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Aging is associated with both changes in affective experience and attention. An
intrinsic brain network subserving these functions, the salience network, has not shown
clear evidence of a corresponding age-related change. We propose a solution to
this discrepancy: that aging differentially affects the connectivity of two dissociated
subsystems of the salience network identified in our prior research (Touroutoglou et al.,
2012). We examined the age-related changes in intrinsic connectivity between a dorsal
and a ventral salience subsystem in a sample of 111 participants ranging in age from
18 years to 81 years old. We predicted that connectivity within the ventral subsystem
is relatively preserved with age, while connectivity in the dorsal subsystem declines.
Our findings showed that the connectivity within the ventral subsystem was not only
preserved but it actually increased with age, whereas the connectivity within the dorsal
subsystem decreased with age. Furthermore, age-related increase in arousal experience
was partially mediated by age-related increases in ventral salience subsystem, whereas
age-related decline in executive function was fully mediated by age-related decreases
in dorsal salience subsystem connectivity. These findings explain previously conflicting
results on age-related changes in the salience network, and suggest a mechanism for
relatively preserved affective function in the elderly.
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INTRODUCTION

Substantial evidence indicates that both affect and executive function change as people age, and
these changes offer challenges for healthy aging. Elderly people are more easily aroused than are
young people and tend to experience arousal as unpleasant (Smith et al., 2005; Gavazzeni et al., 2008;
Gruhn and Scheibe, 2008; Moriguchi et al., 2011; Sands and Isaacowitz, 2017). Intense, unpleasant
arousal is linked to an increased risk of illness (Cacioppo, 1994; Ong and Allaire, 2005), including
cardiovascular disease (Steptoe and Kivimaki, 2012), stroke (Henderson et al., 2013), metastasis
of cancer (Garssen, 2004) and metabolic syndrome (Tamashiro, 2011). Age-related decline in
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attention and executive function (Verhaeghen and Cerella,
2002; Lustig and Jantz, 2015; Hedden et al., 2016) impairs
cognitive performance across diverse domains (Wascher et al.,
2011; Clapp and Gazzaley, 2012) and increases the risk for
injury when walking or driving (Sheridan and Hausdorff, 2007).
Understanding the mechanisms of age-related changes in affect
and attention may help to identify factors important for healthy
aging, as well as shed light on normal brain function throughout
the lifespan.

Both affective processing and executive function are linked
to the brain’s salience network, a group of structures connected
at rest including the anterior insula (AI), dorsal anterior and
mid-cingulate cortex (ACC/MCC) and amygdala (Seeley et al.,
2007; Touroutoglou et al., 2012).

The strength of connectivity within this network in young
adults predicts subjective experiences of anxiety (Seeley et al.,
2007), cortisol responsivity (Thomason et al., 2011) and feelings
of arousal (Touroutoglou et al., 2012, 2014). Major nodes of
the salience network, particularly the AI and ACC/MCC, have
also been implicated in various features of executive function,
including the orienting of attention (Corbetta and Shulman,
2002), cognitive control (Cole et al., 2013) and performance
monitoring (Dosenbach et al., 2007).

This diversity of brain–behavioral relationships within the
salience network may be explained by recent evidence suggesting
that the salience network is composed of two dissociable
subsystems, defined by their connectivity to the dorsal and
ventral AI (vAI). These two regions of insula have different
patterns of connectivity in macaques (Touroutoglou et al., 2016)
and humans (Taylor et al., 2009; Kurth et al., 2010; Cauda et al.,
2011; Deen et al., 2011; Kelly et al., 2012; Touroutoglou et al.,
2012; Chang et al., 2013; Uddin et al., 2014). In healthy young
adults, connectivity within the ventral salience subsystem has
been associated with affect whereas connectivity within the dorsal
salience subsystem has been associated with executive function
(Touroutoglou et al., 2012).

