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Abstract
Cardio-renal syndrome is a commonly encountered problem in clinical practice.
Its pathogenesis is not fully understood. The purpose of this article is to
highlight the interaction between the cardiovascular system and the renal
system and how their interaction results in the complex syndrome of
cardio-renal dysfunction. Additionally, we outline the available therapeutic
strategies to manage this complex syndrome.
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Definition
Cardio-renal syndrome (CRS) refers to conditions where acute or 
chronic dysfunction of either the heart or the kidneys leads to dys-
function of the other. The current definition of CRS encompasses 
five subtypes that reflect the primary and secondary pathology, the 
time frame, and simultaneous cardiac and renal co-dysfunction sec-
ondary to systemic disease1–3. These subtypes themselves do not 
indicate the underlying pathologic mechanism causing the heart 
and kidney interaction but just represent the primary organ dysfunc-
tion that leads to CRS. The type V subtype does not fit under the 
above definition of CRS, as the kidney and heart dysfunction in this 
subtype is the result of various systemic illnesses.

The incidence of CRS depends on the subtype. Acute kidney injury 
(AKI) occurs in 25% to 33% of acute decompensated heart failure 
(ADHF), which is an independent risk factor for prolonged hos-
pitalization, need for renal replacement therapies, readmission, 
increased stroke risk, and mortality4. In 60% of ADHF cases, AKI 
can be seen as an exacerbation of previously diagnosed chronic 
kidney disease (CKD), whereas in chronic heart failure (HF), CKD 
has been reported as a comorbidity in 26% to 63% of sufferers5.

Classification of CRS
The classification of CRS is outlined in Table 1. In this section, we 
briefly describe each type of CRS, their epidemiology, and their 
impact on clinical outcomes.

Type I CRS
Acute impairment of cardiac function leading to renal dysfunction 
occurs in approximately 25% to 33% of patients admitted with 
ADHF, depending on the criteria used, with important implications 
for diagnosis, prognosis, and management6. In ADHF, AKI is asso-
ciated with increased risk for both short- and long-term all-cause 
and cardiovascular mortality7,8. In a cohort of 467 patients admitted 
with ADHF, patients with persistent renal insufficiency defined as 
an increase in serum creatinine ≥0.5 mg/dL beyond 30 days had 
increased mortality (46.1% vs. 20.5%) compared with patients who 
had a transient rise in creatinine with return to baseline in less than 
30 days9.

In acute HF, AKI appears to be more severe in patients with  
impaired left ventricular (LV) ejection fraction, with an incidence 
of 70% in patients with cardiogenic shock10. When renal function 
declines more severely (increase in creatinine of >0.5 mg/dL 
in combination with >25% increase in serum creatinine level 

between admission and discharge), 180-day mortality is signifi-
cantly increased by 10%. Relief of congestion in acute HF with 
a decrease in N-terminal prohormone of brain natriuretic peptide 
(NT-proBNP) levels by more than 30% is associated with a 15% 
absolute lower mortality11,12.

Type II CRS
Chronic HF is thought to predispose to CKD. However, chronic HF 
and CKD commonly coexist, and it is difficult to determine which 
of the two disease processes is primary13. In the Digitalis Investiga-
tion Group trial, pre-existing CKD was found in 45% of chronic 
HF patients and was associated with a higher rate of hospitaliza-
tion and death14. In a pooled data analysis from two longitudinal,  
community-based datasets from the Atherosclerosis Risk in Com-
munities (ARIC) study and the Cardiovascular Health Study,  
7.2% of cardiovascular disease (CVD) patients had decline in 
kidney function when defined as an increase in serum creatinine  
≥0.4 mg/dL and 5.6% developed new CKD during an average  
follow-up period of 9.3 years15.

Type III CRS
Type III CRS is less well studied, and the prevalence of this syn-
drome is unknown. It is defined as acute worsening of kidney 
function that leads to acute cardiac injury and/or dysfunction, 
such as acute myocardial infarction, congestive heart failure 
(CHF), or arrhythmia. Cardiac injury may be directly induced 
by inflammatory mediators, oxidative stress, and upregulation of  
neuroendocrine systems early after AKI16,17.

AKI may be associated with volume overload, retention of uremic 
solutes, pulmonary edema, and cardiac arrhythmias. Acidosis from 
uremia produces pulmonary vasoconstriction, which can signifi-
cantly contribute to right-sided HF18.

