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Immunological Aspects of Chronic

Rhinosinusitis. Diagnostics 2022, 12,

2361. https://doi.org/10.3390/

diagnostics12102361

Academic Editor: Ranjan Ramasamy

Received: 21 August 2022

Accepted: 28 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Immunological Aspects of Chronic Rhinosinusitis
Katarzyna Czerwaty 1,† , Katarzyna Piszczatowska 2,†, Jacek Brzost 3, Nils Ludwig 4 ,
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Abstract: Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional
relationship between environmental agents and the host immune system. Disturbances in the
functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in
the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and
host-derived factors which activate multiple immunological mechanisms. The molecular bases for
CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal
and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally,
air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases
with different clinical courses and response to treatment. Immunological pathways vary depending
on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms
underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision
medicine in the treatment of CRS. The purpose of this review is to summarize the current state
of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more
effective treatment strategies.

Keywords: chronic rhinosinusitis; immunology; inflammation; sinusitis; nasal polyps; inflammatory
endotype

1. Introduction

Chronic rhinosinusitis (CRS) is a heterogeneous group of sinus diseases with unclear
molecular bases, although some factors are associated with the disease: bacterial, fungal
and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency
(Figure 1).

The different types of CRS reflect the variety of immunological response pathways
and advancements in the understanding of the immunology and endotyping of CRS that
are essential for improving the treatment regimen. The major processes involved in the
pathogenesis of CRS include airway epithelium (AE) dysfunctions that are influenced by
external and host-derived factors. The pathogenesis is mainly influenced by the activation
of multiple immunological mechanisms, leading to persistent chronic inflammation (PCI).
The purpose of this review is to summarize selected mechanisms of CRS pathogenesis with
particular attention to immunological aspects of the disease (Figure 2).
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2. Immunological Response Pathways in CRS

CRS and PCI are both characterized by a dysfunctional relationship between environ-
mental factors (EFs) and the host immune system. Immune response pathways depend
on various factors including the endotype and genotype of the patient; however, the
detailed mechanisms that mediate CRS immunopathogenesis are complex and still not
sufficiently explained.

CRS can be divided into CRS with nasal polyps (CRSwNP) and chronic rhinosinusitis
without nasal polyps (CRSsNP) depending on the endoscopically observed presence of
nasal polyps in the middle nasal meatus. Classification that better reflects underlying path-
omechanisms is based on endotypes [1]. Three main inflammatory endotypes, type 1, type
2 and type 3, are controlled by distinct gene signatures and can be found in both CRSwNP
and CRSsNP phenotypes [2,3]. In Western countries, CRSwNP is mainly associated with
type 2 inflammation [1].

The sinus mucosa (SM) is an anatomical site that is exposed to EFs and where precisely
regulated cooperation between innate and adaptive immunity is crucial for homeostatic
balance. In CRS, mucosa activity is compromised by PCI, leading to tissue remodeling,
which might result from AE cells dysfunction and enhanced barrier permeability [1].
The first line of defense in SM constitutes the mechanical barrier of AE and mucociliary
clearance. The next line of local defense provides the innate and complement immune
system (IIS and CIS, respectively). Their activities lead to the identification and elimination
of external pathogenic agents and also antigen presentation to activate cells of the adaptive
immune response (AIR) [1]. The AIR appears later, but is highly specialized in action and
employs multiple subpopulations of T and B cells (Figure 3).
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2.1. Airway Epithelium as the First Line of Defense in Sinuses
2.1.1. Structure and Functions of Sinusal Airway Epithelium

