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ABSTRACT
The outcome of patients with cutaneous melanoma has been strongly modified by recent advances 
obtained with Immune Checkpoint Inhibitors (ICIs). However, despite this breakthrough, durable response 
to ICIs is limited to a subset of patients. We investigated whether the expression of TRF2, which preserves 
telomere integrity, and have an effect on tumor immunosurveillance notably by directly recruiting and 
activating myeloid-derived suppressor cells (MDSCs), could be a prognostic biomarker in patients with 
relapsed or metastatic melanoma based on different treatment regimens. We evaluated retrospectively 
the association of TRF2 expressed in melanoma cells in combination with intratumoral CD33+ CD15 
+ CD14- MDSCs, as detected by immunohistochemistry and quantified by digital analysis, to clinicopatho-
logical features and overall survival (OS) among 48 patients treated with ICIs and 77 patients treated with 
other treatment options. The densities/mm2 of TRF2+ cells (P=.003) and CD33+ cells (P=.004) were 
individually significantly related to poor OS. In addition, only the combined expression of CD33+/CD15 
+/CD14- cells/mm2 was significantly correlated to poor OS (P=.017) in the whole study population as well 
as in patients treated by ICIs (P=.023). There was no significant difference in OS when analyzing the other 
markers individually or in combination according to the treatment regimen. The pre-treatment assess-
ment of TRF2 expression and CD33+ cells/mm2 along with the density of CD33+/CD15+/CD14- cells/mm2 

could assess OS and better predict clinical response of patients with melanoma treated by ICIs.
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Introduction

Metastatic or advanced melanoma is a fatal skin cancer, with 
a 5-y survival rate of less than 30%.1 The development of the 
Immune Checkpoint Inhibitors (ICIs) targeting Programmed 
Death-1 (PD-1) and its ligand PD-L1 represents a true para-
digm shift with a 52% increase in the 5-y median overall 
survival.2–5 However, durable response to ICIs is limited to 
only a subset of patients, whereas 40% of the patients do not 
respond to ICIs in monotherapy. In most clinical trials, the 
expression of PD-L1 alone did not allow optimal selection of 
responding patients.3 Only a recent study on resected high-risk 
stage III melanoma demonstrated a benefit from the PD-L1 
positivity of the 3-y recurrence-free survival rate being superior 
to pembrolizumab compared with placebo.6

While PD-L1 alone is currently inadequate as prognostic and 
predictive marker in metastatic melanoma, other potential pro-
mising biomarkers are currently emerging.7 A recent study 
showed that an increase in CD8 + T cells from baseline to post- 
treatment biopsy may be significantly associated with a decrease 
in tumor size in patients with metastatic melanoma treated with 

ICIs.8 Notably, the CD4+ regulatory T cells (Tregs) expressing 
Foxp3 have immune suppressive functions and promote tumor 
progression by suppressing effective anti-tumor immunity.9 

Moreover, patients with increased levels of CD4+ and 
CD8 + T cells have better response than those with low levels, 
and potentially the ratio of T effector cells to Tregs may be 
a good predictor of response to ICIs.10 In addition, circulating 
PD-1+ Tregs rapidly declines after the initiation of the anti-PD-1 
treatment, which is associated with better clinical outcome.11

High baseline eosinophil count and low LDH count were 
associated with improved survival in melanoma patients trea-
ted with pembrolizumab.8 A recent study of patients with 
metastatic melanoma had 65 cytokines profiled as part of a 65- 
plex discovery assay. Eleven cytokines were found to be sig-
nificantly upregulated in patients who experienced severe 
immune-related adverse events; these 11 cytokines (G-CSF, 
GM-CSF, Fractalkine, FGF-2, IFNα2, IL12p70, IL1a, IL1B, 
IL1RA, IL2, IL13) were integrated into a single cytokine toxi-
city score (CYTOX) and validated its ability to predict 
immune-related adverse events.12
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The shelterin protein TRF2 (telomere repeats binding fac-
tor 2) is at the center of the molecular events that preserve 
telomere integrity.13,14 TRF2 binds to telomeric repeated 
sequences TTAGGG and its main role is to protect telomeres 
from being recognized as double stranded breaks in order to 
maintain genome stability by inhibiting the DNA Damage 
Response (DDR).15–18 Notably, in various mouse models, 
TRF2 inhibition has been shown to impair tumorigenesis 
independently of its functions in telomere protection and 
maintenance, but via cell extrinsic effects on immunosurveil-
lance and angiogenesis.19–21 Consistent with these various 
oncogenic properties, an increased level of TRF2 expression 
is observed in a large panel of carcinomas and has been 
reported to be associated with poor outcomes.15–18 However, 
the prognostic impact of TRF2 remains unknown in relapsed 
or metastatic melanoma.

