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Abstract: Phytoplankton are photosynthetic microorganisms in aquatic environments that produce
many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding
and are even poisonous to humans through the food chain. Human poisoning from these substances
and their serious long-term consequences have resulted in several health threats, including cancer,
skin disorders, and other diseases, which have been frequently documented. Seafood poisoning
disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic
shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP),
ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying
harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently
required. Although the harmful effects of these toxins are well documented, their possible modes
of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize
the current state of knowledge regarding phytoplankton toxins and their detrimental consequences,
including tumor-promoting activity. The structure, source, and clinical symptoms caused by these
toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly
discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of
action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss
future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also
be used in different pharmacological prospects and can be established as a potent pharmacophore in
the near future.

Keywords: phytoplankton; toxin; toxic effects; clinical symptoms; reactive oxygen species (ROS)

Key Contribution: Marine phytoplankton toxins cause seafood poisoning and disorders in humans.
The clinical symptoms include allergy; paresthesia; abdominal pain; vomiting; diarrhea; convulsions;
low blood pressure; inflammation; fever; nausea; neurotoxicity; memory loss; coma; cardiovascular
shock; gastrointestinal problems; full paralysis; and skin irritation. Furthermore, these toxins display
tumor-promoting activities via oxidative stress and ROS. This review expands our understanding of
human clinical symptoms and the tumor-promoting activity of phytoplankton toxins. These toxins
also have potential effects on different diseases.

1. Introduction

Phytoplankton, typically found in aquatic systems, are microscopic, unicellular organ-
isms that exist solitarily or in chains and are photosynthetic. The activities of freshwater
and marine water Cyanobacteria, diatoms, and dinoflagellates may account for almost half
of the global CO2 fixation [1–6]. However, some phytoplankton can multiply rapidly to
form harmful algal blooms (HABs), and some even produce toxins that harm marine life
and humans.

Phytoplankton are the chief contributor of toxins [7–9] and they are responsible for
a variety of human ailments associated with seafood consumption [10]. They have been
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linked to episodic deaths in humans (1.5%) and other organisms, such as marine birds,
mammals, and organisms dependent on the marine food web [11]. Phytoplankton cause
blooms and are the main source of toxins in response to environmental conditions. Haz-
ardous diatoms such as Pseudo-nitzschia are frequently found and are the chief contributors
to wreaking havoc on the environment, aquatic organisms, and humans [12]. To date, only
2% (0–80 species) of over 3400–4000 phytoplankton taxa are established [10,13]. Cyanobac-
teria, diatoms, and dinoflagellates are the chief contributors to phytoplankton toxins that
are harmful to humans and other aquatic organisms [11]. Filter-feeding shellfish, herbivo-
rous fish, and zooplankton consume phytoplankton and serve as mediators for humans
either directly (shellfish) or indirectly (zooplankton) through the food web. Phytoplankton
toxins are responsible for several seafood poisoning disorders, including paralytic shellfish
poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP),
diarrheic shellfish poisoning (DSP), and ciguatera fish poisoning (CFP) [11]. The majority
of the neurotoxins are heat-stable, and cooking temperature is not enough to completely in-
activate these toxins. In addition to foodborne poisoning, toxins from some dinoflagellates
can be aerosolized (brevetoxins) or volatilized (a putative Pfiesteria toxin) and are harmful
to the human respiratory system [11]. While certain phytoplankton toxins are toxic, others
may pose various threats.

According to several epidemiological and experimental studies, chronic exposure to
phytoplankton toxins in humans has been linked to carcinogenesis, particularly in the skin,
lungs, nasopharynx, pancreas, kidneys, breast, prostate, urinary bladder, and hematological
systems [14]. Phytoplankton toxins can induce several clinical symptoms. These include
abdominal pain, vomiting, diarrhea, severe headaches, confusion, agitation, somnolence
(sleepiness), memory loss, coma, ataxia (incoordination), excessive scratching, tremors,
heart, seizures, spells of significant lethargy, inappetence, central blindness, vomiting,
blepharospasm, muscular twitching, aberrant behavioral difficulties, convulsions, and
mortality [15]. Moreover, it is critical to investigate their chemical origins and environ-
mental effects in the context of overall health. Phytotoxins have attracted scientific interest
because of their increasing impact on ecosystems, animals, and humans. Understanding the
chemical and physical features of these toxins, their presence in marine waters, production
management, and their fate in ecosystems is important for assessing the specific effects of
these toxins and their possible mechanisms of action, which are urgently needed. Lung,
skin, breast, prostate, pancreas, urinary bladder, and nasopharyngeal cancers have all been
linked to exposure to phytoplankton toxins. In mammals, microcystins and nodularin
are unique liver poisons [16], and acute exposure to both results in hepatic bleeding and
failure [16,17]. The okadaic acid pathway induces cancers in the skin, liver, and glandular
stomach of mice and rats [17–19].

In this review, we focus on the human clinical symptoms produced by phytoplank-
ton toxins and their possible mechanisms of toxicity. In addition, while the impacts of
phytoplankton toxicity on human health have yet to be completely explored, the prob-
able mechanisms of toxicity related to reactive oxygen species (ROS) and their tumor
promotion activity are underlined. The neurotoxic effects of phytoplankton toxins are also
briefly discussed.