Mucociliary clearance is the primary innate defense mechanism, supporting mucous
relocation and removal. Mucus is mainly produced by goblet cells (GCs) and contains
mucins with antibacterial properties. Impairment of AE cilia functions in CRS impedes
mucous transport and elimination. A decrease in the differentiation of ciliated cells and
beating frequency is mediated by interferon-γ (IFN-γ) and interleukin-13 (IL-13) and is
also noticeable in GC hyperplasia [4]. Primary ciliary dyskinesia may also be the reason for
mucociliary clearance disabilities [1]. Additionally, the eosinophilic endotype of CRSwNP
is characterized by increased levels of two main airway mucins that are involved in mucous
formulation (MUC5AC and MUC5B) and of the anion exchanger pendrin [5–7]. Increased
MUC5AC expression and GC metaplasia were also observed in human CRS sinonasal tissue
in response to cigarette smoke exposure [8]. In addition, several multifunctional proteins
are upregulated in the mucus of CRSwNP such as cystatin 2, pappalysin-A, periostin, and
serpins. Periostin expression is associated with the presence of basement membrane thick-
ening (BMT), fibrosis, and tissue eosinophilia [9] and may be involved in the remodeling of
NPs [10]. Cystatin 2 triggers epithelial barrier functions and immunomodulation. Cystatin
SN, a type 2 cysteine protease inhibitor, was increased in patients with eosinophilic CR-
SwNP but decreased in patients with non-eosinophilic CRSwNP in comparison to control
subjects [11]. High levels of cystatin SN in nasal secretions are correlated with a faster
onset and higher rate of uncontrolled status in CRSwNP [12]. Pappalysin-A stimulates
proliferation mediated by the insulin-like growth factor 1. Periostin leads to prolifera-
tion, angiogenesis, invasion, eosinophil recruitment, Th2 immune response, and airway
remodeling. Serpins, especially serpinF2 and serpinE1, trigger the inhibition of fibrinoly-
sis. Interestingly, after surgery, levels of cystatin 2, pappalysin A, periostin, and serpinF2
decrease, whereas serpinE1 increases, and in the course of the follow-up period—levels
of cystatin 2, pappalysin A, and periostin increase [13]. Proteomic analysis of SM samples
from CRS patients demonstrated downregulation of pathways associated with mucosal
immunity and upregulation of cellular metabolism related to tissue remodeling [14]. Mucus
inflammatory proteins might be also involved in olfaction dysfunction and their profile
is distinct when comparing CRSwNP and CRSsNP patients [15]. Tight junctions (TJs) by
closely located AE cells form selectively permeable barriers. In the course of CRS, levels
of molecules building TJs decrease: JAM-A, E-cadherin [16], zonula occludens 1 (ZO-1),
occludin 1 [17], and also IFN-γ and IL-4, which most likely play an important role in this
process [18]. Barrier integrity and cilia dysfunction are also mediated by a decrease in
p63 [19], as well as decreased Wnt pathway activity that may lead to NP formation by
reprogramming the epithelium morphology, especially cilium and adherens junctions [20].

2.1.2. Secretory Functions of Airway Epithelium

Another function of the AE is the secretion of defense molecules acting against
pathogens. The AE secretome includes lysozyme, lactoferrin, hydrogen peroxide, and
nitric oxide (NO) and in the course of CRS secretion of dual oxidases 1 and 2 (DUOX1 and
DUOX2, respectively) is accelerated and responsible for hydrogen peroxide production [21].
In response to stimulation with external pathogens and EFs the epithelium releases cy-
tokines and in CRS, IL-25, IL-33, TSLP (thymic stromal lymphopoietin) play a crucial role.
Additionally, those cytokines are released by immune cells—IL-33 is mainly produced by
macrophages and dendritic cells (DCs) [22] and IL-25 is produced by eosinophils or mast
cells (MCs) [23,24]. IL-25 interacts with nasal fibroblasts [25] that are possibly involved in
NP formation [24,26]. Similarly, IL-25 triggers lung fibrosis by reprogramming alveolar
epithelial cells and fibroblasts [27]. Experimental studies showed that cells stimulated with
poly (I:C) release IL-25 and TSLP [28] and that overexpression of TSLP correlates with
induction of Th2 inflammatory factors [29]. IL-33 modulates Th2 cytokine production [30]
and upregulated levels of IL-33 in the NPs might also contribute to mucosal repair functions
by activating the Notch-1 signaling pathway [31]. In the CRSwNP, TSLP and IL-33 activate
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ILC2 to produce IL-5 that activates eosinophils together with IL-13 [32]. MCs, especially in
the eosinophilic CRSwNP, produce periostin [33] and periostin stimulates the secretion of
TSLP by the epithelium which activates MCs to produce IL-5, ultimately stimulating DCs.
Those may lead to Th2 response and eosinophilia in CRSwNP [34] (Figure 4).
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2.1.3. Chemosensory Cells in the Pathogenesis of CRS

Solitary chemosensory cells (SCCs) are present in the AE [35] and appear widely in
NPs. They are efficient producers of IL-25 which activates ILC2 responsible for mediation
of the Th2 immune response pathway [36,37]. The surface of SSCs is decorated by many
forms of taste receptors (T2Rs) with immunoregulatory functions. Bitter stimulation of
T2Rs leads to antimicrobial peptide and NO production, as well as elevated ciliary beating
frequency. Hereby, the functions of T2Rs in the upper respiratory epithelium may be
genetically dependent [38]. In the case of CRSsNP the non-tasting genotype of a bitter
taste receptor, taste receptor 2 member 38 (T2R38), relates to increased Gram-negative
bacteria colonization and a worse course of disease [39]. Interestingly, the human T2R38
can be detected on the surface of some immune cell populations, for instance on CD4+ and
CD8+ T lymphocytes, and is stronger pronounced in lymphocytes of younger than elderly
patients [40]. In addition, T2Rs present in SM contribute to NO production which improves
its defense properties [41]. T2Rs also occur on lung macrophages and stimulation with
receptor agonists resulted in a decrease in cytokine production [42].