An efficient antitumor immune response is of vital impor-
tance in preventing cancer progression and metastasis, as well 
as in successful chemotherapy or immunotherapy.22 Among 
the immunosuppressive properties of tumors, the recruitment 
and activation of myeloid-derived suppressor cells (MDSCs) 
facilitate cancer progression.23 A recent study demonstrated 
that cancer cells recruited and directly activated MDSCs in 
a TRF2-dependent manner, dampening NK and CD8 + T cell 
cytotoxicity.18 Moreover, patients with several types of carci-
nomas (including, breast, gastric, ovarian, and lung) with high 
TRF2 expression also exhibited marked MDSCs infiltration 
and reduced overall survival.18 CD11b and CD33 are mainly 
used as markers for human MDSCs.24 However, these markers 
are expressed by cells of the myelocytic lineage and by NK cells, 
so they are not specific enough to identify human 
neutrophils.25,26 Instead, neutrophils (or G-MDSCs) are 
found to be CD14 low and CD15 high, whereas the monocytes 
(or Mo-MDSCs) are CD14 high and CD15 low.27 Some studies 
showed that patients with melanoma have significantly high 
levels of blood circulating CD33+ CD11b+CD15 + G-MDSCs 
with immune suppressive phenotype, while low levels of 
G-MDSCs before anti-CTLA-4 therapy could correlate with 
an objective clinical response, long-term survival, and an 
improved clinical status.28–30

The objective of our study was to correlate the expression of 
TRF2 in melanoma cells combined with the quantification of 
intratumoral MDSCs, to overall survival (OS) and response to 
treatment in order to determine whether the combination of 
two proteins evaluation could be an effective prognostic bio-
marker in patients with relapsed or metastatic melanoma.

Patients and methods

Study population

This retrospective cohort included 125 patients with consecu-
tive primary cutaneous malignant melanoma diagnosed 
between July 2013 and February 2017 and treated at the 
Department of Dermatology, University of Nice, Archet 2 
Hospital (Nice, France) (Table 1). The patients initially diag-
nosed with stage I–II melanoma, were enrolled in the study at 
the time of the regional or distant metastatic relapse. The 
availability of histological material from the metastasis as well 

as the presence of an informed signed consent was required 
criteria to include a case in the study.

Out of the 125 patients, 91 (73%) presented with regional 
metastases (35 in transit and 56 lymph node metastases) and 34 
(27%) with distant metastases (19 lung and 15 subcutaneous).

Two groups of patients were distinguished in this study: 
a group of 48 patients (38%) who received at least one treatment 
of immunotherapy (anti-PD-1 inhibitors-pembrolizumab/nivo-
lumab and/or anti-CTLA4) and a group of 77 patients (62%) 
who did not receive immunotherapy treatment, albeit some had 
other treatments (chemotherapy or targeted therapies with anti- 
BRAF and anti-MEK agents) (Table 1).

Among the patients treated with immunotherapy, 35 (73%) 
had exclusively immunotherapy, while 13 (27%) received an 
immunotherapy treatment before or after having other treat-
ments (chemotherapy or targeted therapies).

All tumor specimens were used with the informed signed 
consent from the patients. The study was approved by the local 
ethics committee (Human Research Ethics Committee, Nice 
University Hospital Center/hospital-related Biobank BB-0033- 
00025; http://www.biobank-cotedazur.fr/) and was performed 
in accordance with the guidelines of the Declaration of Helsinki.