2. Marine Phytoplankton: The Most Important Source of Toxins

One of the most important components of marine ecosystems is phytoplankton [1],
and because of their photosynthetic activities, they play an important role as the principal
source of biomass and organic molecules in oceans [20,21]. In contrast, many phytoplank-
ton species produce secondary bioactive metabolites, including poisonous toxins [22–25].
The most hazardous molecular structures of certain toxins derived from marine phyto-
plankton are displayed in Figure 1. However, the evolutionary and functional relevance
of these toxins remain unknown. They can be discharged into the environment and exert
allelochemical effects to combat rivals or grazers [20]. Phytoplankton toxins are mostly
neurotoxins with various chemical structures, ranging from comparatively simple alkaloids
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and amino acids to polyketides, a family of extremely diverse compound structures and
toxic effects. In addition, maitotoxin and palytoxin are toxins generated by the dinoflagel-
lates Ostreopsis siamensis and Gambierdiscus toxicus [11]. Toxins accumulate in filter-feeding
fish and shellfish, causing PSP, ASP, DSP, CFP, and azaspiracid shellfish poisoning (AZP). In
addition to human ailments induced by consuming contaminated seafood, certain marine
toxins, such as tetrodotoxin, have the potential to be used in bioterrorism [26]. Saxitoxin
and its analogs are the most toxic among marine neurotoxins [27]. In addition, they also
produce polypeptides, which are neurotoxins that target the sodium channels.
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3. Shellfish Poisoning Toxins: The Most Hazardous Impact to Human Health

Epidemiological studies have reported human disorders caused by marine dinoflagel-
late toxins, and most cases are well-documented [28]. PSP, DSP, CFP, NSP, and AZP are
disorders caused by shellfish poisoning. Symptoms usually appear due to eating contami-
nated seafood or exposure to toxins directly or via HABs [29]. The most frequent marine
toxin is ciguatera poisoning. Ciguatera toxin can be detected in the plasma, serum, and
urine of patients. Moreover, fish populations can be affected because the larvae have a
lower chance of surviving ciguatera toxicity [30]. Saxitoxin (STX) pufferfish poisoning
(PFP) causes a similar disease; however, bioaccumulation occurs in pufferfish rather than
shellfish. The active toxin was identified as STX and two of its variants, with Pyrodinium
bahamense being the main producer. PFP is usually linked to tetrodotoxin, whereas PSP is
named after STX pufferfish poisoning (SPFP), which causes food poisoning [31].

PSP is a life-threatening syndrome caused by shellfish poisoning that has been docu-
mented worldwide [32]. Filter-feeding mollusks and crustaceans swallow harmful cells
in the event of PSP, which concentrates the toxin inside the animal’s organs and tissues.
The first PSP outbreak was reported in 1927 near San Francisco, California when Alexan-
drium catenella caused 106 cases and six deaths [33]. Since then, members of the genera
Gymnodinium, Pyrodinium, and Alexandrium have been identified as important causes of
PSP, while the majority of PSP outbreaks are caused by consuming contaminated shellfish.
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Numbness and paresthesia, first around the mouth and lips and then the neck and face,
muscle weakness, a feeling of lightness and floating, lethargy, motor incoordination, ataxia,
incoherence, and a steady decrease in ventilator efficiency are all symptoms of PSP. These
complications eventually lead to respiratory paralysis and death in patients with severe
intoxication [34]. Every year, nearly 2000 cases of human PSP are reported worldwide, with
a 15% mortality rate [35]. PSP has also been linked to the death of marine whales, birds,
and monk seals [36].

Certain seafood species have evolved to survive in high quantities of algal toxins.
Softshell clams from red tide-affected areas are more resistant to PSP poisoning, and toxins
accumulate at higher rates in them than in sensitive clams from unaffected areas [37].
Humans may be at risk due to this because after accumulation, toxins go through a number
of biotransformations in the hosts, and the impact of the modified toxins on humans has
not yet been thoroughly investigated [15]. In addition to well-known toxins, dinoflagellates
produce some of the largest and most complex toxins ever discovered that modulates tu-
morigenic and neurotoxic actions, and are produced by synthase genes [38]. Dinoflagellate
toxins are gaining popularity because of their wide spectrum of toxic effects [39].

STX and its analogs were discovered in shellfish, where they were initially concen-
trated by marine dinoflagellates and have been linked to human deaths [40]. However,
cyanobacteria, such as Lyngbya wollei, Cylindrospermopsis raciborskii, Anabaena circi-
nalis, and Aphanizomenon flos-aquae, have all been shown to produce STX. The NH-1
and NH-5 strains of Aphanizomenon flos-aquae from North America primarily contain
neosaxitoxin (NEO) and less STX, as well as a few unidentified neurotoxins. Although
some cyanobacterial toxins, such as nodularin, have been found in brackish water and
neurotoxic factors have been found in marine environments, the presence of the neurotoxin
β-methylamino-L-alanine (BMAA) in saline habitats could be due to its presence inside the
Microcystis bloom [41]. BMAA and its isomers and marine toxins such as brevetoxin may
be produced by diatoms and dinoflagellates in oceans. Risk evaluation and monitoring are
essential because of the possibility of numerous co-occurrences and co-exposures to breve-
toxins, microcystins, and BMAA. Although BMAA and its isomers have been discovered
in marine blooms involving diatoms and dinoflagellates, more research is needed to fully
understand the presence of this cyanobacterial toxin in these algal species [42].