Type IV CRS
Primary CKD may contribute to a reduction in cardiac function 
from cardiac remodeling, LV diastolic dysfunction, hypertro-
phy, and/or an increased risk for cardiovascular events, such as 
myocardial infarction, heart failure, or stroke. Independent of 
age and conventional risk factors, CKD has been shown to be an 
independent predictor of CVD19. In a study involving 1,120,295 
adults, Go et al. demonstrated that the adjusted hazard ratio 
for CVD was 1.4 with an estimated glomerular filtration rate 
(GFR) of 45–59 mL/min/1.73 m2 (95% confidence interval [CI] 
1.1–1.2) compared with 3.4 (95% CI 3.1–3.8) for an estimated 

Table 1. Types of cardio-renal syndromes.

Type I Acute heart failure (HF) results in acute kidney injury (AKI) (previously called acute renal failure)

Type II Chronic cardiac dysfunction (e.g. chronic HF) causes progressive chronic kidney disease (CKD) (previously called 
chronic renal failure).

Type III Abrupt and primary worsening of kidney function due, for example, to renal ischemia or glomerulonephritis 
causing acute cardiac dysfunction, which may be manifested as HF

Type IV Primary CKD contributes to cardiac dysfunction, which may be manifested as coronary disease, HF, or arrhythmia

Type V 
(secondary) Acute or chronic systemic disorders (e.g. sepsis or diabetes mellitus) that cause both cardiac and renal dysfunction
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GFR of <15 mL/min/1.73 m220. In the HEMO study, ischemic 
heart disease was implicated in 61.5% of cardiac deaths in 1846 
chronic hemodialysis patients21. In a systematic review of 13 stud-
ies that reported both cardiovascular and all-cause mortality in 
non-dialysis-dependent CKD patients, increased risk for all-cause 
mortality was largely driven by cardiovascular deaths (58% of 
deaths)22.

Type V CRS
As indicated before, type V CRS is characterized by an acute or 
chronic systemic illness that concurrently induces cardiac and 
kidney injury and/or dysfunction. Heart or kidney dysfunction 
as defined under the umbrella term CRS is not the primary etiol-
ogy in this subtype. The data are limited on the epidemiology of 
type V CRS. Common conditions that lead to dysfunction of both  
kidneys and heart include, but are not limited to, sepsis, drugs such 
as cocaine, heroin, and chemotherapeutic drugs, infections such as 
hepatitis B, hepatitis C, and HIV, systemic lupus erythematosus, 
diabetes mellitus (DM), and amyloidosis. Bilateral renal artery 
stenosis may manifest as recurrent episodes of flash pulmonary 
edema.

Predisposing factors
Obesity
The cardiometabolic syndrome in the absence of frank DM has 
been associated with a 3- to 7-fold increased risk of CRS type I 
in a variety of clinical settings23. Obesity-related glomerulopathy 
has been long described as a condition of hyperfiltration in obese 
individuals without DM that ultimately leads to CKD and CRS, 
particularly type II and type IV24. The adipocytes secrete cytokines 
such as interleukin (IL)-6 and tumor necrosis factor alpha, which 
are implicated in the progression of both cardiac and renal disease.

Anemia and nutritional deficiencies
Anemia, cachexia, and nutritional deficiencies result in elevated 
tumor necrosis factor alpha and other pro-inflammatory cytokines 
associated with either HF or CKD and may contribute to further 
damage and fibrosis of the other organ25.

Hypertension
Elevated blood pressure, in addition to causing direct cardiac and 
renal injury, also reflects increased sympathetic neurohumoral acti-
vation and is associated with increased incidence of worsening 
renal failure in patients with decompensated CHF26.

Diabetes
Diabetes, through many mechanisms, contributes to glomerular 
dysfunction and damage and ultimate loss of functioning filtration 
units and further contributes to CKD. Endothelial, mesangial, and 
podocyte injury in the presence of hypertension and DM results in 
excess quantities of albumin in Bowman’s space; thus, the proximal 
tubular cells have an increased reabsorption workload. This phe-
nomenon has been suggested to result in apoptosis of renal tubu-
lar cells, further nephron loss, and progression of kidney disease. 
Indeed, albuminuria and gross proteinuria has been consistently 
associated with the risk of AKI in a variety of settings27.

Pathophysiology
The pathophysiology of CRS is complex and includes dys-
function of the neurohormonal system, abnormal endothelial  

activation, and release of pro-inflammatory cytokines (Figure 1). 
These pathophysiological mechanisms operate simultaneously and 
sequentially, leading ultimately to cardiac and renal fibrosis and 
their dysfunction.

