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Abstract. Aortic endothelial cells adhere to the core 
protein of murine perlecan, a heparan sulfate pro- 
teoglycan present in endothelial basement membrane. 
We found that cell adhesion was partially inhibited by 
131 integrin-spectfic mAb and almost completely 
blocked by a mixture of/31 and otv/33 antibodies. Fur- 
thermore, adhesion was partially inhibited by a syn- 
thetic peptide containing the perlecan domain Ill se- 
quence LPASFRGDKVTSY (c-RGD) as well as by 
GRGDSP, but not by GRGESP. Both antibodies con- 
tributed to the inhibition of cell adhesion to immobi- 
lized c-RGD whereas only/31-specific antibody 
blocked residual cell adhesion to proteoglycan core in 
the presence of maximally inhibiting concentrations of 
soluble RGD peptide. A fraction of endothelial 
surface-labeled detergent lysate bound to a core 
affinity column and 147-, 116-, and 85-kD proteins 

were eluted with NaCI and EDTA. Polyclonal anti-/31 
and anti-/33 integrin antibodies immunoprecipitated 
116/147 and 85/147 kD surface-labeled complexes, 
respectively. Cell adhesion to perlecan was low com- 
pared to perlecan core, and cell adhesion to core, but 
not to immobilized c-RGD, was selectively inhibited 
by soluble heparin and heparan sulfates. This inhibi- 
tion by beparin was also observed with laminin and 
fibronectin and, in the case of perlecan, was found to 
be independent of heparin binding to substrate. These 
data support the hypothesis that endothelial cells inter- 
act with the core protein of perlecan through/31 and 
/33 integrins, that this binding is partially RGD- 
independent, and that this interaction is selectively 
sensitive to a cell-mediated effect of heparin/heparan 
sulfates which may act as regulatory ligands. 

V 
ASCULAR endothelial cells are polar cells that form a 
nonthrombogenic barrier and which, after focal in- 
jury, migrate and divide to close the defect. These 

cells produce and reside upon basement membranes which 
influence cell adhesion, shape, migration, and differentia- 
tion. One of the components of many basement membranes 
(Kato et al., 1988) is perlecan, a low density basement mem- 
brane heparan sulfate proteoglycan CrISPG) ~ (Hassell et al., 
1985; Paulsson et al., 1987a; Noonan et al., 1991). The core 
protein of perlecan is a multidomain structure with regions 
homologous to laminin, the LDL receptor and N-CAM 
(Noonan et al., 1988, 1991). By EM, the core is visualized 
as a tandem linear array of five to six globules with typically 
three heparan sulfate chains extending from one end (Pauls- 
son et al., 1987a; Yurcbenco et al., 1987). Depending upon 
tissue location or state of differentiation, the core can pos- 
sess both high and undersulfated chains (Pejler et al., 1987), 
long or very short chains (Mohan and Spiro, 1991) and tissue 
cultured colonic carcinoma cells have been shown to secrete 

1. Abbreviations used in this paper: BAEC, bovine aortic endothelial cells; 
EHS, Engelbreth-Holm-Swarm; HSPG, heparan sulfate proteoglycan; 
HSPG-core, core protein of heparan sulfate proteoglycan. 

both HSPG as well as core free of any attached glycosamino- 
glycan chains (Iozzo arid Hassell, 1989). 

The multidomaln structure suggests that pedecan inte- 
grates a variety of functions. While many of these functions 
have yet to be elucidated, there is evidence that the carboxyl- 
terminal domain mediates self assembly in vitro with forma- 
tion of dimers and trimers (Yurcbenco et al., 1987) and 
the core binds to fibronectin (Heremans et al., 1990). The 
polyanionic heparan sulfate chains, attached to the NH2- 
terminal domain I of the core, are important in impeding the 
passage of cationic macromolecules across the glomerular 
basement membrane (Farquhar, 1981) and may also play a 
role in bemostasis and the immobilization of growth factors. 
A variety of cells such as hepatocytes interact with this mac- 
romolecule binding through 80 and 26-38 kD surface pro- 
teins (C16ment et al., 1989; C16ment and Yamada, 1990). In- 
spection of the published sequence of the proteoglycan core 
reveals that the integrin-binding sequence arg-gly-asp (RGD) 
is present in a globular region present in domain Ill of mouse 
perlecan, a sequence homologous to domain IVb of the lami- 
nin A chain (Noonan et al., 1988, 1991): this sequence sug- 
gests that a subclass of cell surface integrins plays a role in 
cell interactions and signal transduction. 
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In this study we have examined the interaction of primary 
explant bovine aortic endothelial cells with perlecan with re- 
spect to adhesion rate, morphology, effect of glycosamino- 
glycan side chains and the cell surface proteins participating 
in adhesion. We report that this interaction is dependent 
upon the presence of heparan sulfate, and that adhesion is 
mediated by two or more integrins that recognize an RGD- 
sequence as well as one or more other regions. 

Materials and Methods 

Macromolecules 
Parlecan (low density, high molecular weight basement membrane HSPG) 
was purified from lathyritic mouse Engelbreth-Holm-Swarm (EHS) tumor 
by urea extraction, DEAE-Sephacel (Pharmacla Fine Chemicals, Piscata- 
way, NJ) ion exchange chromatography, cesium chloride gradient density 
centrifugetion, and Sephacryl $500 (Pharmacia Fine Chemicals) gel filtra- 
tion as previously described in detail (Yurchenco et aL, 1987). EDTA ex- 
tracts of laminin from EHS tumor were purified by gel filtration and ion 
exchange chromatography as described (Schittny and Yurchenco, 1990) 
and type IV collagen was isolated from the same tumor by guanidine-HC1 
extraction, NaCI salt fractionation, and ion exchange chromatography on 
DEAE-cellulose (Yurchenco and Furthmayr, 1984). Bovine fibronectin was 
obtained from plasma by gelatin-Sepharose chromatography (Ruoslahti et 
al., 1981) and rat fibronectin (used for immunoblotting) was purchased from 
Sigma Chemical Co. (St. Louis, MO). Mouse vitronectin was obtained 
from Telios Pharmaceuticals, Inc. (San Diego, CA) and type I collagen from 
Collagen Corp. (Palo Alto, CA). Mouse EHS entactin (nidogen) was 
purified by the method of Panlsson et al. (I987b). The core protein of perle- 
can was prepared as follows: purified HSPG was dialyzed agaln~t 50 mM 
Tris, pH 7.4, containing 1 mM PMSF in the cold. The HSPG (1 mg/mi) 
was then incubated with 1.5 conventional units/ml (0.0088 IU/mi) 
heparitinase (Seikagaku Kogyo, Tokyo, Japan) in the above buffer contain- 
ing 5 mM CaCI2, 0.5 mM diisoproIVl fluorophosphate for 20 h at 37~ 
The reaction was stopped with 5 mM EDTA. Heparan sulfate was released 
from intact protenglycan by incubating the sample in 0.05 M NaOH/1M 
NaBI-h at 45~ for 48 h (Yurchenco et al., 1987). The free heparan sulfate 
was dialyzed exhaustively against water and lyophillzed. Bovine kidney 
heparan sulfate (Seikagaku Kogyo), pig intestinal heparin (Calbiochem 
Corp., La Jolla, CA), de-N-sulfated heparin (Sigma Chemical Co.), chon- 
droitin sulfates A, 13, and C (Sigma Chemical Co.), and dextran sulfate (5 
kD; Sigma Chemical Co.) were obtained from commercial sources. 