However, no vaccines are available to guard against phytoplankton toxicity. For
example, an experiment was conducted on the tetrodotoxin (TTX) vaccination of mice.
To make false antigens TTX–TT and TTX–TTH, the vaccine used Tachypleus tridentatus
hemocyanin (TTH) and tetanus toxoid (TT) as carrier proteins. The TTH–TTX vaccine
protected mice against orally administered TTX better than the TTX–TT vaccine [43,44].
Initially, it was shown that new experimental vaccines could protect animals from repeated
ingestion of marine phytoplankton toxins. Not only do marine phytoplankton toxins cause
seafood poisoning, but they also induce skin, liver, hepatic, and gastrointestinal tumor
promotion activity. Additionally, the toxins cause allergic reactions, irritants, headaches,
and several other diseases. Furthermore, phytotoxins cause stress-associated ROS-related
diseases and cancers, which pose a serious threat and may lead to death.

3.1. Marine Cyanobacterial Toxins Association with Clinical Symptoms

Marine cyanobacteria are key sources of bioactive and harmful toxins (Table 1). Toxin-
contaminated water by several species of cyanobacteria often causes acute and sometimes
serious diseases as well as lethal illnesses in humans and other organisms such as cattle,
birds, pets, wildlife, and fish. Several countries have reported losses due to toxins impacting
organisms and the marine tourism health sector. However, the expanding pool of toxins
produced by marine cyanophytes provides a unique supply of bioactive compounds for
toxicological research [45].
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Table 1. Marine cyanobacterial and diatoms toxins and their toxic target with clinical symptoms.

Toxins Organisms/Source Toxic Symptoms Toxic Target References

Nodularin Nodularia spumigena PP inactivation [17–19]

Nodularin Nodularia spumigena
Renal lesions, diarrhea,
vomiting, piloerection,
weakness, and pallor

Tissue transport and bile
anions [46,47]

Nodularin Nodularia spumigena Tumor promotion [18,19]

Oscillatoxin Schizothrix calcicola and
Oscillatoria nigroviridis Contact irritants - [48]

Lyngbyatoxin-A Lyngbya majuscula Skin irritant, oral and
gastrointestinal inflammation Tumor promotion [49]

Lipopolysaccharide Most of the cyanobacterial
species

Allergic, inflammatory,
pyrogenic reactions, fever and

septic shock syndrome
Tumor promotion [50]

Aplysiatoxin Schizothrix calcicola and
Oscillatoria nigroviridis

Inflammation, burning
ambiances in the throat and

mouth, paraesthesia,
abdominal pain, vomiting,

diarrhea, convulsions, and low
blood pressure

Tumor promotion [51]

Aplysiatoxin Schizothrix calcicola and
Oscillatoria nigroviridis

Gastrointestinal symptoms,
including diarrhea, nausea,

and vomiting

blocked potassium channel
Kv1.5 [52]

Aplysiatoxin Schizothrix calcicola and
Oscillatoria nigroviridis Sodium channel blocked [51]

Kalkitoxin Lyngbya majuscula and
Trichodesmium spp. Neurotoxic Sodium channel blocked [53]

Antillatoxin Lyngbya majuscula Ichthyotoxicity and
neurotoxicity

Sodium channel blocked,
Neurotoxicity [54]

Domoic acid

Pseudo-nitzschia australis,
Pseudo-nitzschia calliantha,
Pseudo-nitzschia cuspidate,

Pseudo-nitzschia delicatissima,
Pseudo-nitzschia fraudulenta,

Pseudo-nitzschia galaxiae,
Pseudo-nitzschia multiseries,
Pseudo-nitzschia multistriata,

Pseudo-nitzschia
pseudodelicatissima,

Pseudo-nitzschia pungens,
Pseudo-nitzschia seriata, and

Pseudo-nitzschia turgidula

Abdominal pains, vomiting,
and diarrhea, severe

headaches, confusion,
agitation, somnolence

(sleepiness), memory loss,
coma, Ataxia (incoordination),

excessive scratching,
sleepiness, tremors, heart,

Seizures, spells of significant
lethargy and inappetence,

central blindness, vomiting,
blepharospasm, muscular
twitching, and aberrant

behavior difficulties,
convulsions, and mortality

Sodium channel blocked and
Glutamate receptors [55]

Saxitoxins

Lyngbya wollei,
Cylindrospermopsis raciborskii,

Anabaena circinalis, and
Aphanizomenon flos-aquae

Respiratory arrest,
cardiovascular shock, tickling
sensations in the mouth, lips,
and tongue, numbness in the

extremities, breathing
difficulties, gastrointestinal
problems, and full paralysis

Sodium channel blocked,
Voltage-dependent sodium

channel Site 1
[56,57]

