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Abstract

Cardiomyocytes from human stem cells have applications in regenerative medicine and can 

provide models for heart disease and toxicity screening. Soluble components of the culture system 

such as growth factors within serum and insoluble components such as the substrate on which 

cells adhere to are important variables controlling the biological activity of cells. Using a 

combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the 

support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a 

serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for 

their utility as growth substrates. From this group, 20 polymers were identified that supported 

cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for 

extended culture of hESC-CMs for 15 days and were characterized using patch clamp 
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electrophysiology and myofibril analysis to find that functional and structural phenotype was 

maintained on these synthetic substrates without the need for coating with extracellular matrix 

protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate 

and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to 

gelatin control. The potential utility of increased structural integrity was demonstrated in an in 

vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the 

anti-cancer drug doxorubicin at a concentration of 0.05 µM in cardiomyocytes cultured on the co-

polymer compared to 0.5 µM on gelatin. The chemical moieties identified in this large-scale 

screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as 

well as a framework for the rational design of superior biomaterials.

Keywords

Stem cell; Cardiomyocyte; Cell adhesion; Cell spreading; Electrophysiology; Surface analysis

1. Introduction

The differentiation of hESCs to cardiomyocytes was first reported in 2000 [1] and has since 

undergone improvements in culture conditions to include staged addition of growth factors 

to increase differentiation efficiency [2], replacement of these factors with small molecules 

to reduce cost [3] and defined medium components to improve reproducibility [4]. However, 

progress in the development of defined and reproducible synthetic substrates has been 

limited by a lack of understanding of the cell–surface interactions that control cell 

phenotype. Pre-adsorption of extracellular matrix (ECM) proteins such as gelatin, laminin 

and fibronectin offer varying degrees of support for cardiomyocyte adhesion [5]. However, 

common synthetic substrates, such as tissue culture polystyrene, even when coated with 

ECM proteins, have been shown to cause catastrophic loss of sarcomeric integrity [6]. 

Biological substrates can be expensive, have a limited shelf life and are subject to batch 

variation. Such matrices are often assumed to be inert and their effect on cell behavior is 

over-looked [7]. In addition, undefined fetal bovine serum (FBS) commonly added to 

culture medium has been shown to alter phenotype thereby masking drug and disease effects 

[8]. Synthetic culture substrates, together with defined serum-free media components, could 

circumvent these concerns [9]. A wide chemical survey of the underlying substrate 

supporting the cells has not previously been investigated for their effect on hESC-CM 

adhesion and function.

High throughput screening (HTS) strategies for biomaterials development have proved 

successful in identifying substrates capable of supporting clinically relevant cell types 

including hESCs [10–13], pancreatic islet cells [14] and hepatocytes [15]. The current study 

has employed a parallel screening approach to investigate the influence of a range of 

(meth)acrylate and (meth)acrylamide polymers on hESC-CM adhesion and functionality. 

Members of this class of polymers were selected due to the large chemical diversity 

available commercially and because they are amenable to in situ free-radical polymerization. 

Over 1700 substrates can be presented in a single polymer microarray by depositing nano-

liter volumes of monomer into discrete 300 µm islands by piezo or contact printing and 
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polymerizing on-slide [16]. Coupled with high throughput surface characterization [17], 

high content imaging systems and automated image analysis [18], we present a powerful 

strategy to rapidly identify materials that support functional hESC-CMs in fully defined 

conditions and demonstrate potential applications for such a system in drug toxicity 

screening.

2. Materials and methods

2.1. Cell culture

EB differentiation—Cardiac differentiation was adapted from previously published 

protocols [19,20]. Briefly, embryoid body (EB) formation of the HUES7 [21] cell line was 

initiated in untreated polystyrene 96 V-well plates (NUNC, 249662) by seeding each well 

with 4000 cells in 100 µL of RPMI 1640 medium (Invitrogen) supplemented with 1× insulin 

transferrin selenium (Invitrogen), 1× chemically defined lipid (Invitrogen), 400 µM 1-

thioglycerol (Sigma) (denoted RILT medium) plus 0.4% Poly(vinyl alcohol) (Sigma) and 

growth factors 20 ng/mL BMP-4 (R&D) and 6 ng/mL basic FGF (Peprotech) to direct 

differentiation to cardiomyocytes. Plates were incubated for 48 h at 37 °C, 5% CO2 and 

medium changed to RPMI 1640 supplemented with 20% FBS and incubated for a further 48 

h. At day 4 of differentiation, EBs were transferred to a tissue culture polystyrene 96U-well 

plate (NUNC, 168136) in 150 ´L of RILT medium which was changed every 3 days. EBs 

began to spontaneously beat from day 8.

