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PB101, a VEGF- and PlGF-targeting decoy protein, enhances antitumor immunity and 
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ABSTRACT
Antiangiogenic therapy is a recognized method for countering the immunosuppressive tumor micro
environment (TME) and improving anti-tumor immunity. PB101 is a glycosylated decoy receptor that 
binds to VEGF-A and PlGF with high affinity, based on the VEGFR1 backbone. Here, we elucidated PB101- 
induced remodeling of tumor angiogenesis and immunity, which enhances anti-PD-L1 immune check
point blockade. PB101 inhibited tumor growth by suppressing angiogenesis and enhancing CD8+ T cell 
infiltration into the tumors. PB101 induced robust reprogramming of antitumor immunity and activates 
intratumoral CD8+ T cells. Anti-tumor efficacy of PB101 is mostly dependent on CD8+ T cells and IFN-γ. 
PB101 reprograms tumor immunity in a manner distinct from that of the conventional VEGF decoy 
receptor, VEGF-trap. With its potent immune-modulating capability, PB101 synergizes with an anti-PD- 
L1, triggering strengthened antitumor immunity. Combining PB101 and anti-PD-L1 could establish 
durable protective immunity against tumor recurrence and metastasis. The findings of this study offer 
scientific rationales for further clinical development of PB101, particularly when used in combination with 
immune checkpoint inhibitors, as a potential treatment for advanced cancers.
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Introduction

Tumor angiogenesis is an essential mechanism for tumor 
growth, progression, and metastasis of cancer, and is driven 
by diverse proangiogenic factors, with vascular endothelial 
growth factor (VEGF) being the most important.1–5 Over the 
last two decades, various antibodies, small-molecule inhibitors, 
and recombinant proteins targeting the VEGF family and its 
receptors have been developed that are now used as standard 
treatments for several malignancies.1,2,4 However, monother
apy with antiangiogenic agents is often cytostatic and only 
provides transient and modest survival benefits.2,5,6 

Moreover, some preclinical studies have raised concerns that 
excessive suppression of angiogenesis may accelerate tumor 
invasion and metastasis depending on the tumor stage and 
the duration of antiangiogenic treatment.7,8

Although VEGF was initially discovered as an angiogenic 
factor, it is now increasingly recognized as an immunosuppres
sive factor that regulates both innate and adaptive immunity 
within the TME.9–11 Consequently, VEGF/VEGFR-targeting 
therapies have attracted attention as they have been found to 
enhance anti-cancer immune responses within the TME.2–4 

During the last 5 years, combination therapies of angiogenesis 
inhibitors and immune checkpoint inhibitors have been shown 
to induce the most potent and durable anticancer immune 

responses in preclinical and clinical studies, and have become 
the new gold standard for the treatment of liver, kidney, lung, 
and endometrial cancers.3,12–16 Therefore, when developing 
angiogenesis inhibitors, both antiangiogenic and immune 
reprogramming mechanisms should be evaluated to achieve 
optimal therapeutic efficacy.

Placental growth factor (PlGF) is a pro-angiogenic factor 
that was first discovered in the placenta and belongs to the 
VEGF family of ligands.17 PlGF binds to VEGFR1 on endothe
lial cells to regulate endothelial cell sprouting, mitogenesis, cell 
migration, and vascular permeability, and regulates immune 
responses by engaging VEGFR1 in hematopoietic cells.18–21 In 
the TME, PlGF is known to play protumoral immunosuppres
sive roles by inhibiting the maturation and antigen presenta
tion of dendritic cells and regulating the survival and 
polarization of tumor-associated macrophages (TAMs).18,22,23 

Furthermore, it inhibits cytotoxicity and cytokine production 
in intratumoral NK cells.18,22 Moreover, activated T cells not 
only express VEGFR2 but also VEGFR1, and the engagement 
of VEGFR24,25 in these cells can directly modulate T cell func
tions, such as T cell trafficking or IL-10 production.18,26

Previously, we developed PB101, a glycosylated soluble 
decoy receptor fusion protein for VEGF and PlGF, by fusing 
the immunoglobulin homology (Ig)-like domains 2 and 3 of 
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VEGFR1 to IgG1-Fc.27–29 PB101 exhibited enhanced decoy 
activity against VEGF-A and PlGF, compared with VEGF- 
trap.27,28 This advantage was attributed to the VEGFR1 back
bone of PB101, which enabled its robust antiangiogenic, anti
tumor, and antimetastatic efficacies in various tumor 
models.27,29 However, the mechanisms of action other than 
antiangiogenesis, especially immune modulation, have not yet 
been elucidated.