Synthetic Peptides 
Soluble synthetic peptides, GRGDSP and GREDSP were purchased from 
Telios Pharmaceuticals, Inc. A synthetic peptide containing the RGD se- 
quence in perlecan (EGF repeat of domain HI) was prepared by the protein 
chemistry facility in the Department of Molecular Biophysics and Biochem- 
istry (Dr. Jim Elliot) at Yale University School of Medicine (New Haven, 
CT). This peptide was composed of 14 amino acids with the sequence 
N-cys-leu-pro-ala-sor-pha-arg-gly-aspdys-val-thr-ser-tyr-C. After a cysteine 
substitution for serine to permit coupling to protein, the 13 residues are 
those of perlecan in domain HI, from residues 993-1005 as deduced from 
sequencing of overlapping cDNA clones (Noonan et ai., 1991). Purity and 
composition were evaluated by C18 reverse phase I-IPLC (single peak), by 
amino acid analysis, and by mass spectrometry: the latter revealed a major 
peak with a molecular mass of 1,543.0, nearly identical to that predicted 
(1,542.8). The peptide was found to be readily and completely soluble in 
PBS. An aliquot of this peptide was coupled to BSA via maleimidobenzoyl- 
sulfosuccinimido (Pierce Chemical Co., Rockford, IL). 5 nag of peptide 
was added to maleimidobenzoylsnifosuccinimido-activated BSA, and the 
formed covalent complex was incubated overnight at 4*C, dialyzed in PBS, 
and stored at -120~ 

Antibodies 
Polyclonal antiserum was prepared against mouse perlecan by immunizing 
a New Zealand white rabbit with purified perlecan in complete Freund's ad- 
juvant. Specific antibody was isolated by affinity purification of serum on 
an immobilized core protein column (coupling method described below). 
This antibody was found to work well in immunoblots, mAb (HKI02) 

specific for core protein of periecan (low density HSPG) was a kind gift 
from Dr. Koji Kimata (Aiehi University, Japan) and was used for immuno- 
electron microscopy. Polyclonal antiserum was similarly generated against 
the long arm of mouse laminin (fragments E3 and ES): from this an A 
chain-specific reagent was prepared by fragment E3 affinity chromatogra- 
phy followed by cross-absorption against fragments ES, E4, and El'. Rabbit 
anti-mouse fibrunectin was purchased from Telios Phammceuticals, Inc. 
Blocking mAb AIIB2 (Hall et al., 1990), reactive against the ectodomaln 
of/~1 integrin and capable of inhibiting/31-mediated cell attachment, was 
a kind girl of Dr. Caroline Damsky (University of California, San Fran- 
cisco, CA). Blocking mAb antibody LM609 (Cheresh and Spiro, 1987), 
which recognizes the ectodomain.~ of a r t3  integrin, was a gift of Dr. David 
Cherish (Scripps Clinic, San Diego, CA). The two blocking integrin anti- 
bodies were obtained in ascites fluid with antibody representing 16 and 19% 
of total protein (AIIB2 and LM609), respectively. Sufficient AIIB2 was ob- 
tained to permit purification by ammonium sulfate precipitation for selec- 
tive experiments. Polyclonal rabbit antibodies specific for ~-1 and for/3-3 
integrins were prepared from the COOH-termina136 residues (Basun et al., 
t990). 

ELISA Competition Assay 
96-well Linbro type EIA microtitration plates (Flow Labs, Inc., McLean, 
VA) were coated with 0.1 mi per well antigen (1 #g/ml) in 50 mM sodium 
carbonate/bicarbonate buffer, pH 9.6. Subsequent incubation and wash steps 
were carried out in PBS containing 0.6 % Triton X-100 and 0.1% BSA. Wells 
were incubated with antibody in the presence of serial dilutions of compet- 
ing antigen, washed, and then incubated with a 1:6,000 dilution of protein 
A conjugated to HRP (Sigma Chemical Co.). Color was developed with 150 
ml/well of 0.1 mM o-phenylenediamine in 50 mM citric acid/100 mM so- 
dium phosphate buffer containing 0.04% H202 followed by the addition of 
50 #1 of 2 M sulfuric acid. Absorbance was read at 490 nm. 

Cells and Cell Attachment Assay 
Bovine aortic endothelial cells (I/tAEC) used for this study were prepared 
from calf aortas as previously described (Madri et aL, 1980), and cells were 
used between passages 8 and 11. Cell attachment to substrate-bound macro- 
molecules was assayed as follows: confluent BAEC were trypsinized, 
washed, and plated (2.0 • 104) on bacteriolegical-grade polystyrene 96- 
well plates (Costar Corp., Cambridge, MA) coated with 20/~g/ml perlecan 
or perlecan-core, 5 #g/mi laminin, 15/~g/ml fibronectin, 10 ~g/ml type IV 
collagen, and 10 #g/mi BSA. The fraction of bound substrate, on a mass 
basis, was found to be nearly identical when wells were incubated at these 
concentrations as measured with radioiodinated substrate (0.02 #g/cm 2 
peflecan and pedecan core, 0.02/~g/cm e laminin, 0.02 #g/cm 2 fibronectin, 
and 0.015 #g/cm 2 type IV collagen). Unless otherwise indicated, cells were 
incubated at 37"C in serum-free Dnibecco's modified Eagle medium (DME) 
for 2 h. To inhibit protein synthesis, cells were exposed to 2.5/tg/ml cyclo- 
heximide 1.5 h before trypsinization until the time of trypsinization. Under 
this condition >80% of protein synthesis was inhibited up to 8 h after replat- 
ing on substrate (as measured by ~ precipitation of cell-incorporation 
of [3H]leucine) while viability remained >95% for the first 4 h (trypan 
blue dye exclusion) with •5 % detachment at 4 h. A variation of the inhibi- 
tion protocol was used in some experiments (Figs. 1 and 3) in which cyclo- 
heximide was incubated throughout the adhesion assay (protein synthesis 
was inhibited by 94% between 0 and 2 h as calculated from the difference 
in TCA-precipitated [35S]methionine at 2 h and at 0 h in the presence of 
cycloheximide divided by the difference precipitated in the absence of r 
heximide). No differences in the effect on cell adhesion were noted with 
these treatments. After the incubation, dishes were washed three times with 
PBS and either stained with toluidine blue for photography or quantitatively 
assayed for cell adhesion (see below). Amounts of protein substrates bound 
to the wells were determined by adding a trace amount of 12sLlabeled pro- 
teins to unlabeled substrate solution before the experiment. Cell number 
was determined by a colorimetric acid phosphatase assay performed in 96- 
well tissue culture plates. Phosphatase in bound cells was measured by incu- 
bating the wells with enzyme for 1 h with 10 mMp-nitrophenyl pbosphatase 
(Sigma Chemical Co., number 104-0 phosphatase substrate), 0.1% Triton 
X-100, 0.1 M sodium acetate, pH 5.5 (Cunnolly et al., 1986; Basson et al., 
1990). Color was developed by adding 1 N NaOH and absorbence (405 rim) 
was converted to the percentage of the cells attached to the matrix using 
standard curve of the cell number. 

Radioiodination 
(a) BAEC cell surface proteins. 2 ml suspension of confluent BAEC (1 • 
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107. cell/ml) was labeled with 2 mCi of Na125I by lactoperoxidase-catalyzed 
iodination (Lew et al., 1986) for 40 min on ice using 200/~g enzyme and 
0.012% hydrogen peroxide. 150 ttl of 0.2 M NaI was added and the cells 
were washed extensively and processed for surface membrane extraction. 
Cells were extracted 1 h at 4~ with extraction buffer containing 200 mM 
octylglucoside (Sigma Chemical Co.), 2 mM PMSF, 10 mM sodium phos- 
phate, pH 7.4, in 127 mM NaC1 (PBS). (b) Heparin. Tyramine-conjngated 
heparin, prepared according to the method of Lee et al. (1991), was kindly 
provided by Dr. Arthur Lander (Massachusetts Institute of Technology, 
Cambridge, MA). A glass tube was coated with •10 #g of iodogen (Pierce 
Chemical Co.). 50 t~l of 0.25 M sodium phosphate buffer (pH 7.5) contain- 
ing several micrograms of conjugated heparin was mixed with 4.5 mCi Na- 
1251, incubated 15 min at room temperature, desalted on a Sephadex G25 
column, and fractionated on a Sepharose CL6B (50 x 0.6 cm) column. (c) 
Protein A. 5 mg of Staphylococcus aureus protein A (Pharmacia Fine 
Chemicals) was labeled with 5 mC1 of Na125I by lactopemxidase-catalyzed 
iodination at room temperature using 25-50 #g enzyme and 50 #1 of 0.003 % 
hydrogen peroxide for 15-20 rain. Labeled protein was affinity purified on 
a rabbit IgG affinity column. 