Monolayer differentiation—A previously published protocol [4] was followed. Briefly, 

HUES7 cells were seeded at a density of 1.2 × 104 cells per cm2 in a tissue culture 

polystyrene T flask coated with Matrigel (BD Biosciences). Differentiation was initiated on 

day 4 using 6 µM of CHIR99021 (Tocris) in chemically defined medium (CDM) which 

comprises of RPMI 1640, 213 µg/mL of L-ascorbic acid-2-phosphate (Sigma–Aldrich) and 

500 µg/mL of human recombinant albumin (Sigma–Aldrich). After 48 h, medium was 

changed to CDM containing 2 mM Wnt-C59 (Tocris). After a further 48 h, medium was 

changed to CDM and maintained in this medium for 2 days and then switched to RILT 

medium for maintenance. Spontaneous beating was observed between day 7 and 9 from 

initiation of differentiation.

2.2. Cardiomyocyte cluster disaggregation

Beating clusters of cells within EBs were dissected at day 15 of differentiation, washed in 

PBS and transferred to a mixture of 0.05% trypsin-EDTA and AccuMax (Innovative 

CellTech) in a 3:1 ratio and incubated for 8 min (with vortexing at 4 min intervals). 

Dissociation was confirmed with gentle pipetting. Partially dissociated clusters were 

transferred to fresh enzyme mix to repeat the incubation and vortex process. Meanwhile, the 

remaining enzyme-cell suspension was quenched with an equal volume of RPMI 

supplemented with 20% FBS and centrifuged for 3 min at 300G. The supernatant was gently 

aspirated and the cell pellet re-suspended in a small volume of RILT medium until all 

clusters were disaggregated and pooled together. Monolayer cultures were disaggregated 

using the same enzyme mixture with exposure reduced to 3 min in total followed by 

quenching and centrifugation steps as described above.
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2.3. Polymer microarray synthesis

Polymer microarrays were fabricated as described previously [22]. Briefly, monomer 

solutions (Sigma Aldrich, Scientific Polymers and Polyscience) were spotted, using a 

XYZ3200 dispensing station (Biodot) and metal pins (946MP3B, Arrayit), onto epoxyglass 

slides (Genetix) dip-coated with pHEMA (4% w/v, Sigma) in ethanol (95% v/v in water). 

The printing conditions were O2 < 2000 ppm, 25 °C, and 35% humidity. Homopolymer 

solutions were composed of monomer (50% v/v) in dimethylformamide with photo-initiator 

2,2-dimethoxy-2-phenyl acetophenone (1% w/v). Six replicates of 116 homopolymers were 

printed on each slide of a first generation array. The monomer portion of co-polymer 

solutions consisted of major monomer and minor monomer in a 30/70% v/v ratio. Three 

replicates of 576 co-polymers were printed in second generation arrays. Co-polymers were 

scaled up by piezo printing using a SciflexarrayerS11 (Scienion) onto 35 mm dishes 

(NUNC, 150318) that had been oxygen plasma etched at 30 W for 10 min (BioRad, 

PT7100) and coated with 4% pHEMA solution. Prior to seeding with cells, all substrates 

were UV sterilized, washed with phosphate buffered saline (PBS, Invitrogen) and incubated 

for 1 h with either RILT medium alone or supplemented with 20% Fetal Bovine Serum 

(FBS) (Invitrogen). The seeding density of cardiomyocytes was optimized at 80,000 cells 

per microarray to avoid high densities leading to very high cell counts which would lead to 

inaccurate automated image analysis (Fig. S1).