2.1.4. TLRs in the Pathogenesis of CRS

TLRs (Toll-like receptors) are present on the cell surface and also in endosomes, endo-
plasmic reticulum, and lysosomes and recognize pathogen associated molecular patterns
(PAMPs). Depending on their cellular localization they identify pathogen membrane sur-
faces or nucleic acids [43,44]. Activation of AE-associated TLRs by pathogens triggers the
production and release of cytokines, chemokines, and defense molecules and the activation
of immune cells, thus, TLRs contribute to initiating and maintaining an inflammatory
response. TLRs can also activate interferon I after exposure to viruses [45]. In the case of
CRSsNP, TLR2, TLR4, transforming growth factor β (TGFβ), and collagen are upregulated
in comparison to CRSwNP and expression of TLR2 and TLR4 correlate with neutrophil
infiltration [46]. In the case of CRSwNP upregulation of TLR2 leads to Th17/T regulatory
cell (Treg) imbalance and treatment of peripheral blood mononuclear cells with Aspergillus
flavus accelerates T17-mediated inflammation [47]. Additionally, overexpression of TLR2
and nuclear factor κβ (NF-κβ) in the CRS mucosa is associated with biofilm formation [48].
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2.1.5. Hypoxic Conditions in the Airway Epithelium

Hypoxic conditions contribute to immune regulation in CRSwNP by triggering an
increase in levels of IL-17A, hypoxia-inducible factor 1α (HIF-1α), and HIF-2α [49]. HIF-1α
expression in SM of patients with CRSwNP is significantly increased compared to SM of
healthy controls and the HIF-1α level in polyp tissues is positively associated with IL-17A
production and neutrophilic inflammation [50]. Experimental in vitro models of nasal
epithelial cells cultured under hypoxic conditions showed intensified chemokine secretion
and chemotaxis of eosinophils and neutrophils compared to normoxic conditions [51]
and increased levels of Eotaxin-1 (CCL11), Eotaxin-2 (CCL24), and Eotaxin-3 (CCL26) in
NPs [52]. Another study demonstrated that hypoxic conditions that may appear in mucosa
during sinusitis lead to increased HIF-1α and additionally MUC5AC expression [53].

2.2. Innate Immune Cell Response in CRS

General information regarding the role of immune cell populations in chronic inflam-
mation in CRS are shown in Figure 5.
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2.2.1. Innate Lymphoid Cells

The main activators of innate lymphoid cells (ILCs) are the epithelial cytokines IL-25,
IL-33, and TSLP. Activated ILCs produce the proinflammatory cytokines IFN-γ, IL-5, IL-13,
IL-22, and IL-17A [54] and modulate functional responses of other immune cell populations.
ILC1, ILC2, and ILC3 cooperate, respectively, with the CD4+ T lymphocyte subsets Th1,
Th2, and Th17 [55]. Each ILC type produces proper cytokines albeit are able to overtake the
function of others depending on stimulation with epithelial cytokines or antigen-presenting
cells [56]. In general, ILC1 regulates response to viruses and intracellular bacteria and
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promotes Th1 response with secretion of cytokines, mainly IFN-γ. ILC2 are responsible for
responding to parasites, allergy, and trigger of tissue repair and favor a type 2 response
orchestrated by the cytokines IL-4, IL-5, and IL-13. ILC3 corresponds to extracellular
organisms, relates to Th17 immune response, and secretes IL-17 and IL-22 [57,58]. To the
best of current knowledge, the main role in CRS play ILC2s. However, ILC1s and ILC3s
also appear in CRS, but their functional contribution remains unclear.

2.2.2. Neutrophils

Neutrophils are mainly activated by microbes, tissue damage, epithelial IL-8 or fungi
and contribute to phagocytosis as well as incapacitation of extracellular microbes. The
role of neutrophils in CRS remains unclear; however, they are associated with CRSwNP in
Asia, significantly more when comparing to the Caucasian population [59]. Neutrophils
contribute to tissue damage and barrier disruption by degranulation [60,61], but on the
other hand can secrete oncostatin M that triggers repair of epithelial functions and in-
tegrity [62] and counteracts the profibrotic effect of IL-4 and TGFβ1 [63]. The polyp tissue
microenvironment leads to the differentiation of IL-17-positive T cells and their quantity
correlates with infiltration of neutrophils. Additionally, it has been reported that Staphylo-
coccus aureus (SA) might be involved in upregulation of IL-17- and IL-17-positive T cells in
NPs [64]. The amount of neutrophil extracellular traps (NETs) in nasal secretion, which
participate in innate immunity by trapping microorganisms, is increased in exacerbated
CRS in comparison to stable CRS [65]. NETs are significantly increased in NPs which
indicates a potential role in pathogenesis of neutrophil inflammation in CRSwNP [66].