Cyanobacterial toxins in the ocean can cause contact dermatitis and gastrointestinal
diseases in humans, mainly in swimmers, and Lyngbya majuscula is one of the most
common culprits [58]. The brominated alkaloid aplysiatoxin and its derivatives elicit an
inflammatory response when they are in contact with the skin, and they are responsible for
serious food poisoning. Aplysiatoxin is produced by Schizothrix calcicola and Oscillatoria
nigroviridis, which cause a burning feeling in the throat and mouth, paresthesia, abdomi-
nal pain, vomiting, diarrhea, convulsions, and low blood pressure in humans. They are
also potent tumor promoters [51]. Aplysiatoxin analogs significantly increased phospho-
PKCδ expression and selectively blocked the potassium channel Kv1.5 [52]. Lyngbyatoxin
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A is a dermatotoxic alkaloid generated by L. majuscula and it has a similar structure to
teleocidin A-1, a severe skin irritant and tumor promoter with similar toxicity to aplysi-
atoxin. Because of their lower affinity for phorbol ester receptors, lyngbyatoxin B and
C, which are also found in L. majuscula, are thought to be weaker tumor promoters than
lyngbyatoxin-A [49]. In humans, lyngbyatoxin-A causes dermatitis and oral and gastroin-
testinal inflammation [59]. Oscillatoxin produced by Schizothrix calcicola and Oscillatoria
nigroviridis causes contact irritation [48]. Contact with lipopolysaccharides (LPSs), which
are produced by cyanobacteria, elicits allergic, inflammatory, and pyrogenic reactions in
humans and other animals [60]. Moreover, it acts as a powerful tumor promoter and protein
kinase C activator in humans [50]. In mammals, LPS causes fever and is involved in septic
shock syndrome [61]. Although the actual mechanism of tumor promotion is still unclear,
cyanobacterial toxins cause an increase in oxidative stress, leading to an increase in ROS,
which can damage DNA and has been linked to phytotoxin-induced liver cancer [62–64].

Despite being widespread, mainly due to physical contact, marine cyanobacterial neu-
rotoxins have also been found in edible fish, posing a risk to humans [65]. Several neurotoxic
chemicals have been identified in marine cyanobacteria. Kalkitoxin, most recently found in
L. majuscula and Trichodesmium spp., causes rapid neurotoxicity and neuronal necrosis in rat
cerebellar neurons through an N-methyl-D-aspartate receptor pathway and is related to STX,
which are a group of carbamate alkaloids with potent sodium-channel blockage capabilities
that have been linked to human death [53]. Moreover, it is ichthyotoxic to goldfish such
as Carassius auratus and toxic to crustaceans such as Artemia salina [66]. Antillatoxin from
L. majuscula displayed strong ichthyotoxicity and neurotoxicity (EC50 = 20.1 ± 6.4 nM) [54].
Nodularia spumigena primarily produces nodularin in brackish waters. It has a similar
structure and mechanism of toxicity to microcystins [64,67]. Furthermore, nodularin from
naturally occurring phytoplankton samples, such as N. spumigena from the Baltic Sea,
modulates the toxicity of human and rat hepatocytes by inhibiting the activity of protein
phosphatase 1 and 2A [64]. Individuals affected by this toxin experience symptoms such as
renal lesions, diarrhea, vomiting, piloerection, weakness, and pallor [46,47]. The marine
cyanobacterial toxins and their toxic targets and associated clinical symptoms are shown in
Table 1.

3.2. Marine Diatoms Toxins and Their Toxic Effects and Clinical Symptoms

Domoic acid (DA) is a secondary metabolite with a structure similar to that of kainic
acid and amino acids, such as aspartic and glutamic acid. Many diatom species, such as
the genus Pseudo-nitzschia, produce domoic acid, and its toxic targets and related clinical
symptoms are displayed in Table 1. It is a non-protein amino acid that is crystalline,
water-soluble and has a molecular weight of 311 Da [68]. In addition to Pseudo-nitzschia,
a second diatom genus, Amphora, has been identified to produce DA [69]. Moreover,
Antarctic diatom species have been identified as DA producers [70]. The genus Pseudo-
nitzschia is a marine planktonic diatom with 30 species, 12 of which are well-known DA
producers. Pseudo-nitzschia spp. may produce more toxins due to various changes in the
concentrations of iron, silicon, copper, phosphorus, and nitrogen, as well as higher carbon
dioxide concentrations. In addition, stress conditions can enhance the formation of DA
in diatoms. Toxigenic diatoms cause poisoning in both humans and animals on a regular
basis. Furthermore, domoic acid has poisoned fish-eating birds, marine mammals, and
humans [71]. DA can permanently harm the nervous system and is accountable for ASP,
which has been demonstrated to cause oxidative stress, mitochondrial damage, and death.
In many instances, ASP has been observed in seagulls, marine animals, sea lions, and
fish, resulting in various symptoms [72]. Common symptoms in patients affected by this
toxin include abdominal pain, vomiting, diarrhea, severe headaches, confusion, agitation,
somnolence (sleepiness), memory loss, coma, ataxia (incoordination), excessive scratching,
tremors, heart difficulties, convulsions, and death [71]. Furthermore, DA is noxious to
neuronal cells, as demonstrated by in vitro studies [55]. DA toxicity manifests in a variety
of clinical symptoms, including brain pathology, tissue/cell injury, and memory loss [73,74].
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Clinical symptoms and brain lesions observed in animal toxicology studies are frequently
similar to those observed in naturally exposed species such as sea lions and humans. These
clinical symptoms include seizures, spells of significant lethargy and inappetence, central
blindness, vomiting, blepharospasm, muscular twitching, and aberrant behavior [75].

3.3. Marine Dinoflagellates Toxins and Their Toxic Effects and Clinical Symptoms

Dinoflagellate species produce diverse toxins, the majority of which are neurotoxic,
killing large numbers of fish, birds, and marine mammals, with some also causing human
casualties. In addition, these toxins exhibit cancer-causing properties and are associ-
ated with other stress-related diseases. Alexandrium, Gymnodinium, and Pyrodinium are
toxin-producing dinoflagellates [11]. Their toxins, disease-causing clinical symptoms, and
potential targets, including molecular mechanisms, are summarized in (Table 2).

Table 2. Marine dinoflagellates toxins and their toxic target with clinical symptoms.