2.4. Whole cell patch clamp electrophysiology

Recordings were performed in current clamp mode using an ECP-10 HEKA amplifier. Cells 

were maintained in Normal Tyrodes buffer (140 mM NaCl, 10 mM glucose, 10 mM 

HEPES, 4 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, pH 7.45/NaOH) and at near-

physiological temperatures (37 ± 2 °C). Patch pipettes were pulled on a Sutter P-97 

programmable micropipette puller and had resistances of between 2 and 5 MΩ when filled 

with the internal solution (145 mM KCl, 5 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, 4 mM 

EGTA, 10 mM HEPES, pH 7.3/KOH). Pulse (HEKA) and Clampfit v9.0 (Molecular 

Devices) software were used for data acquisition and analysis respectively. To determine the 

sub-type of the cardiomyocyte, APD90/50 ratios were calculated and designated as 

ventricular <1.4, nodal 1.4–1.7 and atrial >1.7. Ventricular subtypes were selected for 

further action potential profiling.

2.5. Immunostaining

Cells were fixed in 4% paraformaldehyde (Sigma) and permeabilized with 0.1% Triton-X 

100 (Sigma). Non-specific binding was blocked with 4% goat serum (Dako) in PBS for 1 h. 

Samples were immunostained with primary antibody against human cardiac sarcomeric α 

actinin raised in mouse (1:800; Sigma). After 24 h and a 0.1% Tween20 (Sigma) wash, 

samples were exposed to Cy3-conjugated goat anti-mouse secondary antibody IgG + IgM 

(1:250; Jackson Immuno Research) and 4′,6-diamidino-2-phenylindole (DAPI) (1:1000; 

Sigma). Samples were mounted in VectorShield mounting medium (Vector Labs, 

Peterborough, UK) and imaged using an automated fluorescence microscope (IMSTAR).
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2.6. Doxorubicin assay

hESC-CMs differentiated using the monolayer method were seeded onto the selected co-

polymers or 0.1% gelatin coated dishes in RILT medium and incubated for 15 days with 

medium changes every 3 days. Doxorubicin (Cell Signaling) was diluted in dimethyl 

sulfoxide (DMSO, Hybri-Max, Sigma) to a stock concentration of 5 µM. This was diluted 

further in RILT medium to 0.05 µM, 0.5 µM and 5 µM concentrations. The final 

concentration of DMSO in each dilution was kept constant. Cells were treated with the 

doxorubicin spiked RILT medium at day 15 of culture and cells were incubated for 24 h 

before fixing for immunostaining. Disrupted myofibrils were considered to be sarcomere 

lengths of less than 1.4 µm [23] or punctate staining where no myofibril banding could be 

observed.

2.7. Image analysis

Automated image analysis of cardiomyocyte density, cell area and shape was achieved by 

building a custom protocol using Cell-Profiler open source software [18]. CellProfiler 

pipelines can be found at www.CellProfiler.org. The lengths of sarcomeres within 

myofibrils were measured using the line profile tool in Image J downloaded from http://

imagej.nih.gov/ij/. Cells within images were randomly selected by ‘object number’ using x, 

y co-ordinates generated by CellProfiler software during individual cell analysis (Fig. S2.).

2.8. Time-of-flight secondary-ion mass spectrometry

ToF-SIMS analysis was carried out using a ToF-SIMS IV instrument (ION-TOF GmbH, 

Münster, Germany) using a  primary ion source operated at 25 kV. A 1 pA pulsed 

primary ion beam was rastered and secondary ions were collected from a 10 × 10 mm area at 

a resolution of 100 pixels per mm, with 8 ion pulses per pixel. An ion dose of 2.45 × 1011 

ions per cm2 was applied to each sample area ensuring static conditions. To compensate for 

a surface build up of positive primary ions, low energy electrons (20 eV) were delivered via 

a flood gun. Data analysis was carried out using Surfacelab6 software.