Affinity Chromatography 
HSPG-core altinity columns were prepared by coupling 1 nag of proteogly- 
can to 2 mi Sepharose CL-4B beads (Pharmacia Fine Chemicals) after cy- 
anogen bromide activation (0.05 g/rul beads). Cell extracts were centrifuged 
at 1,000 g for 10 rain. Supernatant was subjected to the column pre- 
equilibrated with column buffer (50 mM octylglucoside, 1 mM PMSF, PBS, 
pH 7.4), and were ehted with a linear gradient of 0.15-1 M NaC1 in pres- 
ence of magnesium chloride, calcium chloride, or EIYrA followed by 
0.1 M glycine and 8 M urea. A control column was made by coupling BSA 
(Sigma Chemical Co.) with Sepharose 4B. Fractions eluted from HSPG- 
core affinity chromatography were analyzed for radioactivity (1-#1 aliquots 
counted in a gamma counter LKB-Wallac model 1271, Turko, Finland), 
pooled, and dialyzed against PBS containing 1 mM PMSF, 1 mM CaCI2, 
and 1 mM MgCI2. Sample was lyophilized and solubilized for the SDS- 
PAGE. The gel was dried and exposed on X-Omat film (Eastman Kodak 
Co., Rochester, NY). 

Immunoprecipitation of Cell Surface Integrins from 
BAEC Lysates 
Lyophllized HSPG-core affinity purified proteins were reconstituted with 
PBS containing 1 mM PMSF and immunoprecipitated with rabbit poly- 
clonal antibodies (anti-/31, anti-B3) and rabbit IgG. 100 #1 of preabsorbed 
lysates was incubated with 50 #1 of rabbit polyclonal antibody diluted 1:20 
in 4% BSA in PBS for 1 h on ice, then incubated with 20 #1 of cyanogen 
bromide-activated Sepharose CL-6B beads coupled to protein A for 1 h on 
ice. Beads were washed six times with washing buffer containing 0.5 % so- 
dium deoxycholate (Sigma Chemical Co.), 0.1% SDS, 1% Triton X-100, 150 
mM NaC1, 50 mM Tris-HCl, pH 7.4. Samples were boiled for 5 rain in SDS 
sample buffer and subjected to SDS-polyacrylamide electrophoresis (SDS- 
PAGE; Laemmli, 1970) on gels prepared as a linear 3.5-12% gradient and 
under nonreducing conditions. Gels were dried and exposed on X-Omat 
x-ray film (Eastman Kodak Co.) at -700C. 

Immunoblotting 
Samples separated by SDS-PAGE were transferred by cross-electrophoresis 
to a nitrocellulose membrane (Towbin et ai., 1979), blocked with 4% BSA 
in PBS, and incubated with or without biotinylated-HSPG-core (sulfosuc- 
cinimidyl-6-(biotinamido) hexanoate, Pierce Chemical Co.) overnight at 
4~ After washing, the membrane was incubated with peroxidase-con- 
jugated streptavidin (Pierce Chemical Co.) and color developed by DAB 
containing 0.01% hydrogen peroxide. Freshly prepared BAEC lysates were 
electrophoresed on SDS-PAGE and immunoblotted with anti fl-1 and fl-3 
polyclonal antibody (described in detail in Basson et al., 1990). For further 
analysis of perlecan, blocked nitrocellulose membranes with transferred 
proteins were incubated with anti-laminin and flbronectin (10 #g/ml) for 
several hours. The membranes were washed, inenbated with radioiodinated 
protein A ('o106 cpm/ml) for an additional hour, washed, dried, and pre- 
pared for autoradiography. 

Inhibition of Cell Attachment 
with Glycosaminoglycans, Antibody, 
and Synthetic Peptides 
Soluble peptides (10-100 t~g/mi) were directly added to the medium without 

fetal calf serum. Cycloheximide (2.5 #g/ml) was added 90 rain before plat- 
ing the cells. After incubating 120 min, cells were washed three times with 
PBS and reincuhated with acid phosphatase substrate for an additional 1 h. 
The effects of heparin, de-N-sulfated heparin, dextran sulfate, chondroitin 
sulfates A, B, and C, and hyahronic acid on BAEC attachment to HSPG- 
core, laminin, and fibronectin were evaluated at either a fixed concentration 
(1 #g/ml) to compare bound substrates or as a function of concentration 
(0-100 #g/ml) on core protein. Glycosaminoglycans (GAGs) were directly 
added to the medium containing cells and cell attachment was measured 
after 2 h. 

Immunofluorescence Light Microscopy 
Glass slides were coated with perlecan core and blocked with 4% BSA in 
PBS. Endothelial cells were cultured on these coated slides for up to 20 h. 
For incubations up to 5 h cells were treated with cycloheximide as previ- 
ously described. For overnight incubations, cycloheximide was not used be- 
cause of developing eytotoxicity. After ineuhations of substrate, cells were 
washed twice with cold PBS and then fixed and permeabilized with metha- 
nol for 4 min at -20~ followed by acetone for 2 min at -20"C. The slides 
were covered with 5% normal goat serum in PBS for 15 min and then in- 
cuhated with rabbit anti/31 (1:20), anti-/53 (1:20), anti-c~-actinin (1:200), 
or rabbit nonimmune serum (1:20) for 2 h at room temperature. After wash- 
ing with PBS containing 1 mg/mi BSA, 0.05% Tween 20, the slides were 
incubated with FITC-goat anti-rabbit IgG (1:100; Sigma Chemical Co.) for 
1 h. The slides were again washed, and then mounted with coverslips using 
FITC-Guard (Testog, Chicago, IL). Slides were examined by epifluores- 
cence microscopy. 

Immuno-electron Microscopy 
The procedure for immunocytochemistry localization using the unlabeled 
antibody pemxidase-anti-peroxidase technique was as described previously 
(Hayashi et al., 1987). Aorta from a C57B6 mouse was dissected and fixed 
in 4% formaldehyde (methanol free, EM grade; Polysciences, Inc., War- 
rington, PA) in 0.1 M phosphate buffer, pH 7.4, for 4 h. After fixation tis- 
sues were cut very thin and washed in 0.1 M phosphate buffer containing 
7 M sucrose overnight at 4"C. The sliced tissue sections were treated with 
1% hydrogen peroxide in 50% methanol for 30 min, washed, and covered 
with 5% BSA in 10 mM sodium phosphate, pH 7.4, containing 127 mM 
NaC1 (PBS) for 15 min. The tissues were reacted with primary monoclonal 
antibody overnight at 4"C, then with goat-anti rat IgG (no cross-reaction 
to mouse IgG; Cooper Biomedical, Inc., Malvern, PA) at 1:20 dilution for 
30 min and with rat peroxidase-anti-peroxidase (Jackson Immuno Research 
Laboratories, Inc., West Grove, PA) diluted 1:50 for 30 min at room tem- 
perature. After washing, tissues were fixed in 2 % glutaraldehyde in PBS 
for 20 rain at 4"C and washed in PBS. Sections were then placed in the DAB 
mixture containing 1% dimethyl sulfoxide but without hydrogen peroxide 
for 30 min and for an additional 3 min in the same mixture in the presence 
of 0.01% hydrogen peroxide. Sections were washed and reacted with 1% os- 
mium tetroxide in 0.1 M phosphate buffer, pH 7.4, for 1 h to produce os- 
mium black. Sections were dehydrated through a graded series of alcohols, 
embedded in Epon-Araldite, and polymerized at 60"C. Thin sections were 
cut with a diamond knife on a Sorvall Porter-Blum MT-2 ultra-microtome 
(Newtown, CT) and photographed with a Philips 420 electron microscope 
(Eindhoven, Holland). Negative controls for immunocytochemical staining 
included replacing the primary antibody with normal rat IgG in place of the 
primary antibody and processed in the same manner as above. 