Toxins Organisms/Source Toxic Symptoms Toxic Target References

Okadaic acid Dinophysis sp. and
Prorocentrum lima

Incapacitating diarrhea,
nausea, vomiting, and

abdominal pain

PP inactivation, Oxidative
damage, cellular

dysfunction, cell cycle,
gene expression, inhibit
DNA repair mechanism

[76–78]

Dinophysistoxins
Okadaic acids

Dinophysis spp.
Prorocentrum spp.

Gastrointestinal illness,
nausea, vomiting, and

abdominal pain

Ser/thr protein
phosphatases [79,80]

Azaspiracid Protoperidinium crassipes
Severe diarrhea, vomiting,
nausea, stomach cramps,

and neurotoxicity
Tumor promotion [81]

Ciguatoxin Gambierdiscus toxicus
Neurological,

gastrointestinal, and
cardiovascular problems

Sodium channel blocked,
Voltage-dependent sodium

channel
Site 5

[82–84]

Saxitoxins
Alexandrium spp.

Gymnodinium spp.
Pyrodinium spp.

Respiratory arrest,
cardiovascular shock,

tickling sensations in the
mouth, lips, and tongue,

numbness in the
extremities, breathing

difficulties, gastrointestinal
problems, and full

paralysis

Sodium channel blocked,
Voltage-dependent sodium

channel Site 1
[56,57]

Brevetoxin Karenia brevis
Gymnodinium breve

Slighter gastroenteritis
with neurologic indicators,

Nausea, tingling and
numbness in the perioral

area, loss of motor function,
and acute muscular pain

Sodium channel blocked,
Voltage-dependent sodium

channel
Site 5

[85]

Yessotoxins

Gonyaulax spinifera,
Lingulodinium polyedrum,

and Protoceratium
reticulatum

Motor discoordination Sodium channel blocked [86]

Palytoxin
Ostreopsis mascarenensis, O.
siamensis, O. lenticularis, O.

fattorussoi, and O. ovata,

Fever, ataxia, inactivity,
drowsiness, and limb

weakness
Sodium channel blocked [87,88]

Spirolides
Alexandrium ostenfeldii,

Alexandrium peruvianum,
and Karenia selliformis

Neuron and astrocytes
damage Sodium channel blocked [89]
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Marine dinoflagellates produce STX. This toxin is an alkaloid with a molecular weight
of 299 Da and is generally known as PSP. The toxicity of STX derivatives varies depending
on their types; among these, the most dangerous compounds are STX, NEO, and gonyau-
toxins (GTX1-4). STX binds to the sodium and calcium channels in nerve axon membranes
and prevents these ions from passing over the cell membrane, thereby inhibiting nerve
impulse transmission in nerves extending to the heart cells [56,57]. STX poisoning can
induce symptoms such as tingling and numbness around the lips, neuromuscular paralysis,
and death due to respiratory failure. It also induces a cardio-depressive effect [57]. STX is
the most dangerous toxin, and its neurotoxic effects have been well studied. The LD50 is
3–10 µg/kg body weight in mice, while the LD50 after oral administration is 263 µg/kg
body weight. In humans, the lethal oral dose ranges from 1 to 4 mg, depending on the sex
and physiological state of the patient. It is quickly absorbed and eliminated via the urine
after passing through the intestinal tract [11].

The symptoms of STX toxicity include tickling sensations in the mouth, lips, and
tongue, numbness in the extremities, breathing difficulties, gastrointestinal problems,
and a sense of detachment followed by complete paralysis [90]. STX causes various
neurological symptoms that lead to respiratory arrest, cardiovascular shock, and death in
cases of acute intoxication [90]. The toxins bind with high affinity (Kd~2 nM) to receptor
site 1 on the outside surface of the membrane and very close to the external orifice of the
voltage-dependent sodium channel, stopping sodium ions from passing over the nerve cell
membranes and thus interfering with signal transmission along the nerves. The resulting
widespread obstruction prevents impulse generation in the peripheral neurons and skeletal
muscles. STX also directly affects skeletal muscle by inhibiting the muscle action potential
without depolarizing cells, effectively stopping peripheral nerve transmission, but without
curare-like activity at the neuromuscular junction, leading to neural dysfunction [37]. STX
toxicity related to neurotoxicity has been well studied; hence, studies should focus on
tumor promotion and other stress-associated toxicities, which is an emergent area of study.

Karenia brevis produces brevetoxin, which causes mild gastroenteritis with neurologic
signs and death in birds, large fish, and marine animals. Other symptoms include nau-
sea, tingling, numbness in the perioral area, loss of motor function, and acute muscular
pain [91]. Brevetoxins have been extensively investigated and are thought to be depo-
larizing chemicals that open voltage-gated sodium ion channels in the cell membranes,
allowing unregulated Na+ influx into the cell. The toxins inhibit channel inactivation by
blocking the sodium channel and preventing sodium ions from flowing over nerve cell
membranes [85]. Moreover, no studies have been conducted on tumor promotion activity
and stress-associated ROS-related toxicity.