Immunohistochemistry and digital image analysis

Formalin-fixed paraffin-embedded (FFPE) serial 4 μm tissue 
sections were freshly cut, deparaffinized, pre-treated, and 
stained with monoclonal antibodies (Abs) directed against 
CD33 (clone SP266, ready-to-use, Roche, Tucson, AZ, USA), 
CD14 (clone EP128, dilution 1/200, Epitomics, Burlingame, 
CA, USA), CD15 (clone MMA, ready-to-use, Roche, Tucson, 
AZ, USA), and TRF2 (clone 4A794.15, dilution 1/500, 
OriGene, Rockville, MA, USA) on a BenchMark ULTRA auto-
stainer (Ventana Medical Systems, Tucson, AZ, USA).

Stains were detected using anti-immunoglobulin-coupled 
horseradish peroxidase with

3,3-diaminobenzidine (DAB, OptiView Kit, Roche 
Diagnostics, Ventana, catalog no. 760–700) as substrate. 
Nuclear counterstaining was performed with Mayer hematox-
ylin. Each IHC run contained a positive control (tonsil) and 
a negative Ab control (buffer, no primary Ab).

Slides were scanned at high resolution 200x on 
a Nanozoomer 2.0-HT Scanner (Hamamatsu photonics, 
Hamamatsu, Japan). Digital image analysis was carried out by 
two senior pathologists (M.I. and P.H.) using the HALOTM 

image analysis software, v2.3.2089.52 (Indica Labs, London, 
UK).31 The AI classifier in HALO was used to separate the 
image into two classes: tumor and other components (stroma, 
glass slide, artifacts). The classifier mask is shown overlaying the 
IHC image where classified tumor regions are shown in red, and 
the other components on the slide in yellow (Supplementary 
Fig. S1). Once the chosen classifier has been created and saved, 
it was used in the Multiplex IHC v2.0.3 module in HALO to 
automatically analyze the biomarkers included in the study.

BRAF molecular analysis

The BRAF mutational status was determined on tumor DNA 
isolated from FFPE tissue samples of melanoma metastases 
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using the QIAamp DNA FFPE tissue kit (Qiagen, Hilden, 
Germany), according to the manufacturer’s instructions. 
Pyrosequencing of BRAF exon 15 using the Therascreen 
BRAF Pyro Kit (Qiagen) was performed as previously 
described.32

Statistical analysis

Data are reported as the median ± S.D., extremes, absolute 
frequencies, percentages, 95% confidence intervals, and miss-
ing data percentages, as specified. All statistical analyzes were 
performed at alpha risk = 5% under bilateral assumption using 

R.3.2.3 software on Windows. The data were compared using 
the Χ2 test and the Fisher test in the case of noncompliance 
with Χ2 application conditions or the Student’s T-test or the 
Mann–Whitney test in the case of noncompliance with the 
student test conditions.

Overall survival (OS) since primary was defined as the 
interval between the time of the biopsy/resection of the metas-
tasis and the date of death of the patient or of the last follow up. 
Patients lost to follow-up were censored on the date of last 
contact. The survival curves were compared by the Log-Rank 
test. Kaplan-Meier survival curves were determined to assess 
the prognostic significance of single or combined biomarkers 

Table 1. Clinical and histomolecular characteristics of the metastatic melanoma cohorts treated by chemotherapy, targeted therapy, or immunotherapy. *χ2-test or 
Student’s t-test were used to investigate difference between groups.

Characteristics
Patients treated by che-

motherapy (n = 54), 43.2%
Patients treated by immu-
notherapy (n = 48), 38.4%

Patients treated by targeted 
therapy (n = 23), 18.4%

Total 
(n = 125), 

100% p-value* Test

Gender 0.21 χ2-test
Female 22 (40.7%) 14 (29.2%) 5 (21.7%) 41 (32.8%)
Male 32 (59.3%) 34 (70.8%) 18 (78.3%) 84 (67.2%)
Age (years) 0.18 ANOVA
Mean 66.7 63 60.6 64.2
Range [23–92] [24–89] [26–87] [23–92]
ECOG status 0.84 Fisher’s 