2.2.3. Monocytes and Macrophages

Monocytes play a role in the elimination of microbes from the blood and tissues. In the
site of inflammation monocytes are able to transfer into macrophages which differentiate
into two distinct phenotypes: M1 macrophages which are active in early inflammatory
processes-promoted by T1 cytokines and M2 macrophages stimulated by Th2 cytokines.
Studies have shown that M2 macrophages in NPs may also be involved in fibrin deposition
modulated by the factor XIII-A. Macrophages attract neutrophils and eosinophils to the
inflammatory site [67–69]. In NP tissue, M1 macrophages are the major cellular source
of IL-17A and a possible influence on NP formation was demonstrated in a murine NP
model [70].

2.2.4. Basophils

Basophils mostly circulate in the blood; however, their release of IL-4 triggers a
Th2-mediated inflammatory response [71]. Their increased levels were detected in NPs
of patients with aspirin exacerbated respiratory disease (AERD) compared to CRSwNP
patients, which may contribute to severity unique to AERD [72]. The role of basophils in
CRS immunopathology remains unclear and needs further investigation.

2.2.5. Mast Cells

MCs occur in connective tissues, under the epithelium and in the neighborhood of
glandular tissue inside polyps and are activated by stimulation of TLRs with microbes, CIS
or antibodies. Degranulation of MC components leads to increased vascular permeability,
pathogen defense, allergy and finally, tissue oedema, extracellular matrix (ECM) degrada-
tion, and disabled epithelial barrier integrity [73–77]. In the case of CRS MCs contribute
to eosinophilic inflammation [78] and trigger CRSwNP and AERD through the release of
leukotrienes (cysLTs) or prostaglandins (PGD2) [79,80]. MCs also release periostin that is a
meaningful factor with regard to the eosinophilic CRSwNP [33].

2.2.6. Eosinophils

Eosinophilic inflammation is more prevalent with regard to CRSwNP [81]; however, it
negatively impacts the course of the disease, independent of the presence of NPs [82,83].
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Especially recurrent CRSwNP patients have more eosinophil as well as mucin eosinophilic
aggregates [84]. Feng et al. also indicated increased levels of eosinophils in the peripheral
blood of eosinophilic CRS patients, suggesting its potential diagnostic value in evaluation
of disease severity [85]. In CRS, the activation of eosinophils is maintained by epithelial
cytokines, Th2 cytokines, proteases, components of the complement system, stem cell
factors, and eicosanoids [86–88]; however, the biggest contributors are ILCs and Th2
cells [32]. Moreover, some microRNAs (miRNAs) might regulate eosinophil activity such
as miR-125b that is enriched in eosinophilic CRSwNP [89]. Additionally, the elevated levels
of IgE correlate with eosinophil infiltration and possibly lead to NP development [90]
as well as Semaphorin 7A—a factor relevant to fibrinolysis that occurs on the airway
eosinophils [91]. It was shown for CRSsNP patients with a total IgE serum concentration
over 100 IU/mL that systemic steroid therapy is more effective than intranasal steroids [92].

2.2.7. Natural Killer Cells

Natural killer cells (NKs) are cytotoxic lymphocytes with abilities to recognize and kill
infected cells and release IFN-γ to stimulate macrophage activation [55]. In CRSwNP, NK
cells have decreased degranulation properties and also IFN-γ or tumor necrosis factor α
(TNF-α) production [93].

2.3. Adaptive Immune Response Cells in CRS
2.3.1. Dendritic Cells

DCs present antigens to naïve T cells and in this way connect innate and AIR. Ep-
ithelial cytokines and ILCs activate DCs, leading to pertinent T cell polarization [55,94].
DCs might infiltrate NP tissue and activate T cells by the CD40/CD40L costimulatory
molecules [94]. Other studies described increased levels of programmed cell death 1
(PD-1) in CRSwNP [95] and also programmed cell death 1 ligand 1 (PD-L1) in the case of
eosinophilic endotype in Asia population [96]. In the eosinophilic CRSwNP, DCs expressing
OX40 ligand (OX40L)/PD-L1 lead to activation of the Th1/Th2/Th17 pathway, whereas in
non-eosinophilic CRSwNP, DCs with lower expression of OX40L/PD-L1 mediate Th1/Th17
response [97]. DCs isolated from CRS patients overexpress miR-150-5p that together with
its target—early growth response 2 (EGR2)—trigger T cell activation and proliferation [98].