Studies of age-related changes in the integrity of the
salience network have shown conflicting results, with decreased
age-related connectivity in some cases (Allen et al., 2011; Onoda
et al., 2012; He et al., 2013, 2014; Roski et al., 2013; Langner
et al., 2015), but preserved or increased connectivity in others
(Wang et al., 2012; Cao et al., 2014; Sakaki et al., 2016; Xiao
et al., 2018); this is in contrast to clear reductions in connectivity
with age in default mode and fronto-parietal networks (Andrews-
Hanna et al., 2007; Esposito et al., 2008; Biswal et al., 2010; Wang
et al., 2010, 2012; Campbell et al., 2012; Onoda et al., 2012;
Betzel et al., 2014; He et al., 2014; Zhang et al., 2014; Shaw et al.,
2015; Ward et al., 2015). A closer look at these studies show that
those reporting preserved or increased connectivity with age have
focused on connectivity to limbic structures within the ventral
salience subnetwork such as the amygdala (Wang et al., 2012;
Cao et al., 2014; Sakaki et al., 2016; Xiao et al., 2018). In contrast,
studies showing decreased salience network connectivity with
aging have focused on nodes within the dorsal salience network
(Allen et al., 2011; Onoda et al., 2012; He et al., 2013; Roski
et al., 2013; Langner et al., 2015). The differential rates of
age-related functional connectivity changes are consistent with

rates of atrophy. The ventral salience subnetwork contains more
agranular cortex, which atrophies more slowly with age when
compared to cortex with a granular cytoarchitecture, such as the
lateral frontal and parietal regions in the dorsal salience, default
mode or fronto-parietal networks (Salat et al., 2004; Fjell et al.,
2009, 2014; McGinnis et al., 2011).

In the present study, we hypothesized that the dorsal and
ventral salience subnetworks are differentially affected by aging.
We predicted that connectivity within the ventral subsystem
is relatively preserved with age, while connectivity in the
dorsal subsystem declines. We further predicted that age-related
changes in stimulus-evoked arousal and executive function are
mediated by differences in functional connectivity in the ventral
and dorsal salience subsystems, respectively.

MATERIALS AND METHODS

Participants
One hundred eleven adults ranging in age from 18 to 81
(mean age = 46.6, SD = 18.89; 56 females) participated
in this study, which involved the collection of resting-state
blood oxygenation-level dependent (BOLD) data as well as
behavioral and task-evoked data. All participants were right-
handed, native English speakers and had normal or corrected-to-
normal vision. No participant reported a history of neurological
or psychiatric disorders. The protocol of this study was approved
by the Institutional Review Board of the Massachusetts General
Hospital. All subjects gave written informed consent.

Behavioral Data Acquisition
Affective Experience
Ninety full-color images were selected from the International
Affective Picture System (IAPS) to induce affective experiences
(Lang et al., 2008). Participants viewed each of the IAPS images
on a 120 × 75 cm high definition (Sharp, Aquos) screen
placed 2 m from the participant. The images represented five
combinations of valence and arousal (i.e., negative valence-high
arousal, positive valence-high arousal, negative valence-low
arousal, positive valence-low arousal, neutral valence-low
arousal). Images were grouped into three blocks of 30 images.
Each block contained six images from each of the five valence
and arousal categories. To avoid order effects, we randomized the
order of the blocks and the order of images within each block
during stimulus presentation. For each stimulus, participants
viewed the IAPS image for 6 s, then rated the valence and arousal
of the image using the Self-Assessment Manikin (SAM; Bradley
and Lang, 1994). Only the arousal ratings are reported here,
which ranged from ‘‘Very calm’’ (1) to ‘‘Very activated’’ (5). A
variable inter-trial interval of 10–15 s followed the rating prior
to presentation of the next image. Before beginning the task,
participants were familiarized with the SAM rating procedure
and practiced by rating five images. The images and rating scales
were administered via E-Prime software (Psychology Software
Tools, Pittsburgh, PA, USA).

Because the ventral salience network connectivity has
been associated with high arousal states such as anxiety
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TABLE 1 | Demographic and neuropsychological characteristics.