Ciguatoxin (CTX) is a fat-soluble toxin generated by specific benthic strains of Gam-
bierdiscus toxicus. It is one of a series of marine polycyclic ether physiologically active toxins
linked to ciguatera fish poisoning outbreaks [92]. It builds up in the food chain, causing
neurological, gastrointestinal, and cardiovascular problems in humans [82–84]. CTX and its
20 counterparts have been discovered in the Caribbean and Indian Ocean waters with small
molecular variations and toxicity [83,84]. This causes a decrease in the nerve conduction
rate and amplitude in human nerves, which is steady with aberrant and prolonged Na+

channel opening in neuronal membranes [93,94]. Gambierdiscus toxicus produces CTX and
maitotoxin, which are lethal in mice at 0.15 and 0.45 µg/kg body weight, respectively.
The toxic oral dose in adult humans is 0.1 µg. CTX causes an increase in intracellular
calcium, which acts as a second messenger in the cell and disrupts critical ion-exchange
mechanisms, resulting in fluid discharge and diarrhea [83]. Therefore, studies should focus
on gastrointestinal and cardiovascular problems and other stress-related toxicity-related
tumor promotion activities.

Protoperidinium crassipes produces the azaspiracid (AZA) toxin, which poses several
threats to human health. Symptoms of AZA intoxication includes severe diarrhea, vomiting,
nausea, and stomach cramps. Neurotoxic symptoms have also been noted [81]. Repeated
injections of AZA in mice can result in the growth of lung tumors. It also induces necrosis
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in the Lamina propria of the small intestine, as well as in lymphoid tissues such as the spleen,
thymus, and Peyer’s patches [95]. The mechanism of action of AZA remains unknown.
More studies are urgently required to understand the actual mechanism of lung tumor
promotion. However, the limited availability of pure AZA has hampered research in
this area.

Gonyaulax spinifera, Lingulodinium polyedrum, and Protoceratium reticulatum generate
yessotoxins (YTXs) [96]. YTX causes motor discoordination in mice before death [86].
Moreover, the toxin is a powerful neurotoxin. However, the primary site of action and
mechanism of action remain to be elucidated [97]. Additional studies are necessary to
determine the actual mechanisms and other related carcinogenic activities.

Palytoxin (PLTX)-like compounds formed by dinoflagellates of the genus Ostreopsis,
such as Ostreopsis mascarenensis, O. siamensis, O. lenticularis, O. fattorussoi, and O. ovata, are
usually known as ostreocin and are quite toxic to mammals [98]. These chemicals inhibit
the ATPase Na+/K+ pump and block the electrochemical gradient created across the cell
membrane, thereby affecting cellular activity [87,88]. PTX is a powerful toxin, with LD50
ranging from 0.025 µg/kg in rabbits and dogs, 0.45 µg/kg in mice, and 0.9 µg/kg in guinea
pigs, and also affecting rats and monkeys. Fever, ataxia, inactivity, drowsiness, and limb
weakness are the symptoms of PLTX toxicity, which may lead to death [99]. Further studies
are required to understand the mechanism of action.

Spirolides (SPX) are biologically active toxins generated by Alexandrium ostenfeldii, Alexan-
drium peruvianum, and Karenia selliformis, with 16 isoforms currently identified [100–104]. SPX
toxins have been shown to significantly affect muscarinic and nicotinic acetylcholine recep-
tors and damage neurons and astrocytes, all of which severely affect the central nervous
system [89]. Further research is required to understand the precise mechanism of toxicity.

Dinoflagellates, such as Dinophysis spp. and Prorocentrum lima, produce okadaic
acid and dinophysistoxins. In the cytoplasm of mammalian cells, lipophilic okadaic acid
inhibits protein phosphorylase phosphatase-1 and -2A, which dephosphorylate serine and
threonine. Symptoms caused by the toxicity induced by this toxin include incapacitating
diarrhea, nausea, vomiting, and abdominal pain [76]. Moreover, they also bind to Ser/Thr
protein phosphatases and exert toxicity [80]. Further research is required to understand the
precise mechanism underlying its toxicity.

4. Tumor Promotion Activity by Marine Phytoplankton Toxins

Phytoplankton toxins can promote tumor growth and ROS-induced toxicity in animals.
The mechanism of tumor-promoting activity of the toxins is shown in Figure 2. Phytoplank-
ton toxins trigger ROS production. ROS generation by microcystins has been examined in
the context of the c-Jun N-terminal protein kinase (JNK) pathway. JNK activation causes
mitochondrial failure, which leads to hepatocyte apoptosis and liver injury in rats, and has
been demonstrated to occur in the presence of microcystins and okadaic acid [78,105,106].
Aplysiatoxin, nodularin, lyngbyatoxin A, LPS, AZA, and okadaic acid derived from phyto-
plankton have the potential to promote tumor growth. Similar to microcystins, nodularin
also promotes tumors in the liver, skin, and glandular stomach of mice, which also inhibits
PP1 and PP2A and triggers tumor initiation [17–19]. In animal studies, nodularin can
promote the production of tumor necrosis factor-α (TNF-α) and induce early response
genes, namely, jun B, jun D, c-fos, c-jun, fos B, and fra-1 in the rat liver. This induction
leads to tumor expression. Moreover, TNF-α has been proposed as an endogenous tumor
promoter involved in human cancer development and it can trigger tumor promotion in
humans [18,19].
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Figure 2. Toxicity pathway and tumor-promotion activity of phytoplankton toxins. Phytoplankton
toxins such as nodularin and okadaic acid (OA) bind the protein phosphatase (PP), which triggers
the inactivation of PP, further leading to tumor formation. OA causes lipid peroxidation, and ROS
generation has also been examined in the context of the JNK pathway, which causes mitochondrial
dysfunction and leads to excessive ROS production and tumor formation. Moreover, lipopolysac-
charide, lyngbyatoxin-A, aplysiatoxin, and azaspiracid can cause tumor formation by triggering the
production of tumor necrosis factor-α (TNF-α) and inducing early response genes.