2.3.2. T Cells

T cells have a variety of biological functions including effector cell recruiting, neutral-
ization of infected cells, cooperation with B cells resulting in production of immunoglobu-
lins, and their role as memory cells in IIC. The main subtypes of T cells are CD4+ T helper
cells and CD8+ cytotoxic T cells. CD4+ T cells differentiate into five main subsets: Th1, Th2,
Th17, follicular helper T cells, and Tregs [55]. Th1 cells are activated by phagocytosed mi-
crobes also with the support of ILC1s. Th1 cells release IFN-γ, TNF-α, and TNF-β that help
in microbiome phagocytosis by activating macrophages and antigen presentation, as well
as stimulating IgG production by B cells, neutrophils and local tissue inflammation [99,100].
Th2 are mainly activated by parasites which mobilize eosinophils, MCs, ILC2s and enhance
the production of IgE [101]. Th2 cells release IL-4, IL-5, and IL-13 which contribute to
activation of eosinophils, mucus production, and stimulation of macrophages which may
produce growth factors, leading to tissue repair mechanisms [102]. The Th17 subpopulation
activates neutrophils, monocytes and secretes IL-17A, IL-17F, and IL-22 [1].

The levels of proper T cell subtypes in CRS differ depending on the endotype and
genotype. Increased levels of the Th2 subset with eosinophils appear in CRSwNP patients
from Western regions and increased levels of Th1/Th17 and neutrophils are found in
Asian population and additionally in patients with NPs [103–105]. Studies have shown a
similar inflammatory profile of NPs and neighboring non-polypoidal mucosa from the same
patients. NP tissues treated with SA enterotoxin B (SEB) are characterized by an activated
Th2/Th17 response pathway in comparison to controls. In the NP tissue and non-polypoid
tissue in comparison to control, gene expression levels of IL-5, IL-8, and TLR4 are increased
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and TBX21 (encodes for T-bet), FOXP3, IL-1B and IL-6 decreased. It was demonstrated
that treatment of NPs with SEB results in an increase in gene expression levels of IL-5
and IL-17A in the tissue and increased TLR4 and decreased IL-1B gene and protein levels
in supernatants. Proinflammatory phenotype of contiguous tissue and decreased levels
of antibacterial cytokines might be involved in disabled response to pathogens, chronic
inflammation and also NP formation [106]. CD8+ T cells may transform into cytotoxic T
cells with abilities to kill infected or damaged cells when stimulated by antigens or other
factors [55]. It was demonstrated that higher levels of CD8+ than CD4+ T cells can be found
in CRSwNP and that the local microenvironment of NPs promotes T cell variation [107]
and the release of proinflammatory cytokines with antiapoptotic properties for T cells [108].
CD8+ T cells are upregulated in both: eosinophilic and non-eosinophilic CRSwNP [109].

Overall, in CRSsNP the Th1 and Th17 immune response pathways are activated and
relate to the expression of TGFβ, INFs and IL-6, IL-8, and IL-17 [110]. In contrast, another
analysis did not demonstrate significant differences in the level of IFN-γ between CRSwNP,
CRSsNP and in comparison to the control group [111]. CD4+ Tregs characterized by
Foxp3 expression have immunosuppressive functions. They are involved in self-antigen
recognition, self-tolerance, and general homeostasis [1]. In CRS, decreased levels of Tregs
may lead to a chronic inflammatory state [112] and overall, their levels are decreased in
peripheral blood of CRS patients. The quantities of Tregs are similar in CRSwNP and
CRSsNP patients, but the tissue infiltration levels of Tregs are higher in CRSwNP compared
to CRSsNP. In CRS, Tregs express more proinflammatory than regulatory capacities [113]
and additionally in CRSwNP the migration potential of Tregs is limited [114].