Measure Mean Minimum Maximum Std. Dev. Std. Error

N 111
Sex (% female) 49.5
Age (years) 46.65 18.00 81.00 18.90 1.79
Education (years) 16.10 12.00 20.00 2.21 0.21
Trail Making Test B (s) 57.59 19.00 165.00 21.89 2.08
Arousal ratings (5-point scale) 4.58 3.60 5.00 0.40 0.04

Note: N = 110 for education; N = 108 for arousal ratings. We applied a negative log transformation to Trail Making Test B scores for subsequent analyses.

(Seeley et al., 2007) or high arousal responses to negative images
(Touroutoglou et al., 2012), we focused on high arousal stimuli.
For each participant, we obtained a high arousal rating in
response to negative evocative images (referred to hereafter as
arousal ratings in response to negative images) by calculating
the average arousal ratings for all high arousal negative images.
In addition, we obtained a high arousal rating in response
to positive evocative images (referred to hereafter as arousal
ratings in response to positive images) by calculating the average
arousal ratings for all high arousal positive images. We removed
data for three participants whose arousal ratings were outliers
(3 standard deviations below the group mean). We conducted
subsequent analyses including arousal ratings with the remaining
108 participants.

Executive Function
Executive function, processing speed and set-switching was
measured with the Trail Making Test administered before the
scans (Reitan, 1958; Strauss et al., 2006). For each participant,
the Trail Making Test B (Trails B) score reflected the time
in seconds taken to complete the part B of the test, which
is thought to require processing speed, visuomotor speed and
set-shifting (Strauss et al., 2006). Because the distribution
of the Trails B completion time was positively skewed
(skewness >1.32), we performed a log transformation on this
data. We also inverted the log of Trails B time such that higher
Trails B scores indicate better performance. Demographic and
neuropsychological characteristics are summarized in Table 1.

Magnetic Resonance Imaging (MRI) Data
Acquisition and Preprocessing
Participants underwent brain imaging on a different day, on
average less than 1 week after the behavioral session. Imaging
data were collected on a 3T Magnetom Tim Trio system
(Siemens Medical Systems, Iselin, NJ, USA) at Massachusetts
General Hospital, equipped for echo planar imaging (EPI)
with a 12-channel phased-array head coil. Head motion was
minimized using head restraints, including a pillow and foam
padding. Noise was attenuated with ear plugs. Structural
magnetic resonance imaging (MRI) data were acquired
using a T1-weighted 3D MPRAGE sequence (TR/TE/flip
angle = 2,530 ms/3.48 ms/7◦, resolution = 1.0 mm isotropic,
FoV = 256 mm, 0% slice gap).

Whole-brain resting state functional MRI (fMRI) data were
acquired with echo-planar sequence (TR = 5,000 ms; TE = 30 ms;
FA = 90◦, FoV = 256 mm, 0% slice gap). These parameters
allowed us to obtain 55 slices and have a spatial resolution of

2.0 mm isotropic voxels. The resting state scan was 6.40 min
long and the data involved one run of 76 volumes. During all
resting-state fMRI (rs-fMRI) runs, participants were directed to
keep their eyes open without fixating and to remain as still as
possible. Resting state fMRI runs preceded the task-based fMRI
runs.

Preprocessing of the resting state fMRI data involved
a series of previously established resting state functional
connectivity MRI (rs-fcMRI) procedures (Biswal et al., 1995;
Vincent et al., 2007; Van Dijk et al., 2010). After removing
the first four functional volumes, the following steps were
completed: correction for slice-dependent time shifts (SPM2,
Wellcome Department of Cognitive Neurology, London, UK),
correction for head motion with rigid-body transformation in
three translation and three rotations (FMRIB, Oxford, UK),
spatial normalization to Montreal Neurological Institute (MNI)
atlas space, re-sampling to 2 mm isotropic voxels, spatial
smoothing using a 6 mm full width at half-maximum (FWHM)
Gaussian kernel, and temporal band-pass filtering to remove
frequencies >0.08 Hz. We then removed sources of spurious
variance and their temporal derivatives from the data through
linear regression (six parameters derived from the rigid-body
headmotion correction, the signal averaged over the whole brain,
the signal averaged over a region within the deep white matter,
and the signal averaged over the ventricles) and the residual
BOLD time course was retained for functional connectivity
analysis.