5. Possible Role of Marine Phytoplankton Toxins in Oxidative Stress Related
ROS Toxicity

Oxidative stress occurs when there is a mismatch between the systemic manifestation
of ROS and the biological system’s ability to quickly detoxify reactive intermediates or be
unable to repair the damage. ROS include superoxide radicals (•O2

−), hydrogen peroxide
(H2O2), and hydroxyl radicals (•OH), which are generated as metabolic byproducts in
biological systems [107–109]. The generation of ROS and its mechanism of action are
poorly understood [110] and have been poorly studied [111]. Toxins can interfere with
enzymes, leading to the failure of antioxidant systems. This may lead to the failure of
energy generation and oxidative stress protection. Exposure to these agents has powerful
cumulative effects on humans, including decreased sperm count, aging, and other health
conditions [112]. Chronic absorption of these toxins in the gastrointestinal tract is one of
the most hazardous effects of multidirectional toxicity [90].

Phytoplankton toxins, such as microcystin, have a strong binding affinity with cysteine,
glutathione, GSH, and reduced glutathione GS-SG, disrupting their normal functions [105,106].
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Biologically essential macromolecules, such as proteins, lipids, DNA, and cellular mem-
brane phospholipids, are oxidized and damaged by phytotoxin-induced oxidative stress.
Moreover, microcystin inhibits oxidative phosphorylation and ATP generation by reducing
the potential of the mitochondrial membranes. Microcystin also damages DNA and inhibits
several DNA repair enzymes. Moreover, phytoplankton toxins such as microcystin, nodu-
larin, and okadaic acid alter cell signaling pathways, affect gene expression, and promote
cancer [79,106,107].

Oxidative damage causes an increase in ROS production and impedes the electron
flow through complex III, which blocks the mitochondrial electron transfer chain. Excessive
ROS generation can result in macromolecule oxidation, mtDNA mutations, depolariza-
tion of the mitochondrial membrane, and apoptosis. Phytoplankton toxins trigger ROS
production, which is generally counteracted by enzymatic (CAT, GPx, and SOD) and non-
enzymatic (GSH, vitamin C, and vitamin E) antioxidant barriers. This has been confirmed
in microcystin-LR and nodularin phytoplankton toxins [62–64]. Okadaic acid elicits both
extracellular and intracellular ROS production in human and rat neutrophils at a minimum
concentration of 10 nM [78]. Okadaic acid inhibits protein phosphatases, causes oxida-
tive damage, and disrupts a variety of biological activities, including the cell cycle, gene
expression, and DNA repair pathways [77]. Moreover, it inhibits the activity of protein
phosphatases 1 and 2A, which induce carcinogenesis [64]. Oxidative stress triggers the
JNK pathway and activates downstream transcription factors AP-1 and BH3-interacting
domain death agonist (Bid) in the context of microcystin-LR-induced liver damage in
mice via ROS. Excessive ROS induced by nodularin and okadaic acid activates the mi-
tochondrial permeability transition (MPT) pathway by increasing Ca2+, which leads to
apoptosis [112]. Phytoplankton toxins trigger apoptosis and necrosis [62–64], but the pre-
cise mechanism of ROS-associated toxicity by phytoplankton toxins remains unknown.
The possible mechanisms postulated from the existing literature are displayed and sum-
marized in Figure 3. Among these toxins, okadaic acid and nodularin involvement in
stress-associated ROS-related toxicity have been well studied [77,111,113]. Studies on
stress-associated ROS-related toxicity of other toxins, such as STX, kalkitoxin, brevetoxin,
aplysiatoxin, ciguatoxin, domoic acid, palytoxin, gonyautoxins, and lyngbyatoxin, have
not yet been investigated. Therefore, further research is urgently needed to generate a
comprehensive conclusion about the toxic effects of phytoplankton toxins to generate
oxidative stress-related ROS toxicity, and its tumor-promoting activity.
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Figure 3. Okadaic acid (OA), microcystin and nodularin are involved in oxidative stress and the
generation of reactive oxygen species (ROS), resulting in several toxicities to organisms. The toxins
induce oxidative stress, damage macromolecules such as proteins, lipids, and DNA, and inhibit
protein folding activity. It also decreases the activity of DNA repair enzymes that influence cell
cycle proliferation and trigger carcinogenesis. OA and nodularin weaken the enzymatic and non-
enzymatic antioxidant enzymes, triggering apoptosis and excessive ROS production. ROS generation
has also been examined in the context of the JNK pathway leading to apoptosis via activating
downstream transcription factors AP-1 and Bid. ROS causes mitochondrial dysfunction, induces
the mitochondrial permeability transition (MPT) pathway, a Ca2+ dependent pathway, and triggers
apoptosis. Mitochondrial dysfunction inhibits oxidative phosphorylation and ATP synthesis, which
finally causes apoptosis. Eventually, ROS enters other pathways and triggers apoptosis.