2.3.3. B Cells

Activated B cells produce highly specialized immunoglobulins that bind antigens
and play a crucial role in neutralization of many pathogenic factors. B cell levels are
increased in the group of CRSwNP patients when compared to CRSsNP patients [115]
and have an accelerated memory phenotype and are less mature or regulatory for Th
lymphocytes [116]. Several factors are upregulated in CRS which have the potential to
modulate B cell response pathways. The chemokines CXCL13 and CXCL12 are upregulated
in CRS and lead to B cell recruitment [117]. IL-21, which is overexpressed in CRSwNP,
activates B cell differentiation and leads to IgG and IgA secretion [118]. In CRSwNP, ILC2
triggers local B cell activation [119]. In the NP tissue, the close cooperation of B cells with
MCs enhances local IgE production [77]. Additionally, in CRSwNP, activation of TLR9
leads to the release of type I interferon, ultimately increasing levels of B cell-activating
factor [120]. The increased levels of B cell-activating factor in the serum positively correlate
with blood eosinophil counts and percentages, tissue eosinophil counts, and total IgE in
serum. Hereby, the levels of B cell-activating factor are significantly higher in patients with
recurrent polyps, which might suggest its role in distinguishing CRSwNP endotypes and
predicting postoperative recurrence [121].

3. Other Selected Aspects of CRS Pathogenesis
3.1. High Mobility Group Box (HMGB1) Protein and a Receptor for Advanced Glycation and
Products (RAGE) Pathway in CRS

HMGB1 is an alarmin protein involved in many chronic inflammatory diseases and
also plays a role in CRS pathogenesis. Tissue expression of HMGB1 and its receptor RAGE
correlates with the disease course of CRSwNP. We have previously described that RAGE is
more pronounced during disease development [122]. Similarly, we have also demonstrated
that in the CRSsNP, HMGB1 expression in the tissue indicates no differences in comparison
to healthy volunteers, meanwhile, RAGE is overexpressed, relates with disease activity and
allergy [123]. Elevated levels of HMGB1 appear especially in eosinophilic CRSwNP [124].
Additionally, TLR4 is upregulated in CRSwNP tissue and is another HMGB1 receptor [125].
In CRSwNP, HMGB1 is overexpressed in the nucleus of epithelial cells, but decreased
in cytoplasm [126], albeit hypoxic conditions regulate the functions of HMGB1 in the



Diagnostics 2022, 12, 2361 10 of 20

upper airway, triggering its translocation. HMGB1 leads also to the production of reactive
oxygen species (ROS) in AE cells and ROS derived from DUOX2 leads to increased IL-
8 secretion [127]. Interestingly, elevated levels of ROS in the freshly wounded nasal
epithelial cells and fibroblasts obtained from CRS individuals might be reduced by some
antibiotics and trigger a decline in nasal fibroblast migratory capacity without affecting
nasal epithelial cells [128]. Recently, studies demonstrated the role of HMGB1-RAGE
signaling pathway in the process of epithelial to mesenchymal transition (EMT) in the
case of CRSwNP patients. Vetuschi et al. observed in CRSwNP tissues an upregulation
of the AGE/RAGE/p-ERK pathway and also of the mesenchymal markers vimentin
and IL-6, suggesting that their cooperation might be associated with tissue remodeling.
However, the authors were not able to find any differences in the TGFβ/Smad3 pathway
between CRSwNP and normal controls [129]. Similarly, another study demonstrated
that HMGB1 promotes upregulation of mesenchymal markers (vimentin, α-SMA) and
diminished epithelial markers (occludin, ZO-1, E-cadherin) and hypoxia—induced HMGB1
release might lead to EMT through the RAGE pathway [130]. In accordance with the
findings of Vetuschi et al., HMGB1-treated cells did not secrete TGFβ on the apical and
basal side, suggesting that EMT in CRSwNP might be TGFβ independent. Increased
levels of HMGB1 appeared in cytoplasm or extranuclear compartments and NPs fluid
in comparison to control mucosa. Additionally, HMGB1 instilled to the mouse model,
proved their EMT inducing capacity and also analysis of human NP tissue indicated
increased levels of HMGB1 as well as mesenchymal markers, whereas epithelial markers
were decreased [130]. HMGB1 induced myofibroblast differentiation and ECM production
in nasal fibroblast [131]. In the case of eosinophilic CRSwNP, when cells were treated
with rhHMGB1 (recombinant human HMGB1), the expression of vimentin and N-cadherin
was increased and the expression of E-cadherin and ZO-1 were decreased, both in a
concentration-dependent manner. Use of peroxisome proliferator-activated receptor γ

(PPAR-γ) agonist resulted in a decrease in lipopolysaccharide (LPS)-stimulated HMGB1
secretion and an EMT retraction [132].

3.2. Tissue Remodeling in CRS

An important mechanism involved in tissue remodeling is EMT, also presented in
Figure 6.