Resting State fMRI Analysis
To examine the intrinsic functional connectivity strength within
the dorsal and ventral salience subsystems, we used seed-based
rs-fcMRI analysis. We took a hypothesis-driven approach and
created spherical regions of interest (ROIs; 4-mm radius) around
major nodes within each salience subsystem as determined in
Touroutoglou et al. (2012; see Figure 1). In that study of young
adults, the strength of connectivity within the dorsal salience
subsystem predicted individual differences in executive function
and the strength of connectivity within the ventral salience
subsystem predicted individual differences in the intensity
ratings of arousal in response to negative images.

We computed Pearson’s product moment correlations, r, for
the mean signal time courses of each pair of ROIs. Fisher’s r-to-z
correlation coefficients were then calculated between each ROI
pair. To calculate the connectivity within the dorsal salience
subsystem, we computed the pairwise connectivity measure of
z(r) values between the dorsal anterior insula (dAI; right dAI
coordinates: +36, 21, 1, MNI) and a bilateral region in the mid
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FIGURE 1 | (A) Dissociable dorsal and ventral salience networks (right dorsal
anterior insula (dAI) seed, blue; right ventral anterior insula (vAI) seed, red) in
humans previously published by our laboratory (Touroutoglou et al., 2012). In
(B), regions that preferentially correlate with the right dAI seed are shown in
blue, regions that preferentially correlate with the right vAI seed are shown in
red, and regions that correlate with both seeds are shown in purple. For
display purposes, the binarized correlation maps, z(r) > 0.2, were overlaid on
the 1 mm MNI152 T1-standard template image in FSL (adapted figure from
Touroutoglou et al., 2012).

cingulate (MCC; right MCC coordinates: +4, 16, 46; left MCC
coordinates: −2, 14, 46) as determined in Touroutoglou et al.
(2012). To calculate the connectivity within the ventral salience
subsystem, we computed a pairwise connectivity measure of
z(r) values between the right vAI (right vAI coordinates: +28,
17, −15) and a region in the dorsal amygdala (right amygdala
coordinates: +30, −2, −18) found in Gerdes et al. (2010) to
predict feelings of arousal during task. This region has been
shown to be critical for subjective arousal in a variety of other
studies (Phan et al., 2004; Barrett et al., 2007;Wilson-Mendenhall
et al., 2013; Touroutoglou et al., 2014). The averaged pairwise
connectivity measure of z(r) values of each pair of ROIs was then
used for the analyses of the brain-behavioral relationships with
aging.

Brain-Behavior Relationships
Using a series of linear regression analyses, we first examined the
entire sample to determine whether the dissociable relationships
between salience subsystem connectivity and behavior that we
previously found in an independent sample of young adults
(Touroutoglou et al., 2012) would replicate in this sample of
adults spanning a broad age range. Specifically, to examine the
relationship between ventral salience subsystem connectivity and
arousal ratings in response to negative images, we conducted
a linear regression analysis using vAI connectivity to amygdala
(pairwise connectivitymeasure of z(r) values of the right vAI with
right amygdala) and arousal ratings as the dependent variable.
Additionally, to investigate the possibility that ventral salience
connectivity might similarly influence arousal responses to
positively valenced stimuli, we repeated this analysis using high
arousal, positively valenced stimuli. To examine the relationship
between dorsal salience subsystem connectivity and executive
function, we conducted a linear regression analysis using dAI
connectivity to MCC (averaged pairwise connectivity measure
of z(r) values of the right dAI with left and right MCC) as
independent variable and executive function as the dependent
variable.We then examined the effects of age on connectivity and
behavior. For all these analyses, we controlled for potential effects
of sex and education. Brain-behavior analyses were conducted
using PASW Statistics 21, Release Version 21.0.0 (SPSS Inc.,
2009, Chicago, IL, USA1). Results were considered statistically
significant at p< 0.05.