2.9. Partial least squares (PLS) multivariate linear regression

To correlate surface analytical data with cell response PLS was carried out using the 

Eigenvector PLS toolbox 5.2.2 for Matlab using the SIMPLS algorithm [24]. A peak list was 

generated for the homopolymer array consisting of 1397 ions. Mean-centered data 

preprocessing was applied and a leave-one-out cross validation was carried out to obtain 

errors for latent variables. The model was generated using 80% of the data (training set) and 

validated by predicting values for the remaining 20% of the data [25]. These models provide 

a means of study for systems where there is limited a priori knowledge and also removes 

subjective manual analysis of variables to create statistically valid models [26].
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3. Results

3.1. Commercially available (meth)acrylate and (meth)acrylamide homopolymers are 
unable to support hESC-CM adhesion in serum-free conditions

To investigate whether surface chemistry can influence cardiomyocyte adhesion and 

spreading, a library of 96 (meth)acrylate and 20 (meth)acrylamide monomers with various 

side chain chemistries (Table S1) were arrayed onto glass slides coated with poly(2-

hydroxyethyl methacrylate) (pHEMA) to anchor spots and reduce background cell adhesion 

(Fig. 1). Beating clusters of hESC-CMs were dispersed and seeded onto arrays (Fig.1A) that 

had either been pre-conditioned with defined serum-free medium or medium supplemented 

with 20% fetal bovine serum (FBS) for 1 h. Cultures were maintained for 7 days on 

microarrays in serum-free medium before processing for immunostaining against the cardiac 

specific structural protein, α actinin, that resides in the Z bands of the myofibril and its 

staining pattern provides information on cell structure, size and maturity (Fig. 1C). Seeding 

densities were optimized to allow accurate automated image analysis using CellProfiler. 

Very high densities were found to lead to inaccurate counts and low densities failed to reveal 

differences in levels of cell adhesion on various polymers (Fig. S1). It was found that on 

arrays pre-conditioned with FBS, 48 of the 116 homopolymers supported hESC-CM 

adhesion (Fig. S3A). However, in the absence of serum, only 7 supported adhesion to a level 

comparable with the gelatin control (Fig. S3B), underlining the dependency on FBS for 

adhesion. The highest number of attached cells in serum-free conditions was on two 

structurally related amine-containing polyacrylates; tert-butylamino-ethyl methacrylate 

(monomer 17) and dimethylaminopropyl acrylate (monomer 6) (Fig. 1D). However, average 

cell size was low (274 µm2 and 110 µm2 respectively) compared to cardiomyocytes on 

gelatin control (1560 µm2). Cardiomyocytes with an average cell size greater than 500 µm2 

is desired as they represent more mature, later stage cardiomyocytes that are more likely to 

contain well-organized structural protein for functional cell contraction [27]. Poly(2-

(methacryloyloxy)ethyl acetoacetate) (monomer 20) supported the largest average cell size 

(769 µm2) in serum-free conditions but had low cell attachment numbers. On serum pre-

conditioned arrays, where we assume the surface is dominated by the adsorbed proteins [28], 

there was a diverse range of adhesion and spreading which is consistent with the observation 

that surface chemistry can alter protein adsorption and/or conformation that subsequently 

influences cell adhesion [29,30]. For example, when cultured with serum proteins, 

poly(furfuryl methacrylate) (monomer 14) is capable of supporting greater cell adhesion 

compared to poly(2-(methacryloyloxy)ethyl acetoacetate) (monomer 20) (Fig. 1D). 

However, in serum-free conditions, both polymers supported similarly low densities of 

cardiomyocytes. This initial screen identified polymers that demonstrated either high cell 

attachment or larger cell size but not both, consequently we sought to investigate if co-

polymerization could capture both desired traits.

3.2. Combinatorial development of co-polymers enables improved cardiomyocyte 
adhesion and cell spreading in serum-free conditions

To investigate if attachment and cell spreading in serum-free conditions could be improved, 

we selected 24 polymers from both serum-free and serum pre-conditioned arrays. 

Homopolymers with highest attachment (>0.4 relative to highest number of cells/mm2) or 
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cell size (>500 µm2) and an inter-replication variability co-efficient of <60% were selected 

for the second generation array. In addition, we selected 2 polymers that did not support cell 

adhesion in either condition (monomers 8 and 24) and 4 polymers that supported adhesion 

on serum treated arrays but not in serum-free conditions (monomers 1, 9, 13 and 18) (Fig. 