Neurohormonal dysfunction
In type I and type II CRS, venous congestion or reduced cardiac 
output as a result of cardiac dysfunction reduces GFR. This acti-
vates the renin–angiotensin–aldosterone system (RAAS) and 
nonosmotic release of arginine–vasopressin and other neuroen-
docrine hormones, such as endothelin, leading to renal injury28.  
Clinical studies have demonstrated elevated levels of plasma 
catecholamines in patients with renal dysfunction, indicating  
sympathetic hyperactivity in type III and type IV CRS29. Afferent 
signals from diseased kidneys to the central nervous system lead 
to increased sympathetic nerve discharge and contribute to hyper-
tension, cardiac injury, and further deterioration of renal function. 
Activation of RAAS increases angiotensin II levels, which promote 
aldosterone secretion, resulting in sodium and water retention. 
Angiotensin II also has direct trophic effects on cardiomyocytes 
and renal tubular cells that promote cellular hypertrophy, apoptosis, 
and fibrosis30.

Abnormal endothelial activation
Volume overload from either cardiac or renal dysfunction causes  
circumferential stretch of endothelial cells. This biomechani-
cal stress activates them, switching their synthetic profile from 
a quiescent state toward an activated state, which is pro-oxidant, 
pro-inflammatory, and vasoconstricting31. Concentrations of  
pro-inflammatory cytokines, such as tumor necrosis factor and  
IL-6, are increased, which impairs myocardial function and renal 
function and accelerates HF progression32.

Endotoxemia, infection, and inflammation
Intestinal hypoperfusion and congestion from cardiac and renal 
dysfunction leads to intestinal translocation of bacterial endotoxin 
(lipopolysaccharide [LPS]) into the systemic circulation, which 
activates circulating immune cells with release of cytokines, such 
as tumor necrosis factor alpha, IL-1, and IL-6, that can exacerbate 
myocyte and renal dysfunction33. However, randomized placebo-
controlled trials of anti-tumor necrosis factor alpha therapies in 
patients with CHF (i.e. Randomized Etanercept North American 
Strategy to Study Antagonism of CytokinEs [RENAISSANCE], 
Etanercept CytOkine Antagonism in VentriculaR dysfunction 
[RECOVER], and Anti-Tumor necrosis factor Therapy Against 
Congestive Heart failure [ATTACH]) have been disappointing  
and showed no clinical benefit34–36.

Role of venous congestion
It is a common notion in the medical community that worsening 
renal function in HF is due to hypoperfusion. While, hypoper-
fusion certainly could lead to renal injury, it is not the only mecha-
nism by which HF leads to renal dysfunction. Mullens et al. have 
demonstrated that in patients with low-output decompensated HF 
venous congestion as suggested by increased central venous pres-
sure (CVP) on admission as well as insufficient reduction of CVP 
during hospitalization was the strongest hemodynamic determi-
nant for the development of worsening renal function2. There is an 
inverse relationship between CVP and GFR in CHF1. Elevated CVP 
leads to elevated renal venous pressure that raises renal interstitial  
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hydrostatic pressure. If interstitial hydrostatic pressure exceeds 
tubular hydrostatic pressure, tubules will collapse and decrease net 
ultrafiltration pressure, causing renal dysfunction37.

Management
Here we describe the general concepts involved in the management 
of CRS. Often a multidisciplinary, multidimensional systematic 
and strategic approach is required to prevent and treat CRS.

Prevention
Since no definitive therapy is available to directly treat any one 
type of CRS, prevention should be a key strategy. Any patient with 
dysfunction of either the heart or the kidney is at high risk for the 
development of CRS. Development of CHF in patients with CVD 
or risk factors for CVD has an adverse effect on prognosis38. In 
patients with HF with reduced ejection fraction, the addition of an 
angiotensin converting enzyme (ACE) inhibitor to conventional 

therapy has been shown to reduce the incidence of CHF decom-
pensation and HF-related hospitalization39. The addition of RAAS 
inhibitors in patients with CHF may initially lead to mild worsening 
of renal function but usually stabilizes and overall is associated 
with improved mortality40. In patients being treated for decom-
pensated CHF, worsening of renal function may be related to the 
use of calcium channel blockers and over-diuresis and may not 
be directly related to the use of RAAS inhibitors41. The use of 
drugs that directly cause renal injury, such as nonsteroidal anti-
inflammatory drugs and contrast agents, should be avoided in 
patients with or who are at risk for CHF.

Since congestion plays a key role in the pathogenesis of almost all 
types of CRS, preventing volume overload is a key part of manag-
ing patients with CRS. Congestion can set up a vicious cycle of 
organ dysfunction through multiple pathways, as described under 
pathogenesis, which in turn leads to worsening cardiac and renal 

Figure 1. Pathophysiological interactions contributing to cardio-renal syndrome. Figure illustrates how RAAS activation, intestinal 
hypoperfusion, abnormal endothelial activation, and release of pro-inflammatory cytokines contribute to the development of CRS. CRS, 
cardio-renal syndrome; RAAS, renin–angiotensin–aldosterone system.