Salience Subsystem Connectivity
Mediation of the Relationship Between
Age and Behavior
We first examined the potential mediating effects of ventral
salience subsystem connectivity on the relationship between
age and arousal ratings. In Step 1 of our mediation analysis,
arousal ratings were regressed on age to examine the total
effect of age on subjective arousal (path a). We conducted
a linear regression analysis using age as the independent
variable and arousal ratings as the dependent variable. Next,
we tested whether ventral salience subsystem connectivity
mediated the above relationship between age and ratings of
arousal. Specifically, in Step 2 of the analysis, the ventral
salience subsystem connectivity was regressed on age (path b).
We conducted a linear regression analysis using age as the
independent variable and ventral salience subsystem connectivity
values as the dependent variable. In Step 3 of our meditational
analysis, we performed another multiple regression analysis
where we regressed the arousal ratings on both age (path a′)
and ventral salience subsystem connectivity (path c). In Step 4,
we compared the standardized regression coefficients (beta) of
the age predictor computed at Step 1 (path a: total effect) and
Step 3 (path a′: direct effect) to test the amount of mediation
(path bc: indirect effect) by the ventral salience subsystem
connectivity predictor (Baron and Kenny, 1986). A Sobel test
(Sobel, 1982; Preacher andHayes, 2008) was conducted to test the
significance of mediation. Results were considered statistically

1www.spss.com
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significant at p < 0.05. We repeated the same analysis procedure
to examine whether dorsal salience subsystem connectivity
mediated the relationship between age and executive function.
Mediation analyses were conducted using PASW Statistics
21, Release Version 21.0.0 (SPSS Inc., 2009, Chicago, IL,
USA1).

Data Availability
The data for this study are available on request.

RESULTS

Brain-Behavior Relationships
As in our previous study (Touroutoglou et al., 2012), we used
rs-fMRI analyses and replicated the dissociable relationships
between salience subsystems and behavior in our independent
sample including young, middle-aged and older individuals (see
Figure 2). As in Touroutoglou et al. (2012), the strength of
connectivity within the ventral salience subsystem predicted
individual differences arousal ratings in response to negative
images (R2 = 0.06, r = 0.25, p = 0.000) but not in Trails B
performance (R2 = 0.005, r = −0.07, p = 0.48), whereas the
dorsal salience subsystem predicted individual differences in
Trails B performance (R2 = 0.06, r = 0.24, p = 0.013) but
not in arousal ratings (R2 = 0.01, r = −0.11, p = 0.23).
Ventral salience connectivity did not predict arousal ratings
for high arousal positive images (R2 = 0.006, r = −0.07,
p = 0.42). As sex and education did not appear to be a
confound based on non-significant bivariate correlations with
either the independent or dependent variables (p > 0.05),
these demographic factors were left out of the mediation
analysis.

Aging Effects on Salience Subsystems
Connectivity
We found that intrinsic connectivity within the ventral salience
subsystem was not only preserved as we predicted but it was
actually increased with age whereas within the dorsal salience
subsystem decreased with age (see Figure 3). The ventral salience
subsystem connectivity between the vAI and amygdala was
increased with age (R2 = 0.09, r = 0.30, p = 0.002). In contrast, the
connectivity within the dorsal salience subsystem connectivity
between the dAI and MCC was reduced with age (R2 = 0.12,
r = −0.34, p = 0.0001). Age was also positively correlated
with arousal ratings in response to arousing negative images
(R2 = 0.09, r = 0.31, p = 0.001), such that elderly people expressed
more negative arousal than the young, but negatively correlated
with executive function (R2 = 0.05, r = −0.23, p = 0.017),
such that the elderly showed reduced executive function (see
Figure 3). No significant correlation was found between age
and arousal ratings in response to arousing positive images
(R2 = 0.007, r = 0.08, p = 0.37). As sex and education did
not appear to be a confound based on non-significant bivariate
correlations with either the independent or dependent variables,
these demographic factors were left out of the mediation
analysis.