In this study, we reveal how PB101 reprograms tumor 
immunity and overcomes aberrant angiogenesis within the 
TME in a manner that is distinct from that of the conventional 
VEGF decoy receptor, VEGF-trap. With its potent immune- 
modulating capability, PB101 synergizes with an anti-PD-L1 
checkpoint inhibitor and triggers strengthened antitumor 
immunity and durable cancer control.

Materials and methods

Mice and cell line

C57BL/6 mice (7 weeks old, male) were purchased from JA Bio 
(Suwon, Korea) and maintained in a specific pathogen-free 
animal facility at CHA University (Seongnam, Korea). The 
MC38 colon cancer cell line was purchased from National 
Cancer Center (Goyang, South Korea). To generate a VEGF- 
overexpressing liver cancer cell line (Hepa-V liver cancer), 
Hepa 1–6 cells were transfected with a lentivirus encoding 
VEGF-A (NM_001287057.1, Ex-Mm06015-Lv219, 
GeneCopoeia). Transfected cells were selected via culturing in 
media containing 2 μg/mL puromycin for 7 days and validated 
for VEGF-A expression. MC38 and Hepa-V liver cancer cells 
were cultured in Dulbecco’s modified Eagle medium supple
mented with 10% fetal bovine serum and 1% penicillin/strep
tomycin at 37°C with 5% CO2.

Tumor models and treatment regimens

To confirm the efficacy of PB101, MC38 colon cancer cells (2 ×  
105 cells/mouse), or Hepa-V liver cancer cells (5 × 105 cells/ 
mouse) were injected into the right flank of C57BL/6 mice. 
When the tumor volumes exceeded 50 mm3, mice were intra
peritoneally injected with PB101 (25 mg/kg), phosphate- 
buffered saline (PBS), anti-CD8 (200 μg, clone 53–6.7, 
BioXCell), anti-CD4 (200 μg, clone GK1.5, BioXCell), anti- 
interferon (IFN)-γ (200 μg, clone XMG1.2, BioXCell), VEGF- 
trap (25 mg/kg), anti-LAG-3 (200 μg, clone C9B7W, BioXCell) 
or anti-PD-L1 (200 μg, clone 10F.9G2, BioXCell) at indicated 
time points. PB101 and VEGF-trap were provided by Panolos 
Bioscience, Inc., Korea. For rechallenge experiments, Hepa-V 
liver cancer cells were injected subcutaneously into the right 
flank (2 × 106 cells) and intravenously into tail vein (1 × 106 

cells) of C57BL/6 mice with complete tumor regression or 
untreated naïve mice.

Flow cytometry analysis

For flow cytometry analysis, the harvested tumor tissues were 
dissociated into single cells. Each group was minced and 
incubated for 1 h at 37°C in a digestion buffer comprising 