Results 

Endothelial Cell Adhesion to Proteoglycan Core 
Comparative attachment studies for perlecan, perle.can core 
protein, fibronectin, type IV collagen, and laminin immobi- 
lized on plastic wells were carried out with these components 
at a similar bound density. The attachment of endothelial 
cells on bacteriologic dishes coated with plasma fibronectin, 
type IV collagen, laminin, intact perlecan (HSPG) and 
HSPG-core were measured as a function of time (Fig. 1). 
Over a period of 3 h, cells were found to increasingly bind 
to protein substrate. The highest rate of binding occurred on 
fibronectin and type IV collagen. The average increase in 
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Figure 1. Ttme course of endothelial cell attachment to extracellular 
matrix components. Confluent endothelial cells, treated with cyclo- 
heximide (unless otherwise indicated), were plated, in the absence 
of serum, on bacteriological 96-well dishes p~viously coated with 
perlecan (HSPG, open triangles, dash-dotted line, n = 3), perlecan 
core (Core, solid circles, solid line; n = 12), core in the absence 
of eyelobeximide (open circles, short dashedline; n = 12), laminin 
(I.,m, inverted solid triangles, solid line; n = 3), fibronectin (Fn, 
open squares, short dashed line; n = 3), fibronectin without eyelo- 
heximide (small open squares, short dashed line; n = 3), collagen 
type IV (Col-17d, solid squares, dotted line; n = 3), and albumin 
(BSA, solid triangles, dash-dotted line; n = 3). Cells were in- 
cubated for the indicated times at 37*Cin DME without fetal calf 
serum. After the incubation dishes were washed with PBS. Acid 
phosphatase activity in each well was measured by optical density 
which converted to the percentage of the cells attached to the ma- 
trix using standard curve of the cell number. Bars indicate standard 
deviations. 

adhesion to perlecan core was nearly linear up to 3 h and 
furthermore was similar to that found with larninin. Adhe- 
sion to core or other components (cycloheximide-free plots 
shown only for core and fibronectin) was not dependent on 
protein synthesis because the adhesion levels were nearly the 
same in the absence and presence of cycloheximide (latter 
producing almost complete inhibition of protein synthesis). 
Little binding was observed on intact proteoglycan or albu- 
min. The possibility that the heparitinase used to prepare 
isolated core, or a contaminant in the enzyme preparation, 
contributed to cell adhesion was evaluated by plating cells on 
immobilized heparitinase (0.03 cu/ml coat, the same concen- 
tration present in the core preparation): cell adhesion was 
found to be essentially identical (1.6, 2.3, and 3.7% at 1, 2, 
and 3 h) to the albumin control. The basis for the poor adhe- 
sion to intact perlecan was evaluated as described in Figs. 
11 and 12. The effect of cell attachment on cell morphology 
was examined (data not shown). Cells which attached to 
fibronectin, laminin, and core were found to develop a 
"spread" (flattened fusiform) morphology, interpreted as a 
cytoskeletal rearrangement in response to attachment. Those 
few cells which bound intact perlecan retained a rounded 
morphology. 

Characterization of  the Core Substrate and Inhibition 
of Cell Adhesion with Core-specific Antibody 

By SDS-PAGE (Fig. 2), the core protein migrated as a single 
major species with a molecular weight of ,,o450 kD as previ- 
ously observed (Yurchenco et al., 1987). No species the size 
oflaminin (,,,400, 200 kD), entactin (150 kD), type IV colla- 
gen (185, 170 kD), fibronectin (220 kD) or vitronectin was 

observed. Affinity-purified core antibody reacted with core, 
but not laminin, entactin, fibronectin, vitronectin, type IV 
collagen, or type I collagen by immunoblot and/or competi- 
tion ELISA assay (Fig. 2). Laminin A chain and fibronectin- 
specific antibodies (Fig. 2) did not cross-react with protein 
in the core preparation. The ability of core-specific antibody 
to block cell adhesion to core was then evaluated (Fig. 3). 
This antibody blocked most (>75 % at the highest concentra- 
tion shown and under presaturating conditions) cell adhesion 
to core protein in a concentration~ependent manner, but 
had little or no effect on laminin, fibronectin, vitronectin, or 
type IV collagen substrates. 

Inhibition of Cell Adhesion with Integrin Antibodies 

mAb (ARB2) to 81 integrins partially but substantially in- 
hibited cell attachment (Fig. 4 A). mAb (LM609) to the 
vitronectin receptor (ctv#3 integrin) produced no inhibition 
of cell adhesion when used alone. However, a mixture of 
these two antibodies produced almost total inhibition of cell 
adhesion. Furthermore, maximal inhibition with the /31- 
specific reagent permitted the ow#3-specific reagent to block 
the remaining cells from adhering to the perlecan core. 
EDTA, which can inhibit the binding of many integrins, al- 
most completely blocked endothelial cells adhesion (Fig. 4 
B). The blocking integrin antibodies were obtained as as- 
cites. We purified an aliquot of Allla2 to near homogeneity 
by ammonium sulfate precipitation and found it produced the 
same degree of inhibition when antibody concentrations in 
the pure preparation and ascites were matched (data not 
shown). Thus, in the concentration range studied, ascites did 
not appear to have an adverse effect on cell adhesion com- 
pared to pure reagent. The high concentration of purified an- 
tibody obtained permitted us to evaluate maximal inhibition 
of adhesion to core and, at both 75 and 150 #g/m1 antibody, 
17% of cells adhered to perlecan core (plot not shown). We 
concluded that endothelial cell adhesion to perlecan is medi- 
ated by integrins, and furthermore that the principal inte- 
grins involved possess ~1 and #3 chains. The latter receptor, 
because of the antibody specificity (Cheresh and Spire, 
1987), is likely to be the vitronectin receptor, o~v#3. 