During EMT, epithelial cells lose their functions and acquire the character of mesenchy-
mal cells. Cells lose TJs, gain motility function, remodel cytoskeleton and ECM, and have
altered gene and protein expression [133]. The TGFβ pathway is among the best known
factors involved in the process of EMT. In eosinophilic and non-eosinophilic CRSwNP, miR-
182 regulated EMT in response to TGFβ1 and might promote nasal polypogenesis [134].
The role of TGFβ1 is significantly more pronounced in CRSsNP than in the case of CRSwNP.
In CRSsNP, TGFβ1 activates heat shock protein 47 (HSP47) that is overexpressed in the
nasal fibroblasts and it leads to myofibroblast differentiation as well as ECM production.
TGFβ1 induces HSP47 expression via the Smad 2/3 pathway. Interestingly, glucocorticos-
teroids were able to decline effects of HSP47 induction by TGFβ1 [135]. Additionally, the
TGFβ/Smad 2/3 pathway leads to collagen and connective tissue growth factor (CTGF)
production in fibroblasts obtained from CRSsNP mucosa [136]. The expression of relaxin-2,
Smad2, Smad3 and TGFβ1 mRNA in the CRSsNP group was significantly higher than
in the CRSwNP and control groups [137]. Moreover, miR-21 might be involved in EMT
through the activation of the TGFβ1-mediated PTEN/Akt pathway [138].

Recently, it has been demonstrated that the cold-inducible RNA binding protein (CIRP)
is upregulated in nasal epithelial cells from eosinophilic and non-eosinophilic CRS and
macrophages. CIRP might contribute to edema formation through the capacity to stimu-
late metalloproteinase (MMP) and vascular endothelial growth factor A (VEGF-A) from
nasal epithelial cells and macrophages [139]. Another study suggested the role of the
PI3K/Akt/HIF-1α pathway in the inflammation and tissue remodeling in CRS. Nasal
epithelial cells stimulated with LPS release IL-25, IL-17RB, HIF-1α and p-Akt. Levels of
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IL-25, IL-17RB, HIF-1α decrease after implementing the PI3K inhibitor [140]. Similarly,
nasal fibroblasts obtained from CRS patients cultured in vitro, stimulated with LPS se-
crete TSLP in a TLR4-dependent manner and activate mitogen-activated protein kinase
(MAPK), Akt, NF-κβ pathways. Additionally, use of ex vivo organ culture of nasal inferior
turbinate model validated these results. Macrolides and corticosteroids were able to re-
duce expression of TSLP in the fibroblasts and downstream pathways [141]. The exposure
of nasal fibroblasts on cigarette smoke exposure results in increased MMP-2 expression,
inhibited tissue inhibitor of metalloproteinase-2 (TIMP-2) expression and induced ROS
production [142].
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Nasal fibroblasts play a crucial role in tissue remodeling. Nasal fibroblasts influenced
by many factors secrete various signaling molecules and are able to differentiate into my-
ofibroblasts. Hypoxic conditions trigger the differentiation of NP-derived fibroblasts into
myofibroblasts in the manner dependent on ROS generated through the NOX4 (NADPH
oxidase 4) and TGFβ1 [143]. Moreover, NOX1 and NOX4 are overexpressed in the mu-
cosa of NPs-in the case of allergic rhinitis at the mRNA and protein levels [144]. Other
studies described elevated NADPH oxidase subunits on the NP tissue, suggesting their
role and also oxidative stress involvement in CRSwNP pathogenesis [145]. NP tissue has
additionally decreased stem cell potential in comparison to healthy tissue from the same
CRS patients, which is evaluated through the differentiation of isolated mesenchymal cells
into adipocytes and it may lead to abate epithelium regeneration [146].

3.3. Neuro-Inflammation as an Emerging New Aspect of Airway Inflammatory Diseases

Airway epithelium anatomically and functionally collaborates with the nervous sys-
tem. Various inflammatory mediators and irritants that appear in the area of the airway
might stimulate nerves, leading to neurogenic inflammation. On the other hand, inflam-
mation may also be enhanced through the neurotransmitters secreted by neurons and
neuropeptides released from immune cells and non-neural cells during the disease state.
Additionally, activation of SCCs present in the nasal epithelium might be involved in the
neurogenic inflammatory pathway. The role of neuro-immune regulation in inflammation



Diagnostics 2022, 12, 2361 12 of 20

has been already the subject of research in airway inflammatory diseases, such as COPD
and asthma [147–149].

It was also demonstrated that autonomic dysfunction symptoms significantly posi-
tively correlate with CRS severity, especially in a group of CRSwNP patients [150]. His-
tological examination showed abundant sympathetic fibers in the pedicle of NPs, but a
lack of this innervation in the body and apex of the polyps, which can be important in
the pathogenesis of NPs [151]. There is a hypothesis that the cholinergic system can be
implicated in the inflammation of CRS, especially in CRSwNP [152]. It was observed that
higher preoperative autonomic symptom scores corresponded to uncontrolled inflamma-
tion following functional endoscopic sinus surgery and symptoms of autonomic nervous
system dysfunction improved following sinus surgery [153]. Chronic inflammation may
also trigger neuron death mediated by c-Jun N-terminal kinases (JNK), leading to loss of
olfaction, which is a common symptom in CRS [154].