1D). These 24 monomers were mixed pair-wise in 70/30 (% v/v) ratios to produce a 

combinatorial array of 576 co-polymers and as for the first generation array, we seeded with 

EB derived hESC-CMs and cultured for 7 days prior to assessment using α-actinin staining 

(Fig. 1C). A total of 20 of these unique 576 co-polymers supported high levels of relative 

attachment (>0.4) (Fig. 1F) and average cell size (>500 µm2) (Fig. S4). Poly (dimethylamino 

propyl acrylamide) (monomer 24) was identified to have a dominant negative influence on 

cell adhesion in every co-polymer mixture where it was the major monomer at 70% v/v (Fig. 

1F). However, other trends were less obvious and required further systematic analysis.

3.3. Surface analysis and statistical modeling identifies chemical moieties that influence 
cardiomyocyte adhesion

Since a subset of polymers could improve hESC-CM adhesion and morphology, we aimed 

to determine which substrate properties were important in controlling cell behavior. Surface 

elemental composition data determined by X-ray photoelectron spectroscopy (XPS) and 

hydrophilicity measured by water contact angle (WCA), did not correlate to differences 

observed in cardiomyocyte adhesion and spreading (Fig. S6). In agreement with previous 

studies [28,31], WCA measurements revealed that the highest cell adhesion and spreading 

(cell size) was seen on polymers that had a WCA between 60°–80°, although lower cell 

adhesion and size was also observed within this range indicating WCA alone could not 

determine cell response to the substrate. To probe surface chemistry in greater detail, time-

of-flight secondary-ion mass spectrometry (ToF-SIMS) was carried out to identify the 

important chemical moieties in the uppermost 2 nm of the surface. Surface characterization 

is essential to confirm the identity of surface chemistry available for cellular interaction, 

which may be different to the bulk chemistry [12]. To establish if there was any correlation 

between polymer surface chemistry and cell behavior, multivariate linear regression was 

employed as described in detail elsewhere [32–34]. The analysis found that there was a 

correlation between surface chemistry and cardiomyocyte adhesion (R2 = 0.64) and cell size 

(R2 = 0.78) (Fig. 2). Over 1300 positive and negative secondary ions detected from each 

substrate on the microarray by ToF-SIMS were assigned a regression vector (RV) to 

describe their effect on cell behavior. Large positive vectors indicated a positive effect of 

these secondary ions on cell density or area, whereas secondary ions assigned a negative 

value are associated with a detrimental effect on the cell response. The secondary ion 

C2H6N+ was assigned vectors of 0.5 for density and −0.05 for area (Fig. 2). This ion was 

most intense in the polymer 17 and mirrors experimental data where adhesion to the 

polymer was relatively high but cell area was amongst the lowest (Fig. 1C). The cyclic ions 

C5H5O+ and , most intense from polymers of 14 and 15 respectively (Fig. 2D), were 

identified as having positive effects on both cell adhesion/area with RV's of 0.8/1.00 and 

0.5/0.01 respectively (Fig. 2A). The secondary ion , which was most intense from 

pHEMA, was assigned negative RVs for both cell density and area (−0.8/−0.16). This 

indicates pHEMA from the underlying slide was contaminating the surface of some polymer 
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islands. Detection of this contaminant highlights the importance of characterizing surface 

chemistry rather than assuming its identity from the monomer composition.

To validate the robustness of the model, 20% of substrate data that were not included when 

generating the model were then used as a test data set [25]. The model was able to predict 

cell adhesion (R2 = 0.53) and area (R2 = 0.72) based only on the surface chemical 

characterization of these substrates acquired using ToF-SIMS (Fig. 2B, C). The chemical 

moieties, C2H6N+, C5H5O+ and , which dominate the positive cell response on the 

array, may serve useful for tailoring substrate chemistry to manipulate cardiomyocyte 

adhesion and morphology and to gain greater understanding of cell–substrate interactions. It 

is also important to appreciate the subtle additive effects of ions that are assigned smaller 

RVs. For example, polymer 18 does not contain high intensities of the ions identified in Fig. 

2A but when co-polymerized with monomer 3 contributes to an overall improvement of 

cardiomyocyte adhesion and spread compared to either homopolymer alone (Fig. 3A).