40 μg/ml DNase 1 (Roche) and 2 mg/ml Collagenase 
D (Roche). Prior to antibody staining, cell suspensions were 
filtered through a 70-μm cell strainer (Corning). 
Subsequently, the cells were incubated on ice for 30 min in 
the Fixable Viability Dye eFluor 450 (Invitrogen) to remove 
dead cells. Cells were then incubated with FACS buffer con
taining the following primary antibodies: anti-CD45 (clone 
30-F11, BD Biosciences), anti-CD3 (clone 145-2c11, 
eBioscience), anti-CD8 (clone 53–6.7, eBioscience), anti- 
CD4 (clone RM4–5, eBioscience), anti-CD11c (clone N418, 
eBioscience), anti-CD11b (clone M1/70, eBioscience), and 
anti-F4/80 (clone BM8, eBioscience). The cells were further 
permeabilized using the Foxp3/Transcription Factor Staining 
Buffer Set (eBioscience) and stained for Foxp3 (clone FJK- 
16s, eBioscience), GzB (clone QA16A02, BioLegend), Nos2 
(clone CXNFT, eBioscience), and Arg1 (clone A1exF5, 
eBioscience). Flow cytometry was performed using 
a CytoFLEX flow cytometer (Beckman Coulter), and the 
data were analyzed using FlowJo software version 10 (Tree 
Star Inc.).

Histological analyses

For immunofluorescence staining, tumor tissues were fixed in 1% 
paraformaldehyde, dehydrated in 20% sucrose overnight, and 
embedded in a tissue-freezing medium (Leica). The frozen sam
ples were sectioned into 20-μm-thick slices. The samples were 
incubated overnight with the following primary antibodies: anti- 
CD8 (rat, clone 53–6.7, BD Bioscience), anti-CD31 (rabbit poly
clonal, Abcam), anti-Granzyme B (GzB, rat, clone NGZB, 
Invitrogen), anti-CD206 (rat, clone MR5D3, Invitrogen), anti- 
Nos2 (rabbit polyclonal, Abcam), anti-caspase 3 (rabbit polyclo
nal, R&D System), Next, the samples were incubated for 2 h at 
room temperature with the following secondary antibodies: FITC- 
conjugated anti-rat IgG (Jackson ImmunoResearch), Cy3- 
conjugated anti-rat IgG (Jackson ImmunoResearch), Cy3- 
conjugated anti-rabbit IgG (Jackson ImmunoResearch), FITC- 
conjugated anti-rabbit IgG (Jackson ImmunoResearch). Cell 
nuclei were counterstained with 4′6-diamidino-2-phenylindole 
(Invitrogen), and samples were mounted using fluorescent 
mounting medium (DAKO, Denmark). Images were acquired 
using an LSM 880 microscope (Carl Zeiss). The densities of 
blood vessels, T lymphocytes, GzB+ cell area, M1-like macro
phages, M2-like macrophages and caspase 3+ apoptosis cells 
were calculated using ImageJ software (http://rsb.info.nih.gov/ij). 
Blood vessel density was determined by calculating the CD31+ 

area per 0.49 mm2 of the tumor sections. The degree of cytotoxic 
T lymphocyte infiltration was calculated as the percentage of 
CD8+ area per random 0.49 mm2 field. To define the activation 
of T lymphocytes, the GzB+ area per 0.49 mm2 was calculated in 
intratumoral regions. The degree of infiltration of M1- or M2-like 
macrophages was determined as the percentage of NOS2+ or 
CD206+ area per 0.49 mm2, respectively. All analyses were per
formed in at least five 0.49 mm2 fields per mouse.

For hematoxylin and eosin (H&E) staining, the lung tissues 
were fixed overnight in 4% paraformaldehyde and embedded 
in paraffin. The samples were sectioned into 5-μm-thick slices 
and stained with H&E.
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NanoString gene expression analysis

The mice were treated with PB101 (25 mg/kg) five times every 
2 or 3 d, and tumor tissues were harvested for NanoString 
analysis 24 h after the last treatment. The NanoString analysis 
was performed on four tumor samples in each group. Immune 
profiling was performed with a digital multiplexed NanoString 
nCounter PanCancer Immune Profiling mouse panel 
(NanoString Technologies) using 100 ng of total RNA isolated 
from tumor samples as previously described.30,31 Data analysis 
was performed using nSolver software (NanoString 
Technologies), as previously described. The mRNA profiling 
data were normalized against the housekeeping gene and ana
lyses were performed using R software (www.rproject.org).

Statistical analysis

All statistical analyses were performed using GraphPad Prism soft
ware (version 7.0; La Jolla, CA, USA) and PASW Statistics 18 (SPSS, 
Chicago, IL, USA). Values are presented as mean ± SD unless 
otherwise indicated. Statistical significance was set at P < .05.

