coordinates. The member-
ship of each sample is reported in the “1000GP Phase3.sample”
file.

Benchmarking of variant calls

We downloaded the GIAB gold-standard call set of HG002 from
[43]. To compare the called SNVs with the gold standard, we use
the vcfeval subprogram of rtg tools [44]. We reported the accu-
racy on the calls without filtering based on the quality values.

Benchmarking of phasing data

Here we used parental information to benchmark the results
of PhaseME. We have downloaded the high-confidence parental
call set from GIAB ftp [45] and [46]. For each technology, we gen-
erate the phased SNV VCF (see above) for the HG002 son. To gen-
erate the parental set, we first combine all 3 call sets of the son
(being the one to be benchmarked), mother, and father using
bcftools merge [30]. Then by considering the heterozygous SNVs,
we generate a phasing set for the son using in-house Python
code. Given the overlap between a heterozygous SNV of the son
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and only the father, we report the phasing as 0|1. If overlaps ex-
clusively with the mother, 1|0 is reported. The output VCF file
is used for evaluation of the individual phasing method to cal-
culate the Hamming error rate, the number of short and long
switches using an in-house Python code provided on our GitHub
page.

The Hamming error rate is defined as the number of the in-
dividual’s phasings that are different from the true phasing di-
vided by the number of phased heterozygous variants. A switch
is defined by comparing the phased VCF with true. For each
phase block we first compute the number of agreeing and dis-
agreeing phasing information. If the majority of SNV are dis-
agreeing, we need to consider the possibility that the phase
block is reported the other way around and thus invert the re-
sult. Subsequently the remaining mismatching phase genotypes
represent errors in the phasing, i.e., switch errors, if there are
multiple in a row. The reported results are averaged over phase
blocks.

Availability of Supporting Source Code and
Requirements

Project name: PhaseME
Project home page: https://github.com/smajidian/phaseme
Operating system: Linux
Programming language: Python
Other requirements: Python 3.6 or higher
License: MIT License
Biotools identifier: phaseme (https://bio.tools/phaseme)
RRID:SCR 018739

Availability of Supporting Data and Materials

The data set supporting the results of this article is available in
the GigaDB repository [47].

Additional Files

Supplementary Table 1. Number of long switches for different
thresholds using precomputed pair lists.
Supplementary Table 2. Number of short switches for different
thresholds using precomputed pair lists.
Supplementary Table 3. Benchmarking of variant calls of chro-
mosome 9 for 5 technologies.
Supplementary Figure 1. Number of long switch errors vs the
length of phase blocks in which each point is a chromosome for 4
technologies. No correlation between the number of long switch
errors and the length of phase blocks has been observed based
on long read–based phasing.
Supplementary Figure 2. Results of running PhaseME in parental
mode. The number of long switches is decreased to zero without
affecting the phase block length.
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