test
0 41 (75.9%) 38 (79.2%) 18 (78.3%) 97 (77.6%)
1 6 (11.1%) 5 (10.4%) 3 (13%) 14 (11.2%)
2 5 (9.3%) 5 (10.4%) 1 (4.3%) 11 (8.8%)
3 2 (3.7%) 0 (0%) 1 (4.3%) 3 (2.4%)
LDH baseline 0.45 Fisher’s 

test
Normal 26 (48.1%) 23 (47.9%) 16 (69.6%) 65 (52%)
High 5 (9.3%) 2 (4.2%) 4 (17.4%) 11 (8.8%)
Not determined 23 (42.6%) 23 (47.9%) 3 (13%) 49 (39.2%)
Histological subtype <0.001 Fisher’s 

test
Superficial spreading 

melanoma
26 (48.1%) 15 (31.2%) 15 (65.2%) 56 (44.8%)

Nodular melanoma 19 (35.2%) 10 (20.8%) 3 (13%) 32 (25.6%)
Acral lentiginous 

melanoma
3 (5.6%) 3 (6.2%) 0 (0%) 6 (4.8%)

Invasive lentigo 
maligna melanoma

3 (5.6%) 1 (2.1%) 1 (4.3%) 5 (4%)

Not classified 3 (5.6%) 19 (39.6%) 4 (17.4%) 26 (20.8%)
Ulceration 0.84 χ2-test
Absent 25 (46.3%) 24 (50%) 11 (47.8%) 60 (48%)
Present 29 (53.7%) 22 (45.8%) 12 (52.2%) 63 (50.4%)
Unknown 0 (0%) 2 (4.2%) 0 (0%) 2 (1.6%)
Stage at diagnosis 0.01 χ2-test
I + II 47 (87%) 32 (66.7%) 21 (91.3%) 100 (80%)
III + IV 7 (13%) 16 (33.3%) 2 (8.7%) 25 (20%)
Breslow depth 

(median, range)
0.71 Kruskal- 

Wallis 
test

Median, range 2.5 [0.15–12] 3.1 [0.3–25] 3 [0.22–10] 2.6 [0.15–25]
Brain metastasis (at 

diagnosis)
0.11 χ2-test

Present 3 (5.6%) 6 (12.5%) 5 (21.7%) 14 (11.2%)
Absent 51 (94.4%) 42 (87.5%) 18 (78.3%) 111 (88.8%)
BRAF status <0.001 χ2-test
Mutation 19 (35.2%) 3 (6.3%) 18 (78.3%) 40 (32%)
Wild-type 35 (64.8%) 28 (58.3%) 2 (8.7%) 65 (52%)
Unknown 0 (0%) 17 (35.4%) 3 (13%) 20 (16%)
BRAF mutation type 0.78 Fisher’s 

test
p.V600E 13/19 (68.4%) 3/3 (100%) 13/18 (72.2%) 29/40 (72.5)
p.V600K 5/19 (26.3%) 0/3 (0%) 3/18 (16.7%) 8/40 (20)
p.V600D 0/19 (0%) 0/3 (0%) 1/18 (5.6%) 1/40 (2.5%)
p.V600R 0/19 (0%) 0/3 (0%) 1/18 (5.6%) 1/40 (2.5%)
p.L597R 1/19 (5.3%) 0/3 (0%) 0/18 (0%) 1/40 (2.5%)
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on OS. The cutoff predicting OS was defined as the median 
density of expressing cells/mm2. Multivariate analyzes were 
performed using Cox regression models with corresponding 
adjusted Hazard Ratio (HR) calculations. P-values <0.05 indi-
cated statistical significance.

Results

Expression patterns of the analyzed tissue biomarkers

Examples of the digital analysis with the multiplex IHC module 
in HALO are shown in Figure 1.

Collinearity was used to assess the association between the 
putative biomarkers within the tumor areas (Supplementary 
Fig. S2). All biomarkers demonstrated some degree of positive 
correlation with each other. Of the biomarkers assessed, the 
most significant relationships were observed between CD14 
and CD33 expressing cells (rho = 0.8; P <.0001), CD14 and 
TRF2 expression (rho = 0.8; P <.0001), CD15 and CD33 
expressing cells (rho = 0.77; P <.0001), and CD14 and CD15 
expressing cells (rho = 0.75; P <.0001), whereas a moderate 
correlation was found between CD33 expressing cells and 
TRF2 expression (rho = 0.55; P <.0001). For further analyses, 
patient stratification was defined by density using median value 
cutoffs.