Results

PB101 suppresses tumor angiogenesis and enhances 
intratumoral CD8+ T cell infiltration

To confirm the antitumor efficacy of PB101, MC38-bearing 
mice were treated with PBS or PB101. After five consecu
tive treatments, PB101 (25 mg/kg) suppressed MC38 tumor 

growth by 66.2% compared to the PBS-treated control 
group (Figure 1a,b). Histological analysis revealed that 
PB101 suppressed CD31+ tumor blood vessels by 57.7%, 
enhanced CD8+ T cell infiltration by 2.5-fold, and caspase 
3+ apoptotic cells by 2.1-fold compared to PBS-treated 
controls (Figure 1c,d).

PB101 reprograms antitumor immunity

Flow cytometry and histological analyses were performed to 
investigate how PB101 regulates innate and adaptive immu
nity within the TME. PB101 increased the proportion of 
tumor-infiltrating CD11c+ dendritic cells (Figure 2a) while 
decreasing the infiltration of CD11b+F4/80+tumor-associated 
macrophages (TAMs) (Figure 2b) compared with PBS- 
treated control tumors. Furthermore, PB101 increased the 
proportion of M1-like macrophages and decreased the pro
portion of M2-like macrophages, thus increasing the M1/M2 
ratio (Figure 2c). Histological analysis showed consistent 
findings: an increase in NOS2+ M1-like macrophages and 
a decrease in CD206+ M2-like macrophages (Figure 2d). 
Furthermore, PB101 enhanced the infiltration of CD3+ 

(Figure 2e) and CD8+ T cells (Figure 2f). Histological analy
sis revealed an increase in the number of GzB+-activated 
CD8+ T cells within the TME after PB101 treatment 
(Figure 2g). Taken together, these results suggest that 
PB101 induces robust antitumor responses by enhancing 
innate/adaptive immunity in the TME.
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PB101 depends on CD8+ T cells and IFN-γ to suppress 
tumor growth

To comprehensively analyze the PB101-induced immune 
reprogramming in the TME, we analyzed immune-related 
gene signatures using NanoString PanCancer Immune 
Profiling (Figure 3). PB101 broadly reprogrammed immune- 
related genes, and enhanced genes related to CD8+ T cells, 
such as Cd8a, Gzma, and Ifn-γ (Figure 3a–b). Gene Ontology 
enrichment analysis also showed strong enrichment of gene 
sets involved in lymphocyte activation and differentiation 
(Figure 3c). In particular, PB101 considerably upregulated 
genes related to lymphocyte-endothelial cell interactions, 

which are critical for lymphocyte trafficking to the TME.32 

Dendritic cell markers were also enhanced in PB101-treated 
tumors compared to control tumors. Moreover, PB101 treat
ment elicited strong IFN, Th1, and Th2 responses and T cell 
activation within the tumors (Figure 3d).

To define the immune components responsible for antitumor 
efficacy of PB101, MC38 tumor-bearing mice were treated with 
PB101 in combination with various neutralizing antibodies 
(αCD4, αCD8, and αIFN-γ) (Figure 3e–f and Supplementary 
Figure S1). Although depletion of CD4+ T cells did not affect 
tumor growth suppression by PB101, depletion of CD8+ T cells or 
IFN-γ markedly abrogated antitumor efficacy of PB101 (Figure 3f). 
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Therefore, PB101 mainly acted through CD8+ T cells and IFN-γ- 
mediated immunity as well as its antiangiogenic effect.