Inhibition o f  Cell Adhesion to Proteoglycan Core with 
Synthetic Peptides 

Cell adhesion to the HSPG-core was significantly inhibited 
(one half to two thirds) by synthetic peptides containing arg- 
gly-asp (RGD) but not by a control peptide (GRGESP) (Fig. 
5 A). The core-specific peptide (c-RGD) was also effective 
as an inhibitor, exerting its effect both free or covalently cou- 
pled to albumin. A similar effect was observed with tissue 
culture plates coated with fibronectin (Fig. 5 B). Endothelial 
cells were also found to bind directly to a synthetic peptide 
containing 13 amino acids from the RGD region of perlecan 
and coupled to an albumin support via an NH~-terminal 
cysteine (c-RGD-BSA, Fig. 5 C). This latter adhesion, as ex- 
pected, was almost completely inhibited by soluble c-RGD. 
We concluded that endothelial cells bind to at least two 
topographical sites in the core protein. One of these sites is 
the single RGD triplet present in the lamininlike region. The 
binding at this site was independent of residues flanking the 
RGD triplet (compare sequences of, and inhibition of cell at- 
tachment by, the fibronectin and core-specific RGD pep- 
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Figure 2. Characterization of perlecan core (A and B) and core-specific antibody (Cand D). (A) SDS-PAGE Coomassie blue stained gels 
of reduced mouse perlecan core (lane/), mouse laminin/entactin (lane 2, with bands at ,~400, 200, and 150 kD), rat fibronectin (lane 
3) and mouse vitronectin (lane 4). (B) Autoradiograms (Western blot) of eleetrophoretically transferred proteins incubated with rabbit 
anti-laminin A chain (lanes 1 and 2) and rabbit anti-fibroneetin (lanes 3 and 4). One/~g of each protein was separated under reducing 
conditions by SDS-PAGE and transferred to nitrocellulose. The nitrocellulose, after blocking with BSA, was incubated with 10 ttg/ml 
affinity-purified antibody and labeled with 125I-protein A. Core protein preparation analyzed in lanes 1 and 3; laminin control, lane 2; 
fibroneetin control, lane 4. (C) Core-specific antibody immunoblots (Western). 1 ttg of pefleean core (lane 1 ), laminin/entactin (lane 2), 
rat fibronectin (lane 3), and mouse vitroneetin (lane 4) were separated under reducing conditions by SDS-PAGE, transferred to nitrocellu- 
lose, blocked, incubated with 10 ttg/ml affinity-purified rabbit anti-perlecan core, and detected with nSI-protein A. Reaction is observed 
only with core protein. (D) Competition ELISA assay to further evaluate specificity of core-specific antibody. 96-weU plates were coated 
with 0.1 ttg/well of perlecan and incubated with anti-core antibody (4 #g/ml) in the presence of serial twofold dilutions of soluble ligands 
(undiluted = 300 ttg/ml). (L/gands) Peflecan (closed circles), laminin (closed squares), entactin (open circles), type IV collagen (open 
triangles), type I collagen (closed triangles). 

tides). The other site(s), detected on core in the presence of 
inhibiting concentrations of soluble RGD peptides, are 
RGD-insensitive. 

To determine the relative contributions of the two integrins 
to RGD-dependent and RGD-independent adhesion, we 
evaluated the ability of the two integrin blocking antibodies 
for cells plated onto immobilized synthetic peptide (Fig. 6 
A) or onto the core protein of perlecan in the presence of 
maximally inhibiting concentrations of RGD peptide (Fig. 6 
B). On the cRGD-BSA substrate, anti-/31 antibody produced 
some inhibition of adhesion whereas anti-c~vB3 produced no 

inhibition alone. On the other hand, a mixture of the two an- 
tibodies inhibited most cell adhesion and, thus, the ,v/~3 an- 
tibody appeared to play a significant role in RGD-mediated 
adhesion. RGD peptide (GRGDSP) produced a ~50% base- 
line inhibition of cell adhesion to core (Fig. 6 B). Under 
these conditions, anti-~l antibody produced essentially com- 
plete inhibition of cell adhesion at concentrations (5/~g/ml 
total protein) which produced only partial inhibition on core 
substrate alone or on immobilized RGD peptide (compare 
with Figs. 4 A and 6 B). Furthermore, the addition of anti- 
c~v~3 antibody produced little or no additional enhancement 
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Figure 3. Inhibition of endothelial cell adhesion with core-specific 
antibody. Wells were coated with perlecan core (solid circles; n = 
6), laminin (open circles; n = 3), fibronectin (open diamond; n = 
3), type IV collagen (open triangles; n = 3) and vitronectin (open 
diamonds; n = 3). Cell adhesion was assayed 2 h after plating (cells 
treated with cycloheximide). Antibody specifically inhibited adhe- 
sion to core protein in a concentration-dependent manner. 

of this inhibition. These data suggest that only/31 integrin 
mediates RGD-independent adhesion while both/3-1 and/~-3 
integrins play a role in RGD-dependent binding. 

Characterization o f  Cell Surface Proteins Which Bind 
HSPG Core Protein 

A fraction of cell surface-radioiodinated proteins from en- 
dothelial cells bound core protein by affinity chromatogra- 
phy in the presence of MgClz and CaC12 (Fig. 7). Labeled 
proteins were eluted with either high salt (Figs. 7 a and 8) 
or EDTA (Fig. 8). In contrast, the cell lysates did not bind 
to an albumin control column (Fig. 7 b). SDS-PAGE analysis 
(Fig. 8) of iodinated endothelial cells lysates eluted from 
HSPG-core affinity chromatography revealed bands with 
molecular masses of 147, 116, 85, and also 60- and 35-kD 
bands. EDTA was more selective for the larger species 
(85-147 kD; Fig. 8). Immunoprecipitation of these HSPG- 
core purified proteins from total cell lysate and from core- 
affinity purified lysate with integrin antibodies demonstrated 
a shared larger species (147 kD), the alpha chain subunit, as- 
sociated with the ll6-kD/~1 chain and with the 85-kD/33 
chain (Figs. 8, and 9). The ability of the protein eluted from 
HSPG-core column to directly bind the core protein was 
evaluated by immunoblotting (Fig. 10). The core was found 
to react directly with the ll6-kD/31 cell surface protein. 
The lack of binding to the 85- and 147-kD bands may be ex- 
plained by a lower affinity of interaction or a loss of the con- 
formation required for binding during SDS-PAGE. 

Inhibition of Cell At tachment  with 
Glycosaminoglycans 

As described (Fig. 1), endothelial cells adhered to the core 
protein of perlecan, but that this adhesion was greatly re- 
duced if the heparan sulfate chains were not first removed 
with heparitinase. Because perlecan can possess heparan sul- 
fate chains of variable length, variable degrees of sulfation, 
or even completely free of heparan sulfate, we considered the 
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Figure 4. Effect of integrin antibodies and EDTA on cell adhesion 
to perlecan core. (A) Ceils (treated with eycloheximide) were in- 
cubated on core substrate in the presence of antibodies to two differ- 
ent integrins, mixtures of these antibodies, or IgG at different pro- 
tein concentrations for 2 h followed by removal of nonadherent ceils 
by washing. The following were evaluated: monoclonal rat anti- 
ectodomain of/31 integrins (anti-131; open circle, solid line), mono- 
clonal mouse anti-vitronectin receptor, cxv/33 (anti-ctv~3; solid cir- 
cle, solid line), rat IgG (solid triangle, dotted line), mouse IgG 
(open triangle, dotted line), anti-/31 mixed with anti-av/33 in a con- 
stant 1:1 ratio (solid square, solid line), and anti-/~l maintained at 
a constant 100 #g/ml whereas anti-txv/33 was varied (open dia- 
monds, short dashed line). Anti-/31 antibody blocked ~60% ofcelt 
adhesion as ascites. Purified antibody saturated at 75 #g/ml with 
83 % inhibition. A mixture of antibodies produced complete inhibi- 
tion (open diamonds) whereas anti-ow/33 produced no inhibition on 
its own. (B) Inhibition of cell adhesion with the chelating agent, 
EDTA. Chelation of divalent cation produced almost complete inhi- 
bition of adhesion. 

hypothesis that these chains serve a post-translational regula- 
tory function for adhesion. We addressed the possibility that 
cell adhesion is inhibited by heparin/heparan sulfate chains 
regardless of whether they are covalently linked to core, that 
this inhibiting activity is glycosaminoglycan-specific, and 
that the inhibition mechanism may not be confined to perle- 
can alone (Fig. 11). 