6. Phytoplankton Toxin and Their Disease Preventing Activities

Searching of natural compounds in disease various prevention is most promising [114–121].
In this regard, phytoplankton are gaining much attention [122]. Although phytoplankton
toxins are poisonous to organisms, they are increasingly being investigated as a poten-
tial therapeutic for diseases including cancer, Alzheimer’s disease, AIDS, diabetes, and
others [123]. Oscillatoxin and its analogs from the cyanobacterium Lyngbya sp., such as oscil-
latoxin E and 30-methyloscillatoxin D, suppressed Kv1.5 expression in CHO cells with IC50
values of 0.79 ± 0.032 and 1.47 ± 0.138 M, respectively. Researchers exploring innovative
approaches for the treatment of atrial tachyarrhythmias should find these findings valu-
able [52]. Kalkitoxin from Lyngbya majuscula was found to be cytotoxic to HCT-116 colon cell
lines [124]. Furthermore, with an IC50 value of 5.6 nM, it inhibits hypoxia-induced HIF-1
initiation in T47D breast carcinoma cells [124]. Furthermore, kalkitoxin reduces calcium
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influx inhibition in primary rat cerebellar granule cell cultures via interacting with voltage-
sensitive sodium channels [125]. DA displayed proliferative effects on cancer cell lines such
as K562 and EA.hy 927 in vitro [126]. STX have the potential to be used as medicines, such
as anesthetics. Pain sensations, muscle spasms, muscle relaxation, and wrinkle reduction
may be reduced or completely blocked. STXs possess promising antifungal, antibacterial,
antialgal, and antiprotozoal activity in vitro [127]. The E-cadherin–catenin pathway is pref-
erentially impaired by YTXs in epithelial cells, endangering Ecadherin’s tumor-suppressive
properties [128]. YTXs have displayed significant cytotoxic effects [129]. In primary cor-
tical neurons, BC3H1 myoblast cells, and glioma cells, YTX produced non-apoptotic cell
death [130]. Additionally, it also inhibits the growth of melanoma tumor cells in mouse cells
in vivo with minimal damage [131]. YTX appears to impair immunological function by
lowering phagocytic activity in the J774 cell line and increasing cytokine expression in J774
phagocyte mammalian cells [132]. Furthermore, reversible T-cell receptor complex down-
regulation appears to limit the immunological impact on T-lymphocyte EL-4 cells [133].
YTX and its analogs may be used to treat Alzheimer’s disease by lowering levels of t- and
β-amyloid, two insoluble forms found in the brain that cause the disease to develop [134].
In addition, YTX may help prevent and treat lipid and glucose metabolism issues in glioma
cells, as well as pancreatic and liver transcriptional abnormalities [135]. YTX may also
have a minor role as an anti-asthmatic and anti-allergenic drug [136]. Increased muscle
contraction, notably in heart tissue, and excessive fluid discharge by gastrointestinal cells
have also been shown to have therapeutic effects with CTX [93,94]. On the other hand,
this biologically active toxin can be used to investigate the biological function of a variety
of human diseases and channelopathies, such as cancer, chronic pain, epilepsy, and car-
diac arrhythmias [137,138]. In persons with asthma, BTX improves respiratory irritation
symptoms such as cough, nasal irritability, bronchoconstriction, congestion, and/or asthma
episodes [139]. As a result, it alters the immune response in alveolar macrophage cells by
increasing the production of cytokines (TNF-α and IL-2) involved in immune cell activation,
decreasing phagocytosis activity, and playing a key role in pulmonary hypersensitivity
inflammation [140–142]. In Jurkat E6-1 cells and leukemic T-cell lines, it also has a dose-
dependent influence on cell proliferation, causes cell death via apoptosis, and has genotoxic
effects [140,143]. BTX-2 has neuro-activation properties and can increase neuronal plasticity,
making it potentially beneficial in pharmacological treatments for regaining brain function
after a stroke or other traumatic brain injury [144]. A pharmaceutical invention based
on BTX derivatives has also been created to treat conditions such as cystic fibrosis and
mucociliary dysfunction caused by mucus transport amplification [145]. PLTX reduces
cytotoxicity by modulating cytoskeleton distortion and dynamics in intestinal and neu-
roblastoma cells [87,146]. Furthermore, PLTX, derived from Palythoa clavata polyps and
including Symbiodinium dinoflagellate, demonstrated that a pharmaceutical formulation
is suitable for use in the treatment of lymphoblastic or myelogenous leukemia [88]. SPX
displayed cytotoxic effects [89]. SPX has also been shown to have a neuroprotective impact
in Alzheimer’s disease [147].

7. Conclusions and Future Prospective

Humans are exposed to phytoplankton toxins through seafood consumption, water
intake, and personal contact. Further research employing a cell-based method is required
to understand the precise mode of action of marine phytoplankton toxins. The adoption of
biological approaches, consisting of nanoparticles that gather toxins, might be an intriguing
alternative to toxin reduction. Therefore, this technique should be adopted in the future
since it provides a low-cost, efficient, and environmentally friendly way to remove poisons
from the environment. To lessen the impact of this toxicity, further research on eliminating
these phytotoxins is urgently needed.

Phytoplankton toxins have diverse chemical structures and exhibit various toxic effects.
The structure, genesis, symptoms, and molecular mechanisms of tumor promotion activity,
as well as ROS toxicity, are discussed. Furthermore, ROS leads to apoptosis via several
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pathways. Phytoplankton toxins can promote different tumors via different mechanisms.
Epigenetics play a crucial role in the development of various malignancies. No studies have
been conducted on epigenetic perspectives and tumor development. Therefore, further
research is needed to confirm tumor development caused by phytoplankton toxins via
epigenetic alterations in mammalian cells.

Despite of their toxicity, phytoplankton toxins are useful in pharmacology because
they comprise a diverse spectrum of chemical structures as well as biological features.
Phytoplankton have been shown to be a rich source of physiologically active toxins with
intriguing biological features that could be exploited in a wide range of therapeutic and
medical applications.
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