PB101 shows distinct immunologic mechanisms of action 
compared to VEGF blockade

VEGF-trap (aflibercept) is a chimeric decoy protein composed 
of VEGFR1 domain 2 and VEGFR2 domain 3, which bind to 
and neutralize VEGF-A, VEGF-B, and PlGF.33,34 VEGF-trap has 
been approved by the Food and Drug Administration for use in 
patients with colorectal cancer or age-related macular 
degeneration.34,35 PB101 is a glycosylated soluble decoy receptor 
fusion protein composed of VEGFR1 domains 2 and 3, and also 
captures VEGF-A, VEGF-B, and PlGF.27,29 Both VEGF-trap and 
PB101 have been reported to bind to PlGF; however, PB101 
binds to PlGF more strongly than to VEGF-trap because of 
differences in protein structure.27 Therefore, we investigated 
whether this difference could affect the mechanisms of action 
of drugs within tumors, especially on tumor immunity. We 
treated MC38 tumor-bearing mice with control, VEGF-trap, or 
PB101 (Figure 4a). Although PB101 and VEGF-trap did not 
differ in terms of tumor growth suppression (Figure 4b), they 
showed distinct patterns of immune reprogramming within the 
tumors. Compared with the VEGF trap, PB101 markedly acti
vated innate immunity by increasing the number of CD11c+ 

dendritic cells (Figure 4c). Additionally, PB101 and VEGF-trap 
similarly reduced the numbers of M2-like TAMs; however, 
PB101 increased the number of M1-like macrophages compared 
to VEGF-trap, thereby increasing the M1/M2 ratio (Figure 4d). 
Notably, PB101 markedly increased the number of GzmB+- 
activated CD8+ T cells and slightly increased the number of 
FoxP3+CD4+ regulatory T cells, whereas VEGF-trap did not 
increase the number of activated CD8+ T cells, but markedly 
increased that of regulatory T cells (Figure 4e). Therefore, the 
ratio of CD8+ T cells to regulatory T cells was higher in PB101- 
treated tumors than in VEGF-trap-treated tumors. NanoString 
Immune Profiling revealed consistent results for innate and 
adaptive immune activation (Figure 4g). Key activators of innate 
immunity, such as Mavs, Sting (Tmem173), and Myd88, were 
more strongly upregulated in tumors treated with PB101 than in 
those treated with VEGF-trap (Figure 4h). Moreover, the cyto
toxic lymphocyte gene Gzma was upregulated in PB101-treated 
tumors (Figure 4i). Although tumoral Vegfa and Plgf was highly 
induced after VEGF-trap treatment, Vegfa was not induced and 
Plgf was downregulated after PB101 treatment. VEGF-A is tran
scriptionally regulated by hypoxia-inducible factor-1 (HIF-1), 
and PlGF is regulated by cAMP response element binding pro
tein (CREB).36–38 Notably, VEGF-trap substantially induced 
Hif1a and Creb expression compared to the control, whereas 
PB101 did not. Overall, PB101 could elicit more potent innate 
and adaptive immunity in tumors than VEGF-trap.

Combination immunotherapy of PB101 and anti-PD-L1 
further suppressed tumor progression and prolonged 
overall survival

Although PB101 monotherapy elicited considerable antitumor 
immunity, its efficacy was not sufficient to induce complete 

tumor regression. Because PD-1/PD-L1 axis is important target 
for cancer immunotherapy and PD-1 was upregulated follow
ing PB101 treatment (Figure 3b), we investigated whether the 
combined blockade of PD-L1 could further enhance the anti
tumor efficacy of PB101 (Figure 5a). While PB101 or anti-PD- 
L1 monotherapy showed comparable tumor growth suppres
sion, the combination therapy induced stronger suppression of 
MC38 tumor growth (Figure 5b).

To further validate these results, we evaluated the efficacy of 
combination therapy in a murine liver cancer model (Hepa-V) 
(Figure 5c). Although PB101 monotherapy was comparable to 
anti-PD-L1 monotherapy in terms of tumor control and survi
val outcomes, the combination therapy of PB101 and anti-PD- 
L1 showed the strongest tumor growth suppression and longest 
overall survival (Figure 5d,e). Notably, three mice in the com
bination group showed complete tumor regression and 
remained tumor-free for over 90 days (Figure 5e). Overall, 
PB101 synergized with anti-PD-L1 to suppress tumor growth 
and prolong overall survival.