Salience Subsystems Connectivity
Mediates the Relationship Between Age
and Behavior
Using mediation analysis (Baron and Kenny, 1986; Preacher
and Hayes, 2008), we found support for our prediction
that age-related changes behavior is mediated by salience
network connectivity changes. We found that arousal ratings
were partially mediated by altered connectivity within the
ventral salience subsystem (see Figure 4A). In Step 1 of the
mediation model, the regression of arousal ratings on age
was significant, b = 0.007, β = 0.31, t(106) = 3.34, p = 0.001
(total effect, path a). Step 2 showed that the regression of
ventral subsystem connectivity on age was also significant,
b = 0.004, β = 0.30, t(106) = 3.21, p = 0.002 (path b). Step
3 of the mediation showed that the mediator (vAI-amygdala
connectivity within the ventral salience subsystem) controlling
for age, marginally predicted affect, b = 0.291, β = 0.18,
t(105) = 1.833, p = 0.07 (path c). Step 4 of the analyses (direct
effect, path a′) revealed that, controlling for the mediator (vAI-
amygdala connectivity within the ventral salience subsystem),
age was still a significant predictor of arousal ratings, b = 0.005,
β = 0.26, t(105) = 2.68, p < 0.008. The Sobel test was
statistically significant, indicating the indirect effect (path bc,
indirect effect) was statistically significant, as was the reduction
in path a, indicating significant partial mediation (z = 1.66,
p = 0.048).

As predicted, we found that age-related declines in executive
function were mediated by decreased connectivity within
the dorsal salience subsystem connectivity (see Figure 4B).
Figure 4B shows the standardized beta coefficients for the total
as well as the direct and indirect effects. In Step 1 of the
mediation model (total effect, path a), the regression of Trails B
performance on age, ignoring the mediator, was significant,
b = −0.002, β = −0.23, t(109) = −2.43, p = 0.017. Step 2 showed
that the regression of dorsal subsystem connectivity on age was
also significant, b =−0.006, β =−0.34, t(109) =−3.77, p = 0.0001
(path b). Step 3 of the mediation showed that the mediator
(dAI-MCC connectivity within the dorsal salience subsystem)
controlling for age, was closely approaching significance,
b = 0.097, β = 0.19, t(108) = 1.95, p = 0.053 (path c). Step
4 of the analyses revealed that, controlling for the mediator
(dAI-MCC connectivity within dorsal salience subsystem), age
was no longer a significant predictor of Trails B performance,
b = −0.001, β = −0.16, t(108) = −1.65, p = 0.102 (direct effect,
path a′). The Sobel test was statistically significant, indicating the
indirect effect (path bc, indirect effect) was significant, showing
significant mediation (z = 1.62, p = 0.05).

DISCUSSION

The results of this study are consistent with our hypothesis that
age differentially affects the intrinsic connectivity of the two
subsystems of the salience network, and that these differences
mediate dissociable age-related influences on the abilities that
those networks support. We predicted relative preservation of
the circuitry for identifying evocative and affectively important
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FIGURE 2 | Replication of the dissociable relationships between salience subsystems and behavior previously demonstrated in Touroutoglou et al. (2012).
(A) Individual differences in ventral salience subsystem connectivity (i.e., strength of vAI intrinsic connectivity to amygdala) are associated with variation in unpleasant
arousal (i.e., arousal ratings in response to negative images, but not in executive function performance. (B) Individual differences in dorsal salience subsystem
connectivity [i.e., strength of dAI intrinsic connectivity to mid-cingulate cortex (MCC)] are associated with variation in performance in executive Trails B task), but not
in arousal ratings.