3.4. Small Extracellular Vesicles (sEVs) as a New Promising Aim of Research in the
Immunopathology of CRS

Small extracellular vesicles (sEVs) are extracellular vesicles of endosomal origin. sEVs
circulate in presumably all body fluids including blood, plasma, nasal lavage fluid, and
bronchoalveolar fluid and are important mediators of cell to cell communication. They
transport complex cargo components, i.e., proteins, lipids, and nucleic acids and sEVs
play a role in various physiological processes, but importantly have immunomodulatory
functions and are able to shift the Th1-Th2 balance [155]. Proteomic analysis of sEVs isolated
from nasal lavage fluid of CRSwNP reported significantly different content in comparison
to controls and revealed potential disease biomarkers such as cystatin, peroxiredoxin-5, and
glycoprotein VI [156] or in another study the protease inhibitor cystatin-2 [157]. Additionally,
sEVs are enriched in pappalysin and serpins potentially involved in NP formation [158,159].
Thus, sEVs modulate a wide spectrum of functions and their presence in all body fluids is
of great value to potential diagnostic and therapeutic solutions in CRS.

4. Summary

Sinusal AE forms a structural and functional barrier that modulates proper interaction
of the host microenvironment, the microbiome, EFs, and the immune response. In the course
of CRS, the epithelial barrier remains impaired. Bacteria, fungi, viruses, allergens, and air
pollution stimulate the AE that secretes cytokines, leading to activation of IIS including
ILCs, neutrophils, monocytes, basophils, eosinophils, NK cells, and DCs. The antigen
presentation of DCs leads to the polarization of T lymphocytes which invoke AIR. An
imbalance between the physiological microbiome in sinonasal cavity and those in the course
of CRS might orchestrate inflammation [90]. Tissue remodeling is among the most relevant
aspects of CRS pathogenesis. Changes in the sinusal AE mainly include dysfunctions
in the cilia and TJs, fibrosis, GC hyperplasia and BMT, NP formation, angiogenesis, and
osteitis [160,161]. Although various widely known agents contribute to CRS, the molecular
bases of disease still remain elusive and need further investigation.
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Abbreviations

AE airway epithelium
AERD aspirin exacerbated respiratory disease
AIR adaptive immune response
BMT basement membrane thickening
CIRP cold-inducible RNA binding protein
CIS complement immune system
CRS chronic rhinosinusitis
CRSsNP chronic rhinosinusitis without nasal polyps
CRSwNP chronic rhinosinusitis with nasal polyps
CTGF connective tissue growth factor
DCs dendritic cells
DUOX dual oxidase
ECM extracellular matrix
EFs environmental factors
EGR2 early growth response 2
EMT epithelial to mesenchymal transition
GCs goblet cells
HSP47 heat shock protein 47
HIF-1α hypoxia-inducible factor 1α
HMGB1 high mobility group box 1 protein
IFN-γ interferon-γ
IIS innate immune system
IL interleukin
ILCs innate lymphoid cells
JNK c-Jun N-terminal kinases
MAPK mitogen-activated protein kinase
MCs mast cells
miRNAs microRNAs
MMP metalloproteinase
NADPH nicotinamide adenine dinucleotide phosphate
NF-κβ nuclear factor κβ
NKs natural killer cells
NO nitric oxide
NOX4 NADPH oxidase 4
NPs nasal polyps
OX40L OX40 ligand
PAMPs pathogen associated molecular patterns
PCI persistent chronic inflammation
PD-1 programmed cell death 1
PPAR-γ peroxisome proliferator-activated receptor γ
RAGE receptor for advanced glycation end products
rhHMGB1 recombinant human high mobility group box 1 protein
ROS reactive oxygen species
SCCs solitary chemosensory cells
sEVs small extracellular vesicles
SM sinus mucosa
T2R38 taste receptor 2 member 38
T2Rs taste receptors
TGFβ transforming growth factor β
TIMP-2 tissue inhibitor of metalloproteinase-2
TJs tight junctions
TLRs Toll-like receptors
TNF-α tumor necrosis factor α
Treg T regulatory cell
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TSLP thymic stromal lymphopoietin
VEGF-A vascular endothelial growth factor A
ZO-1 zonula occludens
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