Combination immunotherapy of PB101 and anti-PD-L1 
provide long-term immune protection against recurrence 
and hematogenous lung metastasis

To confirm long-term immune memory, mice that experienced 
complete liver cancer regression after PB101 and anti-PD-L1 
combination therapy were subcutaneously and intravenously 
re-challenged with liver cancer cells on day 91 (Figure 6a). We 
observed that mice that experienced complete tumor regres
sion after combination immunotherapy were completely 
immune to liver cancer recurrence and remained tumor-free 
compared to control mice (Figure 6b). Moreover, these mice 
showed significantly suppressed hematogenous lung metastasis 
compared to the control mice (Figure 6c,d). Therefore, PB101 
and anti-PD-L1 combination therapy can induce long-lasting 
antitumor immune memory against recurrence and metastasis, 
thereby prolonging overall survival.

Discussion

In this study, we demonstrated that PB101 exerts antitumor effects 
through robust immune reprogramming as well as previously 
known antiangiogenic mechanisms. PB101 enhanced dendritic 
cell activity and promoted macrophage polarization toward M1 
within tumors. Moreover, PB101 facilitated the infiltration of 
GzB+-activated CD8+ T cells into tumors. As the antitumor effect 
of PB101 in immunocompetent tumor models was substantially 
reduced in the absence of IFN-γ and CD8+ T cells, the mode of 
action of PB101 appears to be more dependent on tumor immune 
reprogramming than on anti-angiogenesis.

The mechanisms of action of PB101 are distinct from those 
of VEGF-trap (aflibercept), a previously developed decoy 
receptor used in clinical practice. First, PB101 enhanced anti
tumor innate immunity more strongly than VEGF-trap. 
Second, regarding adaptive immunity, PB101 increased the 
number of CD8+ T cells to a greater extent than that of Treg 
leading to a high CD8+/Treg ratio; however, VEGF-trap 
increased the number of Tregs to a greater extent than that of 
CD8+, thus lowering the CD8+/Treg ratio. Therefore, PB101 
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may be more effective than VEGF-trap in T-cell-targeted can
cer immunotherapy. Another point of distinction is the regula
tion of VEGF-A and PlGF, the molecular targets of PB101 and 
VEGF-trap. VEGF-trap induced strong rebound transcription 
of VEGF-A, whereas PB101 did not. Moreover, VEGF-trap did 
not affect PlGF expression, whereas PB101 reduced PlGF tran
scription. This difference may be attributed to the fact that 
HIF1A and CREB1, which are important transcription factors 
for VEGF-A and PlGF, respectively, are highly induced in 
tumors treated with VEGF-trap but not with PB101.

Until the mid-2010s, the clinical development of antiangio
genic agents focused on demonstrating potent antiangiogenic 
effects and strong tumor growth inhibition.3 Recently, however, 
major clinical advances in the combination treatment of liver and 
kidney cancers using antiangiogenic agents and immune check
point inhibitors have provided a new perspective on the optimal 
roles of antiangiogenic agents in cancer therapy.3,12–14 In clinical 
trials, antiangiogenic agents have shown stronger and longer- 
lasting therapeutic efficacy when used as components of cancer 
immunotherapy than when used as a monotherapy or used in 
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combination with cytotoxic chemotherapy.3,12,13,15 Therefore, 
future antiangiogenic drug development must be pursued in the 
context of cancer immunotherapy. However, not all antiangio
genic agents are immunologically equivalent when combined with 
immune checkpoint inhibitors. For example, lenvatinib, cabozan
tinib, and axitinib successfully synergized with immune check
point inhibitors in renal cell carcinoma, whereas pazopanib and 
sunitinib did not.13,14,39,40 This may be because different antian
giogenic drugs have different levels of antitumor immune repro
gramming apart from their antiangiogenic capabilities. Therefore, 
to develop successful combination immunotherapy, the immuno
logical ability of each drug should be fully evaluated and under
stood. In this regard, PB101 has the potential to be used in 
combination therapy with immune checkpoint inhibitors in the 
future.