Cell adhesion to core protein was therefore evaluated in 
the presence (Fig. 11 A) of heparin, chondroitin sulfates A, 
B, C, bovine kidney heparan sulfate, EHS heparan sulfate, 
and dextran sulfate. Heparin, EHS heparan sulfate, kidney 
beparan sulfate, and dextran sulfate, unlike the other compo- 
nents tested, inhibited cell attachment to the HSPG-core. 
Heparin was the most etfective agent and only the more 
highly sulfated polysaccharides had activity. We compared 
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Figure 5. Effects of synthetic peptides on cell adhesion. (A) Inhibi- 
tion of cell adhesion to perlecan core. Soluble short synthetic pep- 
tides GRGDSP, GRGESP, synthetic peptide containing a 13-amino 
acid sequence from the RGD region in perle.can (c-RGD: upside 
down triangle, long dashed line), and c-RGD-BSA covalently 
bound complex were added directly to the medium. Cell attach- 
ment was measured after 120 min. RGD specifically, but incom- 
pletely, inhibited cell attachment to both HSPG-core and fibronec- 
tin. Addition of core-RGD peptide to BSA-core-RGD coated dishes 
similarly inhibited cell attachment in a dose-dependent manner. 
While inhibition was observed with GRGDSP (solid circle, solid 
line), it was not observed with GRGESP (open square, short 
dashed line). (11) Inhibition of cell adhesion to fibronectin with 
GRGDSP, c-RGD, and c-RGD-BSA but not GRGDESP. RGD- 
containing peptides, regardless of flanking sequences, partially in- 
hibit cell adhesion to both peflecan core and fibronectin. (C) En- 
dothelial cells bound directly to c-RGD-BSA immobilized on 
plastic. This adhesion was almost completely inhibited with c-RGD 
peptide. Cells treated with cycloheximide for all three panels. 

endothelial cells attachment to HSPG-core, laminin, and 
fibronectin (Fig. 11 B). Similar inhibitions were observed 
for all three components at low heparin concentrations (1/,g/ 
nil). This inhibition was lost if de-N-sulfated heparin, which 
lacks N-substituted but retains the O-substituted sulfates, 
was used instead of heparin. As described above, immobi- 
lized peflecan synthetic peptide c-RGD supported cell adhe- 
sion and soluble RGD peptides partially blocked cell attach- 
ment to perlecan core. We compared the ability of heparin 
to inhibit endothelial cells adhesion to perlecan core in the 
presence and absence of RGD peptide and to immobilized 
c-RGD-BSA (Fig. 11 C). While heparin inl-dbited cell adhe- 
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Figure 6, Evaluation of ceil adhesion to RGD-substrate (A) and to 
perlecan core in the presence of 100 #g/ml RGD peptide (B). (A) 
Anti-ill antibody (solid circles) partially inhibited cell adhesion to 
c-RGD-BSA whereas anti-av/~3 (open upside down triangles) did 
not. A mixture of the two antibodies (solid upside down triangles) 
produced substantial inhibition. (B) RGD-dependent binding to 
core was maximally inhibited with RGD peptide (100/,g/ml). Anti- 
fll antibody almost completely inhibited cell adhesion under these 
conditions and at substantially lower concentration compared to 
core in the absence of RGD. Furthermore, the addition of anti-c~vB3 
produced little or no enhancement of inhibition, unlike that ob- 
served with c-RGD-BSA substrate. 

sion to core, it did not inhibit cell adhesion to c-RGD pep- 
tide, even at high concentration. Furthermore, heparin 
blocked residual cell adhesion to core in the presence of 
maximally inhibiting concentrations of soluble RGD pep= 
tide. We concluded that endothelial cells needed to recognize 
a non-RGD domain in perlecan for heparin to be capable of 
inhibiting adhesion. 

We questioned whether there was a relationship between 
the binding of heparin to substrate and heparin inhibition of 
cell adhesion. Relative heparin binding (Fig. 12) to laminin 
E3 (main heparin binding domain; Yurchenco et al., 1990), 
BSA, perlecan core protein, and fibronectin were measured 
by incubating nitrocellulose blots of these proteins with ra- 
diolabeled beparin. As expected, binding to laminin E3 and 
fibronectin was observed. The core RGD-peptide conjugated 
to albumin also bound heparin (this latter binding may be ex- 
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Figure 7. Identification of nSl-surface-labeled bovine endothelial 
cells (endothelial cells) proteins by HSPG-core affinity chromatog- 
raphy. Endothelial cells cell surface membranes, surface radiola- 
beled and extracted by octylglucoside, were chromatographed on 
HSPG-core (A) and BSA (B) coupled Sepharose 4B affinity 
columns. Proteins were eluted with a linear 0.5-1 M NaCI gradient 
in the presence of MgCI2 and CaCI2 or EDTA followed by 0.1 M 
glycine and 6 M urea. 

plained by the presence of two basic residues in each RGD 
14mer with many peptides bound to each albumin molecule, 
producing local areas of increased basic charge density). On 
the other hand, no binding was detected to perlecan core pro- 
tein or to (unconjugated) albumin. We concluded it unlikely 
there is any relationship between the ability of protein sub- 
strate to bind heparin and the ability of heparin to inhibit cell 
adhesion to substrate. Fibronectin, laminin, and RGD pep- 
tide conjugated to BSA each bind beparin, hut cell adhesion 
is inhibited only for the first two. Perlecan core does not bind 
heparin (noncovalently), yet it is quite sensitive to hepa- 
rin/heparan sulfate inhibition of cell adhesion. 

Localization of a-Actinin, B1, and ~3 
Integrins in Endothelial Cells Adherent to 
Perlecan Core Substrate 
Endothelial cells were allowed to adhere to and spread on 
glass slides coated with perlecan core and blocked with 

BSA. After fixation and antibody staining, the cells were ex- 
amined by immunofluorescence microscopy (Fig. 13). By 
1 h incubation,/31 integrin were observed in punctate and 
elongated structures at the cell periphery with more diffuse 
staining in the perinuclear region. A lesser degree of such 
focal staining was observed for ot-actinin and/~3 integrin 
with most of the staining more diffuse. By several hours, in- 
creasing amounts of all three proteins were observed in these 
discrete peripheral structures, suggestive of focal contacts. 
The focal structures were observed to be present the follow- 
ing day. These data suggest that/31 integrins, and/33 inte- 
grins more slowly, accumulate in focal contacts or focal 
contact-like structures in response to cell adhesion and 
spreading on perlecam core protein. 

Localization of  Perlecan in the Basement Membrane 
of  Mouse Aorta 

Ultrastrucmral immunoperoxidase stain showed the flat aor- 
tic endothelial cells adherent to the underlying basement 
membrane. Perlecan core antigen was localized in the lamina 
densa of this basement membrane. Other than the presence 
of some intracellular label in endothelial vesicles (presum- 
ably in secretory vesicles), antibody reaction product was 
not detected elsewhere. Nonimmune antibody gave almost 
no detectable staining (Fig. 14). 

Discussion 
Perlecan, a high molecular weight heparan sulfate proteogly- 
can, has been identified in a wide variety of basement mem- 
branes (Kato et al., 1987) and isolated from sources such as 
mouse EHS tumor (Paulsson et al., 1987a) and endothelial 
cell culture medium (Saku and Furthmayr, 1989). By EM the 
core protein has the appearance of a tandem array of five or 
six globular regions separated by thinner neck!ike link~ 
(Paulsson et al., 1987; Yurchenco et al., 1987). Recently, the 
complete sequence for mouse perlecan ~oonan et al., 1991) 
was deduced from analysis of overlapping eDNA clones. On 
the basis of this sequence, perlecan has been divided into five 
domains: a heparan sulfate region (domain 1) followed by an 
LDL-receptorlike region (domain ID, a laminin short-arm 
region with three globules and three intervening EGF-like 
repeats (domain HI), an N-CAM-Hke region (domain IV) 
and finally laminin A-chain G domalnlike regions (domain 
V) near the COOH terminus. Analogous to other multido- 
main extracellular matrix molecules (e.g., fibronectin), this 
type of structure suggests the existence of a variety of 
domain-specific structural and cell-interactive functions. 
While nonintegrin cell surface proteins (38 and 80 kD) from 
bepatocytes have previously been reported to bind to the 
core protein of the basement membrane HSPG (Clement et 
al., 1989, Clement and Yamada, 1990), the presence of an 
RGD sequence (amino acid residues 998-1,000) in the sec- 
ond globule of the lamininli~ domain HI (Noonan et al., 
1988, 1991) suggested that endothelial cell adhesion to 
HSPG could be mediated by the integrin family. 