3.4. Electrophysiological function is maintained in hESC-CMs cultured on hit co-polymers 
in serum-free conditions

We examined hESC-CM structure and function in detail on 3 co-polymers; furfuryl 

methacrylate (70% v/v) with tert-butylaminoethyl methacrylate at 30% v/v (14/17), 

isobornyl methacrylate mixed with the same minor monomer (15/17) and hexanediol 

ethoxylate diacrylate polymerized with ethoxyethyl methacrylate (3/18). These were 

selected because they were amongst the top performing co-polymers where the performance 

of the co-polymer exceeded that of the constitutive homopolymers (Fig. 3A) and contained 

chemical moieties that were identified by multivariate analysis to be of importance (Fig. 

2D). The co-polymers of 14/17, 15/17 and 3/18 supported high cardiomyocyte densities 

(0.4, 0.5 and 0.7 respectively) as well as larger cell size (977 µm2, 1033 µm2 and 899 µm2 

respectively) (Fig. 3A). There is growing interest within the pharmaceutical industry to use 

hESC-CMs in drug safety evaluation to detect fatal drug-induced ventricular arrhythmias, 

such as Torsade de Pointes [35]. Since electrophysiological function is vital for this use we 

tested whether synthetic polymers could support beating cardiomyocytes. We scaled up co-

polymers by piezo-printing a 600 µm wide line of polymer across the center of 35 mm 

dishes (Fig. 3B) that had been prepared by oxygen plasma etching followed by pHEMA 

coating. hESC-CMs were cultured on these substrates for 15 days and then subjected to 

whole cell patch clamp electrophysiology. Ventricular sub-types were analyzed to find that 

action potential duration at 90% repolarization (APD90), amplitude and maximal diastolic 

potential were comparable to hESC-CMs on gelatin controls, the upstroke velocity increased 

six-fold on co-polymer 15/17 (21.8 V/s, P < 0.05) and almost two-fold on 14/17 (5.8 V/s, P 

< 0.05) compared to hESC-CMs cultured on gelatin control (3.4 V/s) (Fig. 3C). Despite this 

modest improvement in velocity compared to values reported for primary human fetal 

cardiomyocytes (~8 V/s) [36], overall electrophysiological maturity remains low compared 

to adult human cardiomyocytes (~250 V/s) [36,37] similar to values reported for other stem 

cell derived cardiomyocytes, which also exhibit immature action potential profiles [38,39]. 

Adding maturity-promoting factors to the minimally complex medium we selected for this 

study could be a strategy to systematically test factors without confounding cues arising 

from chemically undefined substrates.
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3.5. Synthetic substrates support cardiomyocytes with improved myofibril organization 
and evaluation of drug toxicity caused by myofibril disruption

Cardiomyocytes were examined for α-actinin staining patterns as a rapid gauge of structural 

integrity. The distance between the Z bands correspond to sarcomere length, the basic motor 

units that make up the myofibril. Longer sarcomeres of up to 2.2 µm indicate structural 

maturity of the myocyte [40] and correlates to contractile functionality as determined by the 

Frank Starling mechanism [41]. Relative to control hESC-CMs on gelatin (sarcomere length 

1.50 µm), those on co-polymers 14/17, 15/17 and 3/18 had significantly longer lengths of 

1.97 µm (p < 0.005), 1.80 µm (p < 0.05) and 1.70 µm (p < 0.05) respectively (Fig. 3D). To 

assess if hESC-CMs derived from an alternative method could also maintain structural 

integrity on the synthetic polymer, we used a monolayer protocol to derive hESC-CMs and 

seeded them on polymer 15/17. hESC-CMs on control displayed high variability in 

sarcomere length (1.63 µm ± 0.29) compared to hESC-CMs on polymer 15/17 where 

myofibrils had a more consistent length of (1.97 µm ± 0.095) (Fig. 4A). We reasoned that 

the utility of improved sarcomeric organization would be demonstrated in detecting toxicity 

of drugs that affect cell structure. The anti-cancer drug doxorubicin can cause cardiotoxicity 

at therapeutic concentrations of 0.01–0.04 µM [42,43], one indication of this toxicity is 

myofibril disruptions [44]. However, in vitro assays, using rat, human and mouse cells can 

only detect structural changes at 0.5 µM and higher [45–47]. Disruption of sarcomeric 

organization was defined as a sarcomere length below 1.4 µm indicating ‘pre-myofibrils’ 