Scheduling combination therapy with antiangiogenic drugs 
and anti-PD-L1 inhibitors may affect therapeutic outcomes. 
Previous preclinical studies showed that antiangiogenic therapy 

prior to anti-PD-L1 therapy may prime the TME to be more 
susceptible to anti-PD-L1 treatment, thus having superior effi
cacy compared to simultaneous therapy.41,42 One in silico study 
using a mathematical simulation showed that sequential treat
ment with anti-VEGF therapy followed by anti-PD-1 therapy 
could have stronger antitumor effects than simultaneous 
treatment.43 However, this hypothesis has not yet been demon
strated in patients with cancer. In clinical setting, treatment is 
repeated every 2 or 3 weeks as long as the cancer does not 
progress and toxicities are tolerable; thus, the distinction 
between sequential and simultaneous treatment is ambiguous. 
Therefore, all currently approved combinations of antiangio
genic therapy and immune checkpoint inhibitors are adminis
tered simultaneously to patients with cancer. Therefore, in the 
present study, we attempted to simultaneously administer PB101 
and anti-PD-L1. However, it is important to confirm whether 
the different schedules have different therapeutic and immuno
modulatory effects in future studies.

Figure 6. Combination immunotherapy of PB101 and anti-PD-L1 provide long-term immune protection against recurrence and metastasis. a. Diagram depicting re- 
challenge schedule in Hepa-V liver cancer. Red and blue arrows indicate treatments and black arrow indicates subcutaneous and intravenous re-challenge of Hepa-V 
liver cancer cells. b. Comparison of Hepa-V tumor growth. Mean and individual tumor growth curves over time. N = 4–10 per group. c. Representative gross images and 
hematoxylin and eosin (H&E) staining images of lung. Arrow heads indicate pulmonary metastatic lesions. d. Comparison of the number of metastatic colonies per lung 
section. Values are shown as mean ± SD. *P < .05 vs naïve. N = 4–6 per group.
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In this study, we investigated the effect of PB101 on tumor 
immunity, but several questions still remain. First, we focused on 
the interaction between PB101 and VEGFR1, a common receptor 
for both VEGF-A and PlGF. However, PB101 also binds to VEGF- 
B with a low affinity, which is comparable to VEGF-trap.27 

Therefore, we cannot exclude the involvement of VEGF-B in 
PB101-mediated tumor immune modulation. Moreover, because 
VEGF-A can bind to and activate VEGFR1 and VEGFR2 in tumor 
endothelial cells,44 PB101 binding to VEGF-A may affect VEGFR2 
signaling and the VEGFR2-mediated regulation of tumor angio
genesis. Second, the ectopic tumor models employed in the present 
study provide rapid tumor growth, easy monitoring and measure
ment, and a controlled tumor microenvironment. However, 
orthotopic or immunoreconstituted PDX models may provide 
more clinically relevant insights into the PB101-induced remodel
ing of the tumor immune microenvironment than ectopic models. 
Third, as individualized cancer therapy has gained considerable 
attention, the influence of sex has become increasingly crucial. 
Specifically, the menstrual cycles of females may affect the levels of 
sex hormones, such as estrogen or progesterone, which can affect 
neovessel formation during tumor progression. The major targets 
of PB101, VEGF-A, and PlGF could be affected and regulated by 
sex hormones. VEGF-A is regulated by progesterone and itself 
regulates vascular remodeling.45 Moreover, PlGF is a placenta- 
derived angiogenic factor and its expression is sensitive to sex 
hormones.46 Therefore, it is plausible that changes in female sex 
hormones during the menstrual cycle may affect VEGF and PlGF 
expression and thus influence the antitumor effects of PB101 in 
tumor-bearing female animals.

In conclusion, PB101 inhibits tumor progression through 
the robust activation of antitumor immunity, which is distinct 
from VEGF-trap. Combination therapy with PB101 and anti- 
PD-L1 can eradicate tumor cells and establish durable protec
tive immunity against tumor recurrence and metastasis. These 
findings provide the scientific rationales for further clinical 
development of PB101 in advanced cancers.
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