Systemic
diseases
Type V CRS
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function. Certain symptoms may pre-date the onset of clinical  
hypervolemia. History of anorexia and early satiety may point 
toward splanchnic congestion as well as elevated abdominal 
pressure and ascites, respectively. Prompt identification of these  
symptoms and attention to volume management will mitigate 
worsening of cardio-renal dysfunction. History also should focus 
on the use of nephrotoxic drugs (nonsteroidal anti-inflammatory 
drugs, antibiotics, high-dose diuretics, etc.). A mean arterial blood 
pressure of 60 mmHg should be maintained to allow adequate 
perfusion to vital organs such as the kidney and intestinal tract42. 
Hypotension, in addition to venous stasis and arteriolar vasocon-
striction, can result in intestinal ischemia and release of endotoxins 
from gut bacteria, activating the immune system and triggering the  
inflammatory cascade, resulting in cardio-renal dysfunction43.

Treatment of congestion
Congestion is treated with diuretics and salt restriction. Diuretic 
dosing is based on renal function and pharmacokinetic properties 
of diuretics. The DOSE-AHF study demonstrated no significant 
differences in prognosis or serum creatinine levels between high 
doses of furosemide (2.5 times their outpatient dose) and lower 
doses (equal to outpatient dose) in patients hospitalized for 
ADHF. There was also no benefit of continuous infusion over bolus 
dosing44.

Once-daily dosing of loop diuretics, such as furosemide, can lead 
to rebound increase in sodium absorption. Hence, twice-daily dose 
of loop diuretics should be used. Intravenous loop diuretics should 
be used in hospitalized patients with ADHF to overcome decreased 
absorption caused by splanchnic congestion45. When diuretic 
resistance is encountered, addition of thiazides or mineraloco-
rticoid receptor antagonists (MRAs) can promote diuresis by 
decreasing the enhanced sodium reabsorption in the distal 
tubule46,47. The Cardiorenal Rescue Study in Acute Decompensated 
Heart Failure (CARRESS-HF)48, a multicenter randomized trial, 
compared veno-venous ultrafiltration therapy vs. diuretic escala-
tion in patients with either systolic or diastolic HF and worsening 
renal function (creatinine increase >0.3 mg/dL and evidence of 
volume overload). When compared with diuretic therapy, ultra-
filtration in patients with type I CRS did not show a significant 
difference in weight loss, mortality, or the rate of hospitalization 
for HF during the 60-day follow-up period. There was a trend 
towards increased mortality in the ultrafiltration arm. However, 
patients requiring inotropes or vasodilator therapy and those with 
admission creatinine levels >3.1 mg/dL were excluded in this 
trial. Cardiopulmonary hemodynamics measurements were not 
made. Hence, it is not known if ultrafiltration has any role in patients 
who are diuretic resistant. In patients with significant ascites, 
paracentesis might be useful to reduce intra-abdominal pressure 
and improve renal hemodynamics and function49.

RAAS blockade
Excessive salt and water retention from activation of the RAAS in 
CRS alters cardiac preload and afterload, which further worsens 
cardiac and renal function. Breaking this cycle could be done by 
RAAS blockade with an ACE inhibitor and/or angiotensin recep-
tor blocker, preventing further cardio-renal injury. In CHF, RAAS 
blockade with ACE inhibitors can be given without adverse 

prognostic significance despite worsening of renal parameters50. 
Use of beta-blockers may be renoprotective when ACE inhibitors 
are used for the treatment of CHF51. MRAs such as spironolactone 
and eplerenone can inhibit neurohormonal surge and prevent wors-
ening of both cardiac and renal function in CRS. However, patients 
should be carefully monitored for hyperkalemia when given alone 
or with ACE inhibitors, particularly in the setting of pre-existing 
renal dysfunction. These drugs can also help overcome loop diu-
retic resistance when used for hypervolemia46.

LV assist devices
An LV assist device (LVAD) is an implantable mechanical cir-
culatory support device that has revolutionized the treatment of  
end-stage HF. Apart from being used to support patients awaiting 
heart transplant, they are now increasingly being offered to patients 
ineligible for heart transplant as destination therapy. Hence, 
LVAD destination therapy can be viewed as an alternative to heart 
transplant. Pre-LVAD implant renal dysfunction predicts higher  
mortality after LVAD implantation52. Hence, it is important that 
patients receive timely referral for LVAD therapy before HF 
worsens and leads to CKD. Renal function usually improves after 
LVAD implantation if decreased GFR is due to renal hypoperfusion 
before implantation. Most of the recovery tends to occur in the first 
month after LVAD placement and no further improvement in renal  
function occurs from about 1 month after pump placement. 
Improvement in renal function after LVAD implantation may be 
through improvement in intrarenal hemodynamics53 and reversal of 
renal hypoperfusion.