In this study, we evaluated the adhesive properties of perle- 
can for aortic endothelial cells, cultured primary explanted 
cells which have been well-characterized with respect to 
their interactions with other extracellular matrix compo- 
nents. These matrix macromolecules have been found to 
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Figure 8. Autoradiogram of labeled 
cell surface protein eluted from 
HSPG-core affinity column (lanes 
a-i) and BSA column (lane j)  ana- 
lyzed by SDS-PAGE (3.5-12 % linear 
polyacrylamide gradient). Lanes: (a) 
unbound fraction, (b) bound frac- 
tions 37-39, (c) 40-42, (d) 43-45, 
(e) 46-49, (f)  50-55, (g) 56-65, (h) 
peak fraction subsequently elnted 
with 6 M urea; (i) peak fraction elut- 
ed with 5 mM EDTA in separate run; 
(j)  peak fraction eluted with NaCI 
from control BSA column. 

Figure 10. Binding of HSPG-core 
purified endothelial cell surface pro- 
tein to HSPG-core. The peak frac- 
tion of endothelial cells cell lysates 
were eluted from a HSPG-core col- 
umn with a NaCI gradient, pooled 
and subjected to SDS-PAGE. Proteins 
were electrophoretically transferred 
to a nitrocellulose membrane and in- 
cubated with (lane a) or without (lane 
b) biotinylated-HSPG-core overnight 
at 4~ After washing the membrane 
was incubated with peroxidase-conju- 
gated streptavidin and colored by 
DAB containing 0.01% hydrogen per- 
oxide. Core reacted specifically with 
the ll6-kD cell surface protein. 

Figure 9. Immunoprecipitation of integrin from endothelial cell ly- 
sates (lanes a-c), and HSPG-core purified endothelial cell lysates 
(lanes d-f) .  J2SI-labeled endothelial cell lysates from confluent en- 
dothelial cells were purified with HSPG-core affinity chromatogra- 
phy. The peak fractions eluted with NaCI gradient were immuno- 
precipitated with rabbit polyclonal anti-/51, (a and d), anti-B3 (b 
and e), and rabbit IgG (c and f ) ,  followed by incubation with pro- 

tein A-Sepharose. The proteins released from the beads with SDS 
were subjected to PAGE (linear 3.5-129[ gradient) under nonreduc- 
ing conditions/31 (147, 116 kD) and/33 (147, 85 kD) integrins were 
imanunoprecipitated from endothelial cells cell lysates which 
bound HSPG-core. 
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Figure 11. Effects of exogenous glycosaminoglycans on endothelial cell adhesion. (.4) Inhibition of endothelial ceil adhesion to pefle~an 
COre was determined for different glycosaminoglycans after 2 h. Heparin (hep: solid circles, solid line); heparan sulfate isolated from EHS 
perlecan (HS, El-IS; open diamonds, solid line), heparan sulfate isolated from bovine kidney (HS, BK: solid triangle, dashed double dotted 
line), and dextran sulfate (DS: open triangle, dashed dotted line) substantially inhibited cell attachment while de-N-sulfated heparin (dNS- 
hep: solid diamond, long dashed line), chondroitin sulfates A, B, C ( CS-A, CS-B, CS-C: upside-down closed triangle, medium dashed 
line; side down open triangle, short dashed line; solid square, dotted line, respectively), and hyaluronic acid (HA: open square, short dashed 
line) did not. Average and standard deviation of three measurements shown for each incubation. (B) Effects of heparin and de-N-sulfated 
heparin on endothelial cells. Attachment to perlecan core, laminin (Lm), and fibronectin (In). Heparin (Hep) and de-N-sulfated heparin 
(dNS-heparin) were added to the medium before cell attachment. Addition of 1 /~g/ml produced significant inhibition of cell attach- 
ment to the core, lamlnln and fibronectin (at 2 h binding) whereas addition of the same amount of de-N-sulfated heparin had no significant 
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Figure 12. Heparin binding to cell substrates. Protein samples used 
as cell substrates were dot-blotted (0-50 rig/well) onto a 0.45-/~m 
nitrocellulose sheet using a 96-well vacuum manifold. The sheets 
were then detached from the manifold, washed in PBS, incubated 
with ~25I-heparin ('~15 kD; 1 mg/ml; 2.4 • 105 cpm//~g) for sev- 
eral hours at room temperature, washed with several changes of 
PBS, and air-dried. The sample dots were cut out and radioactivity 
was determined with a gamma counter. Background counts (162), 
determined from wells without protein, were subtracted. Heparin 
binding to cell substrates. The substrates were the heparin-binding 
laminin fragment E3 (open circles), fibronectin (open squares), 
perlecan core (solid upside down triangles), BSA (solid circles), 
and c-RGD peptide conjugated to albumin (open upside down tri- 
angles). 

influence cell proliferation, cell migration, cell shape, and 
cytoskeletal organization (Palotie et al., 1983; Madri and 
Stenn, 1982; Madri and Pratt, 1986). Several integrins (/91 
and/33 class) have been implicated in the mediation of en- 
dothelial adhesion to the basement membrane components 
laminin and type IV collagen 03asson et al., 1990). Two of 
the integrins involved in these interactions are a5#l  and 
av/33 (Basson et al., 1992). 

We have found that the perlecan core protein supports both 
the attachment and spreading of cultured endothelial cells at 
a level comparable to that of laminin, but below that of 
fibronectin and type IV collagen, and confirmed that perle- 
can is a component of aortic endothelial basement mem- 
brane. There are several lines of evidence to support the hy- 
pothesis that this adhesion is directly mediated through the 
core protein. First, cell adhesion can be detected as early as 
1 h, even when protein synthesis has been almost completely 
inhibited, Second, adhesion is selectively blocked by core- 
specific antibody. Third,/31 and/33 integrins bind directly to 
core protein by affinity chromatography and core protein 
binds directly to a cell surface protein identical in migration 
(116 kD) to/31 integrin. 

The profound inhibition of cell adhesion with EDTA impli- 
cated the integrins as major receptors in the process of en- 
dothelial cells adhesion to perlecan (Hynes, 1987; Ruoslahti 
and Pierschbacher, 1987). This adhesion appeared to be a 
specific consequence of a cell-core interaction because anti- 
body specific for core blocked adhesion to core, but not to 
other components. Well over half of this adhesion could be 

inhibited with a/31-specific antibody, implicating this integrin 
class as a major receptor. While an av/33 specific bl0oking 
antibody produced no inhibition on its own, both antibodies 
together essentially completely inhibited cell adhesion and, 
thus,/33 antibody considerably enhanced the efficacy of the 
first reagent. A possible thermodynamic mechanism for this 
effect is that the ~ integrin binds to the perlecan core with 
relatively higher affinity and, therefore, a selective block of 
these receptors results in a partial cell dissociation (because 
only low affinity/33 receptors remain to interact with sub- 
strate), while a selective block of low affinity/33 integrin 
leaves the high affinity/91 receptors firmly adherent. Im- 
munostaining of endothelial cells with mAbs to the two in- 
tegrins revealed that all cells, or nearly all cells, possessed 
both integrins, i.e., the two integrin classes were not sorted 
into two populations of cells. The identification of/31, and 
with time/33, integrin epitopes localized in what appear to 
be cellular focal contacts suggests that these integrins both 
play a role (/31 may be the first temporally) in the transition 
of adhesion to spreading. 