Patients characteristics

The main clinical and histo-molecular characteristics of this 
cohort are shown in Table 1.

Of the 125 patients included for analysis, 41 (32.8%) were 
female and 84 (67.2%) were male patients. Overall median age 
was 64.2 y (range, 23–92 y). A majority of patients had an ECOG 
status equal to 0 (97, 77.6%). Of the 125 cases, superficial spread-
ing malignant melanoma accounted for 44.8%, nodular mela-
noma 25.6%, acral lentiginous melanoma 4.8%, invasive lentigo 
maligna melanoma 4%, and 20.8% of the cases were not classi-
fied. 32% of the cases harbored a BRAF mutation on exon 15.

Correlations with the clinicopathological characteristics

The density of CD14+ cells was significantly associated with BRAF 
mutational status (P=.02; Table 2). The density of CD15+ cells was 
significantly correlated to the ulceration (P=.005) and the Breslow 
depth (P=.02), whereas the TRF2+ expression was significantly 
associated with the histological subtype (P<.001; Table 2).

Survival analysis

The median follow-up of the study was of 53 months (95% CI, 
44–70). According to the univariate analysis, the ECOG status, 
the pTNM stage, and the presence of ulceration were signifi-
cantly associated to poor OS in our study cohort (P=.022, 
P=.044, and P<.001, respectively).

The densities of TRF2+ cells (HR, 2.4; 95% CI, 1.1–5.1; 
P=.003) and CD33+ cells (HR, 1.46; 95% CI, 0.7–3.1; P=.004) 
were individually significantly associated with poor OS 
(Figure 2), except the density of CD15+ cells (HR, 1.7; 95% 
CI, 0.94–3; P=.078) and CD14+ cells (HR, 0.99; 95% CI, 0.57– 
1.7; P=.386; not shown). In addition, based on the results for 

Figure 1. Representative images of immune biomarkers and TRF2 staining, and their cell detection mask overlays used in the digital image analysis. Original 
magnification, x 200.
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their individual survival analysis and collinearity of the bio-
markers assessed, combination of dichotomized densities was 
explored for OS outcome. Of these analyses, only the combined 
expression of CD33+/CD15+/CD14- cells/mm2 was signifi-
cantly correlated to poor OS (median OS, 3.6 months versus 
12.6 months; HR, 3.6; 95% CI, 1.1–12; P=.017; Figure 2).

Moreover, in the population of patients treated by immu-
notherapy, the combined expression of CD33+/CD15 
+/CD14- cells/mm2 was significantly associated with poor 

OS (median OS, 13.3 months versus 20.7 months; HR, 3.2; 
95% CI, 1.1–8; P=.023; Figure 3). There was no significant 
difference in OS when analyzing the other markers indivi-
dually or in combination according to the treatment 
regimen.

In the multivariate analysis, the ECOG status and the com-
bined expression of CD33+/CD15+/CD14- cells/mm2 were 
significant and independent prognostic factors associated 
with OS compared to the other groups (Table 3).

Figure 2. Kaplan-Meier overall survival curves according to TFR2, CD33, and CD33+/CD15+/CD14- status in the whole study population (n = 125).

Figure 3. Kaplan-Meier overall survival curve according to CD33+/CD15+/CD14- status in patients treated by immunotherapy (n = 48).
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Discussion

Treatment with ICIs in patients with advanced or metastatic 
melanoma can demonstrate impressive response rates.33,34 

However, although the benefit is restricted to approximately 
40% of the patients treated with anti-PD-1 therapy, there are 
no approved stratification strategies for ICIs in melanoma.33,34 

Thus, despite active research and development for having 
robust prognostic or predictive biomarkers for responsiveness 
of ICIs in melanoma in routine clinical practice, there is an 
urgent need for robust and easy to use biomarkers in daily 
practice to guide the clinical decision-making.35,36

In the current study, the high TRF2 expression and high 
density of CD33+ cells were found to represent baseline bio-
markers significantly affecting OS of melanoma patients.