[23] or punctate α-actinin staining where no myofibril banding could be observed. In 

accordance with the literature, our study also found that disruption of sarcomeric structure of 

hESC-CMs cultured on gelatin could be observed at 0.5 µM (P < 0.005) but not at 0.05 µM 

(Fig. 4B, C). The higher reproducibility of myofibril alignment in hESC-CMs on polymer 

15/17 meant that perturbation could be detected at the lower and more relevant therapeutic 

dose of 0.05 µM (P < 0.005). This represents up to a 10-fold improvement in detection 

sensitivity to doxorubicin of hESC-CMs cultured on synthetic polymers relative to those on 

gelatin or other in vitro systems available.

4. Discussion

The comparison of various substrates for supporting cardiomyocytes has previously been 

investigated by banding surfaces into broad groups of positively/negatively charged, acid/

base or hydrophilic/hydrophobic chemistries [48,49]. In this study, using a combination of 

unbiased parallel screening and systematic statistical modeling, an unprecedented library of 

polymers were surveyed to identify specific chemical groups C2H6N+ (amine), C5H5O+ 

(furan ring) and  (isobornyl ring) that improve the adhesion density of human 

cardiomyocytes in serum-free conditions.

The amine functionality in poly(tert-butylamino ethyl methacrylate), is positively charged at 

physiological pH [50] and ionic interaction with negatively charged cell membrane proteins 

are thought to facilitate cell adhesion [51]. The mechanism of how the cyclic moieties help 

to maintain cardiomyocyte function in vitro is yet to be elucidated but provides the basis for 

tailored design of culture substrates that could not have been predicted from existing 

knowledge of cell–material interactions.
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Substrates reported in the literature to support cardiomyocyte adhesion do so under 

conditions that include FBS in the culture medium, which aids adhesion by coating the 

substrate in proteins such as vitronectin [52]. Comparison of various substrates can be 

distorted by variations in the undefined components within FBS. In this study, the removal 

of serum from culture meant that confounding components were eliminated. Although this 

reduced the proportion of homopolymers that were able to support cell adhesion, 

combinatorial mixtures of polymers that were found to support either greater adhesion or 

larger cell area, increased the diversity of substrates able to support functional 

cardiomyocytes in serum-free conditions.

At 7 day (Fig. S5) and 15 day time points, a co-polymer of isobornyl methacrylate and tert-

butylamino-ethyl methacrylate was identified to support cardiomyocytes with sarcomere 

lengths that were significantly longer with lower deviation than cardiomyocytes on control 

gelatin. The improvement in myofibril organization was demonstrated in hESC-CMs 

derived from embryoid body and monolayer differentiation methods. The utility of greater 

sarcomeric organization was exemplified by increased sensitivity of toxicity detection to the 

anti-cancer drug, doxorubicin, demonstrating the need for reproducible culture of 

cardiomyocytes in order for them to be used reliably for pharmacological assays. 

Importantly, our studies used human origin cardiomyocytes so that the findings are directly 

translatable and not subject to reported differences such as rat cardiomyocytes being able to 

adhere to a greater proportion of substrates compared to the more fastidious human 

cardiomyocyte [53]. Challenges remain in optimizing the overall culture system to obtain 

electrophysiological profiles comparable to those reported for adult human cardiomyocytes. 

Exploitation of polymer structure–function relationships identified in this study to maintain 

cardiomyocytes on chemically defined substrates, addition of soluble cues that promote 

maturation and the move into 3D systems will be explored to overcome this challenge.

5. Conclusions

The materials investigated in this study provide a defined, reproducible and economically 

viable alternative to biological matrices and their discovery could not have been predicted 

from existing knowledge of cell–material interactions.