Cell surface-labeled lysates which bound to the core pro- 
tein were characterized and found to be enriched in/31 and 
/93 integrins. These integrins (~116 and ,~85 kD, respec- 
tively), each in association with a larger ,-chain (~147 kD), 
are the same as those identified in interactions with laminin 
(Basson et al., 1990). The or-chain is the same size as that 
immunoprecipitated with a5/31 specific antibody from aortic 
endothelial cells (Basson et a l ,  1992) and may be the same; 
however, further investigation is required to confirm this. 
Because/31 integrins are found mediating RGD-dependent 
and RGD-independent interactions, there may be two or 
more a-chains of the same, or nearly the same, molecular 
weight. The core protein selectively bound to the/31 band in 
a nitrocellulose blot and was evidence for a direct binding 
interaction between core and receptor. However, no interac- 
tion with the/33 chain could be detected under the conditions 
of the assay. This might be explained on the same basis as 
the greater inhibition of adhesion produced by the anti-~ an- 
tibody, i.e., that the core binds to one integrin with higher 
affinity than the other; however, a conformational depen- 
dency for/33 receptor, in which binding activity is lost after 
separation of the two chains, cannot be excluded. 

About half of cell adhesion could be inhibited with RGD 
peptides and integrin antibodies were found to inhibit cell 
adhesion to both immobilized RGD-peptide as well as to 
core protein whose RGD sites were blocked by soluble pep- 
tides./91 integrin, in contrast to/33 integrin, appears to be 
selectively required for RGD-independent adhesion to perle- 
can because only the AIIB2 reagent had any inhibition activ- 
ity for cell attachment to core when maximally blocked with 
soluble RGD peptide. While/31 integrin appears to play a 
role in both RGD-dependent and independent adhesion, we 
cannot determine whether it is the same in tegr in  dimer 
which mediates both, or, whether two different/31 integrin 
dimers are involved each with a similar-sized alpha chain not 
resolved by SDS-PAGE (e.g., vonder Mark et al., 1991)./31 

or presence of inhibiting concentrations of GRGDSP peptide: core-RGD synthetic peptide (14-mer) covalentiy coupled to BSA (c-RGD- 
BSA, solid circles), perlecan core protein (HSPG-core, open circles), and perlecan core protein in the presence of 100 ~g/ml soluble 
GRGDSP peptide (open squares), each in the presence of increasing concentrations of heparin. While cell adhesion to core was inhibited 
both in the absence and presence of RGD peptide, adhesion to immobilized synthetic peptide was not affected. 
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Figure 13. Immunolocalization of integrins on endothelial cells adherent to perlecan core protein. Aortic endothelial cells were cultured 
in the absence of serum on glass slides previously coated with core protein and blocked with BSA. Cells were evaluated after 1 h (a-d), 
5 h (e-h) and 20 h (i-l) incubation. For 1 and 5 h, but not for 20 h, the ceils were treated with cyclobeximide. The adherent cells were 
then fixed and permeabllized, and stained with rabbit antiserum specific for c~-actinin (a, e, i),/~1 integrin (b, f, j) , /33 integrin (c, g, 
k) as well as nonimmune serum (d, h, l). Focal punctate to linear staining structures, most prominently at the cell periphery, are detected 
as early as 1 h but increase in number with time for all three antibodies. Bar, 20 #m. 

integrin-mediated RGD-independent adhesion has been dem- 
onstrated in several other biological systems including the 
ot4/~I/VCAM-1 lymphocyte-endothelial interaction (Elices 
et al., 1990), the o~4/31/MCS lymphocyte-  and melanoma 
cell-fibronectin interactions (Guan and Hynes, 1990), and 
the a3/~l, a 4 ~ l ,  0~5/31, a6/~l/cell-bacteria invasion interac- 
tions (Isberg and Leong, 1990). 

A surprising finding was the sensitivity of cell binding to 
the presence of core-bound heparan sulfate or exogenous 
heparin and heparan sulfate. This inhibition was specific be- 
cause it was not observed with other polyanionic polysaccha- 
rides such as hyaluronic acid and chondroitin sulfates and re- 

quired the presence of N-sulfation. A prediction of this 
observation is that perlecan will not support endothelial cell 
adhesion unless the heparan sulfate chains have first been re- 
moved, are expressed with low sulfation, or are otherwise 
blocked (e.g., by binding to other basic proteins). While 
there is no direct evidence for the physiological significance 
of the endothelial-core interaction, there are indirect lines 
of  evidence that support such a role. Human colon carci- 
noma cells have been shown to secrete the perlecan precur- 
sor protein (core free of  heparan sulfate) into the extracellu- 
lar space (Iozzo and Hassell, 1989), fibroblasts can secrete 
perlecan as a chondroitin sulfate proteoglycan (Hassell et 
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Figure 14. Electron micrographs of mouse 
aorta immunostained for core protein of 
HSPG localized on the basal lamina be- 
neath the endothelial cells (a) whereas 
control shows no staining (b). Higher 
magnification of the basement membrane 
show HSPG-core localized as granules 
(c). Bars: (a and b) 1 #m; (c) 100 nm. 

al., 1992), and core free of these chains has been observed 
in several tissues, including kidney and the EHS tumor (Kato 
et al., 1988). It has been shown that perlecan undergoes a 
processing to lower molecular weight forms without heparan 
sulfate chains in both the EHS tumor and in the glomerular 
basement membrane (Klein et al., 1988). Thus, it appears 
that a fraction of core protein, intact or processed, can be 
found in basement membranes. 

The data support the hypothesis that the inhibiting effect 
of heparin is independent of heparin binding to extracellular 
matrix substrate but dependent upon appropriate selective 
site recognition. First, the ability of protein substrate to bind 
heparin did not correlate with the ability of heparin to inhibit 
cell adhesion. This makes it unlikely that the effect is medi- 
ated by a cell surface heparan sulfate which recognizes a 
binding site on the matrix substrate (e.g., Asch et al., 1991), 
or a receptor which recognizes a heparin-substrate complex. 
The effect here, then, appears to be different to a proposed 
heparin inhibition of endothelial cell spreading and chemo- 
taxis mediated by the heparin-binding domain of thrombo- 
spondin, a cellular interaction blocked with/33 but not/31 

specific antibodies (Taraboletti et al., 1990). Second, endo- 
thelial cells adhesion to a core RGD-containing synthetic 
peptide conjugated to BSA, although mediated by/31 and/33 
class integrins, was not sensitive to heparin inhibition. Thus, 
even though heparin binding to substrate is not required, the 
cell must nevertheless recognize an appropriate determinant 
in the substrate for heparin to inhibit cell adhesion: this de- 
terminant is not present in an RGD-containing sequence. 
Whatever the actual molecular mechanism, it appears that 
heparin can exert its effect by either directly binding to an 
interacting integrin (one reason to suspect that there are two 
/31 integrins) or by indirectly affecting integrin function fol- 
lowing binding to a heparin/heparan sulfate receptor. The 
heparin/heparan sulfate inhibition of endothelial cells adhe- 
sion to perlecan is also observed for laminin and fibronectin. 
The mechanisms could be similar here and glycosaminogly- 
cans may serve a more general role in the regulation of 
integrin-mediated endothelial cell adhesion. This may be 
particularly important given the role for heparin and some 
heparan sulfates in the mediation of thrombosis and vascular 
repair. 
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In summary, both by specific inhibition of cell adhesion 
and by direct analysis of the cell surface proteins involved in 
core binding, we find that/31 and/33 class integrins contrib- 
ute to endothelial cells adhesion. Both :/1 and :/3 integrins 
(the latter probably the vitronectin receptor) were RGD- 
dependent while only :/1 integrin had substantial RGD- 
independent activity. Cell adhesion was inhibited by cova- 
lently bound or soluble heparin and heparin sulfates and 
these selected glycosaminoglycans may provide a specific 
mechanism to modulate such interactions. 
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Note Added in Proof' The RGD-dependentJheparin-independent adhesion, 
one of the two classes of interactions identified in this study, is expected 
to be species-restricted because the triplet sequence is present in mouse but 
absent in human perle.can (Kallunki and Tryggvason, 1992; Murdoch et al., 
1992). 
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