The TRF2 protein is a key factor in telomere protection, 
which contributes to oncogenesis.37,38 While elevated TRF2 
expression is observed in a large number of solid malignancies, 
notably carcinomas,16,39–41 little is known about its oncogenic 
and clinical role in melanoma. The in vitro TRF2 inhibition in 
human melanoma cells can impair their tumorigenicity, 
whereas a basal level of telomere instability favors an efficient 
response to TRF2 inhibition and the combined anti-TRF2 and 
G4-ligand therapy would have synergistic inhibitory effects on 
tumor cell growth.42 In addition, we previously demonstrated 
that high expression of TRF2 in circulating tumor microemboli 
detected in metastatic melanoma patients had potential impact 
for the assessment of disease aggressiveness.17

Recent findings have also raised the possibility that over-
expression of TRF2 may be a critical step in human oncogenesis 
by contributing to bypass tumor immune surveillance. Based on 
the upregulation of TRF2, tumor cells recruit and activate 
MDSCs, acting as a general suppressor of the immune response 
by inhibiting NK and T cell responses, thus establishing a direct 
link between cancer-associated telomere modifications and the 
immunosuppressive tumor microenvironment.18

In our study, the high density of CD33+ cells was signifi-
cantly correlated with worse OS. Only one other recent study 
evaluated the relationship between the expression of CD33 
+ MDSCs and the outcome of patients with cutaneous mela-
noma, showing that high expression of CD33 was associated 
with poor clinicopathological variables and was an indepen-
dent prognostic factor.43 Moreover, CD33+ MDSCs are 
increased in the peripheral blood of advanced melanoma 
patients, being an indicator of worse survival at baseline and 
following treatment with ipilimumab.28,44 MDSCs have been 
shown to exert immunosuppressive function on T cells, 
thereby possibly counteracting the beneficial effect of ICIs.45 

However, CD33 is found in maturing granulocytes, monocytes, 
and multipotent myeloid precursors and is also expressed in 
subsets of activated T cells, natural killer cells, and B cells.25,26 

Instead neutrophils (or G-MDSCs) besides expressing CD33, 
are found to be CD14 low and CD15 high, whereas monocytes 
(or Mo-MDSCs) are CD14 high and CD15 low.

In the present study, whereas the density of CD15+ cells or 
CD14+ cells was not correlated to survival, only the combined 
expression of CD33+/CD15+/CD14- cells/mm2 was signifi-
cantly predictive of poor OS in both the whole population as 
well as in patients treated by immunotherapy. Thus, it seems 
that the G-MDSCs and not Mo-MDSCs may be related to the 
outcome, suggesting that the blockade of G-MDSCs immuno-
suppressive mechanisms could be explored as a therapeutic 
approach to reestablishing T-cells activity and immunotherapy 
success in melanoma patients.46

Recent reports have suggested the significance of G-MDSCs 
in patients with advanced melanoma treated using ICIs.47 

Increased microRNAs in the plasma of melanoma patients 
are associated with the generation of G-MDSCs mediated by 
melanoma extracellular vesicles, and are even associated with 
resistance to treatment with ICIs in melanoma patients.47

Nevertheless, there are a few limitations to our study that need 
to be considered. This is a heterogeneous patient population. The 
number of patients treated with ICIs was limited (n = 48). The 
question whether the suggested biomarkers are prognostic in 
general or prognostic for outcome after specific ICIs cannot be 
answered. As tumors often exhibit significant cellular and spatial 
heterogeneity, it would be important to be able to perform high- 
resolution multiplexed IHC analysis across whole-sections of 
tumors to analyze the different putative biomarkers in relation-
ship with survival. In addition, we were not able to validate the 
prognostic relevance of our findings in an independent cohort. 
Thus, further validation is strongly warranted.

In conclusion, the pre-treatment evaluation of TRF2 expres-
sion and CD33+ cells/mm2 along with the density of CD33 
+/CD15+/CD14- cells/mm2 are significantly correlated with 
poor OS and could predict clinical response of patients with 
recurrent or metastatic melanoma treated by ICIs, and so be 
a promising, easy to use new biomarkers in patients with 
melanoma.
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