stimuli with age. The results suggest not only preservation but
actual increased connectivity between major nodes of the ventral
salience subsystem in the aging brain, leading to increased
affective reactivity. In contrast, the circuitry for performing a
cognitive task requiring set shifting degrades with age, leading
to impaired executive function. As we predicted, connectivity
in the dorsal salience subsystem declined with age. This result
may explain the diverse results reported in previous studies
of aging and salience network connectivity (Allen et al., 2011;
Onoda et al., 2012; Wang et al., 2012; He et al., 2013, 2014;
Roski et al., 2013; Cao et al., 2014; Langner et al., 2015; Sakaki
et al., 2016; Xiao et al., 2018). These findings are consistent with
age-related atrophy gradients in the human brain (Salat et al.,
2004; Fjell et al., 2009, 2014; McGinnis et al., 2011). Studies
reporting decreased connectivity of the salience network have
not considered connectivity to the amygdala (Allen et al., 2011;
Onoda et al., 2012; He et al., 2013; Roski et al., 2013; Langner
et al., 2015), which is a node of the ventral, but not dorsal,
salience subsystem (Touroutoglou et al., 2012). In contrast,
studies reporting preserved salience connectivity have included
the amygdala (Wang et al., 2012; Cao et al., 2014). Similarly,
increased task-related connectivity between the amygdala and
ACC during the presentation of negative stimuli has been
reported in the elderly relative to the young (St Jacques et al.,
2009, 2010). These findings add to literature suggesting an
important protective role of limbic circuitry in successful aging

(Harrison et al., 2012, 2018; Rogalski et al., 2013; Sun et al.,
2016).

Our brain-behavior relationships replicated the findings
of our previous analysis of salience subsystem function
(Touroutoglou et al., 2012), suggesting that dorsal salience
subsystem connectivity predicts executive function, while ventral
salience subsystem connectivity predicts unpleasant arousal
in a sample of young, healthy adults. Thus, the functional
dissociation of the salience network persists with aging. This
finding is consistent with several lines of research showing
preserved or enhanced arousal processing in the elderly. Greater
ratings of arousal in the elderly relative to the young have
been reported for all material, irrespective of valence (Smith
et al., 2005; Gavazzeni et al., 2008; Gruhn and Scheibe,
2008; Moriguchi et al., 2011; Sands and Isaacowitz, 2017).
Similarly, the tendency to direct attention towards salient
arousing stimuli is preserved in aging; both young and elderly
people show equivalently enhanced detection speed of high
vs. low arousal targets (Mather and Knight, 2006; Leclerc and
Kensinger, 2008). Brain imaging studies focused on arousal
have also shown equivalent responses for the young and
elderly in the amygdala and throughout the salience network
(Moriguchi et al., 2011; Kehoe et al., 2013; Dolcos et al.,
2014).

Mediation analysis further demonstrated that age-related
changes in arousal ratings were partially mediated by increased
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FIGURE 3 | Age-related changes in salience subsystems. (A) Older individuals exhibited increased ventral salience subsystem connectivity (i.e., strength of vAI
intrinsic connectivity to amygdala) as well as increased unpleasant arousal (i.e., arousal ratings in response to negative images). (B) Older individuals exhibit
decreased dorsal salience subsystem connectivity (i.e., strength of dAI intrinsic connectivity to MCC) and decreased executive function (i.e., performance in executive
Trails B task).