What the future holds
Implantable devices to measure intravascular volume in real 
time are being developed. The COMPASS-HF54 trial showed that 
increases in intracardiac pressures often arose independently of 
weight changes, such that monitoring of weight alone was inad-
equate to identify congestion in time to avert the events associated 
with HF. Early identification of elevations in pulmonary artery 
pressures that occur several days to weeks before the onset of 
worsening signs, symptoms, and hospital admission55 is now 
possible through implantable pulmonary pressure monitoring 
systems. This provides an opportunity to provide early intervention 
by targeting these pressures, which might reduce the risk of CHF 
decompensation and reduce the incidence of CRS.

Aldosterone plays a major role in cardiac, vascular, and renal 
remodeling by promoting oxidative stress, inflammation, fibrosis, 
and hypertrophy56,57. MRAs may reduce the negative effects of 
MR activation on the kidney, augment diuresis in diuretic-resistant 
patients, and attenuate the pre-renal state related to neurohumoral 
activation in ADHF. Further repeated renal injury by MR activation 
may contribute to the later progression to CKD. Clinical trials are 
underway using finerenone, a novel nonsteroidal MRA, in CRS58.

Another agent that has shown promise in CRS is serelaxin, which 
is a recombinant form of human relaxin-2. Relaxin, a peptide  
hormone secreted during pregnancy, is associated with increase 
in cardiac output and decrease in systemic vascular resistance. It 
was hypothesized that this pharmacological profile might have ben-
eficial effects in ADHF and renal function and was tested in the 
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RELAX AHF trial59. Serelaxin was associated with significantly 
lower serum creatinine and plasma cystatin C levels in the first  
5 days after enrollment. All-cause (7.3% vs. 11.3%, P=0.02) and 
CV death (6% vs. 9.5%, p=0.028) were lower at 180 days in the 
serelaxin arm. On subgroup analysis, mortality benefits were 
higher in patients not treated with beta-blockers, with GFR 
<50 mL/min, and aged >75 years. Adverse events related to renal 
impairment (6% vs. 9%, P=0.03) were similar between the two 
arms, with mortality benefit in the serelaxin arm. These results 
are promising and need to be confirmed in an ongoing large-scale 
study, the results of which are expected in early 2017.

Recent research has focused on enhancing the effects of natriuretic 
peptides (NPs) such as atrial NP and BNPs. These NPs contribute 
to the regulation of sodium and water balance, blood volume, arte-
rial pressure, and sympathetic inhibition through their effects on 
the venous system, kidneys, and brain. Neprilysin is an enzyme 
that degrades these NPs. Inhibition of neprilysin increases the 
physiological effects of NPs. The combined inhibition of both the  
angiotensin II receptor and neprilysin with a novel drug, LCZ696 
(sacubitril/valsartan), was more effective in reducing the risk of 
death from cardiovascular causes or hospitalization for HF than 
was ACE inhibition with enalapril in the PARADIGM-HF trial. 
This favorable response in mortality occurred in the absence of 
worsening of renal function or hyperkalemia in the LCZ696 group 
as compared to the enalapril group60. Of note, more than 3000 
patients in the study were in stage III CKD with estimated GFR 
between 30 and 60 mL/min/1.73 m2. Further studies are needed to 
address the effect of LCZ696 on CRS.

Sympathetic system overactivity plays a key part in the progres-
sion of CRS. Catheter-based renal denervation is a promising new 
therapy designed to reduce renal sympathetic activity, leading to a 
generalized reduction in systemic sympathetic activation. Based on 

animal studies, pilot trials are underway to study the effect of renal 
denervation on the heart and kidney in CHF61.

Conclusion
CRS is now a firmly established entity relating to the complex  
interaction that exists between the heart and the kidney. The pre-
vention and treatment of CRS remains a challenge to physicians. 
Primary prevention strategies focusing on the modification of risk 
factors such as obesity, hypertension, DM, and tobacco use are 
important. From a treatment standpoint, hemodynamic support 
in low-output states, relief of congestion with judicious use of  
diuretics, and suppression of neurohumoral activation remain the 
cornerstones of treating CRS. Novel devices and therapeutics 
such as intracardiac pressure monitoring, neprilysin inhibition,  
third-generation MRAs, and sympathetic denervation are being 
investigated.
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