The identification of chemically characterized cardio-supportive moieties provides the basis 

for the rational design of substrates to build into controlled culture systems where further 

improvement of cell maturation using soluble cues or 3D design (e.g. culture medium 

components and the physical form of the substrate) can be systematically investigated 

without the contribution of uncharacterized cues arising from biological matrices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Polymer microarray fabrication, hESC-CM seeding and analysis. (A) hESC cardiomyocytes 

are derived via embryoid bodies and disaggregated to seed microarrays. (B) Contact printing 

was used to fabricate polymer microarrays on a glass slide coated with pHEMA to prevent 

background cell adhesion. (C) DAPI and cardiac sarcomeric α actinin images of 

cardiomyocyte adhesion were analyzed by CellProfiler® to generate cell density and 

morphological data (D) Cell adhesion (bars) and size (circles) on 24 selected polymers from 

an initial 116 polymer screen in serum-free (SF, blue) and FBS pre-treated conditions (red). 
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(n = 3, ±SEM). (E) Monomer identities. (F) These were mixed pair wise in 70/30 (v/v) 

mixtures to generate a 576 co-polymer microarray; heat map of cell adhesion is shown (n = 

3). Scale bars = 100 µm. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 2. 
Partial least squares multivariate linear regression. (A) The table lists ions identified by the 

model to be important in influencing cell density or cell size (area). A positive regression 

vector (RV) describes the ion having an additive effect on density or cell area and a negative 

RV describes the ion as being detrimental on cell adhesion or area. For example while ion 

C2H6N+ has been modeled to improve cell density, it has a negative impact on cell area. (B) 

The model for predicting cell density has an R2 value of 0.64 (training data set, black). The 

model was validated using data that had not been introduced during training of the model 

(test set, blue). The R2 value for the test set is 0.53. (C) For cell area the R2 value is 0.78 

(training set) and 0.72 (test set). (D) Surface ion intensity found by ToF-SIMS of moieties 

identified by PLS has been plotted for selected polymers where they had the highest relative 

intensities. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
Structural and electrophysiological characterization of hESC-CMs after 15 days culture on 

co-polymers and control 0.1% gelatin (A) Cardiomyocyte adhesion and cell size on selected 

co-polymers compared to their constituent homopolymers (n = 4, ±SEM). (B) The three co-

polymers were scaled up in 35 mm dishes, a brightfield image of hPSC-CM is shown with 

the corresponding immunostained image, α actinin (red) and DAPI (blue). (C) Ventricular, 

atrial and nodal-like action potentials (AP) were obtained using whole cell patch clamp 

electrophysiology. Characterization of ventricular AP parameters reveals that upstroke 

velocity is faster in cardiomyocytes cultured on polymers 15/17 and 14/17 relative to 

control. No statistical difference was observed in action potential duration at 90% 

repolarization (APD90), amplitude and maximal diastolic potential (MDP). T-Test, p < 0.05, 

15/17 n = 5, 14/17 n = 4, 03/18 n = 3, control n = 3 cells, +SEM. (D) Structural analysis of 

the cardiomyocyte; the white arrow highlights one sarcomere unit. The length of each 
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sarcomere was measured using Image J line profile tool (yellow intensity graph). Structural 

maturity was improved as indicated by longer sarcomere length in cardiomyocytes cultured 

on the synthetic polymers compared to control (3 measurements per cell, 4 cells measured 

per image, n = 3, +SD, T test, *p < 0.05, **p < 0.005). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)

Patel et al. Page 18

Biomaterials. Author manuscript; available in PMC 2016 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Structural Characterization of monolayer derived hESC-CMs after 15 days culture on co-

polymer 15/17 compared to control 0.1% gelatin and detection of myofibril disruption by 

doxorubicin. (A) Structural organization of hESC-CMs was improved as indicated by longer 

sarcomere length on polymer 15/17 with lower deviation compared to 0.1% gelatin control 

(3 measurements per cell, 4 cells measured per image, n = 3, +SD. (B) Cardiomyocytes on 

the synthetic polymer 15/17 have a more organized sarcomeres making disruption in their 

myofibril organization significant at 0.05 µM compared to control cardiomyocytes on 

gelatin where disruption of myofibrils is not statistically detected at 0.05 µM (n = 3, 250 

cells analyzed per condition). (C) α actinin (red) and DAPI (blue) immunostains reveal that 

untreated cardiomyocytes on polymer 15/17 contain organized myofibrils. At a dose of 0.05 

µM doxorubicin ‘pre-myofibrils’ with sarcomere lengths of less than 1.4 µm can be 

observed and at a dose of 0.5 µM, more obvious punctate staining with absence of myofibril 

alignment is seen. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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