FIGURE 4 | Salience subsystems connectivity mediates the relationships between age and behavior. Solid lines indicate paths and path values indicate standardized
beta weights. In (A) the upper panel indicates the total effect (unmediated path a, total effect) from age to arousal ratings. In the lower panel, the effect of age on
arousal ratings is partially mediated by the ventral salience subsystem connectivity (i.e., vAI connectivity to amygdala at rest). The direct effect of age to arousal
ratings is indicated in path a’ and the indirect effect is indicated in the bc path (i.e., path b∗path c). In (B) the upper panel indicates the total effect (unmediated path
a) from age to executive function (i.e., Trails B performance). In the lower panel, the effect of age to executive function is mediated by the dorsal salience subsystem
connectivity (i.e., dAI connectivity to MCC at rest). The direct effect of age to executive function is indicated in path a’ and the indirect effect is indicated in the bc
path (i.e., path b∗path c). ∗∗p < 0.01, ∗p < 0.05, †p = 0.05 and ††p < 0.07.

connectivity within the ventral salience subsystem, such that
age-related increases in ventral salience connectivity led to the
increased experience of arousal in response to negative evocative
images. This suggests that the age-related changes in arousal
observed in previous studies may be attributable to age-related
increases in ventral salience network connectivity. However, as
this mediation was only partial, it seems likely that the experience
of arousal is influenced by other brain systems, such as midbrain
and brainstem nuclei within the default mode network (Bar
et al., 2016), which are important for interoception that serves

as the sensory basis for feelings of arousal (Barrett, 2004; Barrett
and Bliss-Moreau, 2009; Kleckner et al., 2017). In addition to
central nervous systems, the experience of arousal may also be
influenced by the peripheral autonomic nervous system (Xia
et al., 2017). Furthermore, our participants demonstrated a
ceiling effect in their arousal ratings, reducing the available
variance for mediation.

While our results showed that arousal experience was
positively associated with age, executive function declined in
the older members of our sample. This finding is consistent
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with substantial previous research (Park et al., 2002; Hedden
and Gabrieli, 2004; Reuter-Lorenz and Park, 2010). Previous
studies, however, have typically related this decline to changes
in the connectivity in other brain networks, such as the default
mode network (Andrews-Hanna et al., 2007) or fronto-parietal
network (Geerligs et al., 2014). The present findings indicate
that reduced executive function in older age is also mediated
by reduced integrity of the dorsal salience subsystem, possibly
through reduced attentional function and speed of processing.

One limitation of this study is that the present analytic
approach employed only resting state fMRI. Future research
should investigate both the resting state and dynamic coupling
of the two salience subsystems to better understand how
distinct aspects of salience processing are changed in aging.
Additionally, as the strength of brain-behavior correlations
reported here are of only moderate strength, further research
will be needed to assess the reliability and replicability of
these findings. Furthermore, this study used a cross-sectional
design to examine mediation models and thus cannot speak
to the temporal ordering and causal relationship between
brain salience network connectivity and behavior. Future
longitudinal studies are needed to elucidate causal models of
longitudinal changes in aging (Raz and Lindenberger, 2011).
In addition, this study used a priori seeds defined in an
independent data set of young adults. Most studies of aging
have focused on changes in hub connectivity strength with
aging, as we did here. It is nonetheless possible that the
network topology may also change with aging (Meunier et al.,
2009). Future studies should explore this question as well
as replicate these findings using an exploratory whole brain
approach.

Attention and affective experience are two important
psychological phenomena that change with age, but the brain
basis underlying these changes remains unclear due to conflicting
results across published studies. Here, we show that the brain’s
intrinsic salience network has two subsystems that are not
affected by aging in a uniform way. The dorsal components

of the salience network lose coherence with age, and this
decreased connectivity fully mediates an age-related reduction
in executive function. The ventral components of the salience
network increase their coherence with age, and this increased
connectivity partially mediates an age-related increase in arousal-
based affective reactivity. These findings resolve conflicting
results in prior studies of salience processing in elderly, and
enhance our understanding of salience network functions. These
findings may also help to resolve conflicting results in clinical
studies of disease. Some studies report differences in salience
connectivity in age-related diseases such as Alzheimer’s disease
(Chand et al., 2017) and minimal hepatic encephalopathy (Chen
et al., 2016) while others show no significant differences in
Alzheimer’s disease or Mild Cognitive Impairment (Wang et al.,
2015). It may be that the dual model of salience network
organization suggested here could provide a framework to
understand disparate findings on brain network connectivity and
disease.
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