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Abstract

Background: Circadian rhythm disruption impacts a wide range of physiological processes, including fertility.
However, the effect of circadian disruption on male spermatogenesis and fertility, and treatments for these effects
have been largely unexplored at the molecular level.

Methods: In this study, we examined the effects of genipin on improving the reproductive health problems caused
by circadian disruption. Three groups of animals were fed under different conditions: control group (normal T cycle
with saline), group of shortened T cycles (Light/Dark =4 hours/4 hours) with saline, and a group of shortened T
cycles with genipin by oral gavage. The male fertility was evaluated by fertility study and pups parameters analysis
after successful sexual behavior and mating with female mice. We sacrificed the treated animals after 5 or 10 weeks
and collected the testis, sperm and serum for histological analysis, sperm motility assay, and serum hormone
detection, respectively. Furthermore, the effect of genipin was assessed by detection of progesterone secretion and
steroidogenic key proteins expression, including StAR and CYP11A1, in mouse Leydig tumor MLTC-1 cells.

Results: Male mice exposed to shortened light-dark cycles, much shorter than 24 hours, had reduced fertility with
decreased sperm concentrations and sperm motility. Male mice under circadian disruption have reduced testis size
and abnormal morphology, leading to lower fertility rates, reduced litter size and pup body weight. Treatment with
exogenous genipin, a natural plant-derived compound, alleviated circadian disruption-induced damage to fertility
and spermatogenesis and normalized testosterone, dihydrotestosterone (DHT), and androstenedione (ASD) levels in
the male mice. The levels of key proteins involved in steroidogenesis, StAR and CYP11A1, were reduced in mouse
testes after the circadian disruption, but genipin treatment restored the reduction. The mRNA expression of
SRD5A1, which encodes an androgen synthesis enzyme, was also upregulated by genipin treatment. Furthermore,
genipin treatment showed a positive effect on steroidogenesis in MLTC-1 cells, resulting in an increase in hormone
secretion and the upregulation of StAR and CYP11A1.

Conclusions: Our results showed an association between circadian disruption and reproductive health problems in
male mice and indicated that treatments with genipin have positive effects on the reproductive health of male
mice with circadian rhythm disorders.
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Introduction

Circadian rhythms are a fundamental feature in eukary-
otes and coordinate numerous aspects of behavior,
physiology, and metabolism [1]. The circadian clock sys-
tem occurs at all levels of cellular organization, allows
an organism to interact with external stimuli on the cell,
organ, and organism levels, according to a
transcriptional-translational feedback loop by light-dark
cycles [2]. Physiologically, these 24-h circadian rhythms
are orchestrated by a primary clock in the suprachias-
matic nucleus (SCN) of the hypothalamus in mammals.
Circadian clocks comprises of a set of proteins such as
Bmall, Perl, Clock, Cryl and Cry2, by which one or
more gets acutely sensitive to light, resulting in an oscil-
lator that can synchronize over local time [1, 2]. The cir-
cadian clock allows organisms to anticipate the
predictable changes in the environment that occur at ap-
proximately the same time of day or adapt to daily varia-
tions in their environment. This intricate network
enables the adjustment of principal physiological path-
ways so that an appropriate physiological or behavioral
response can induce at the correct time. Several kinds of
disorders such as diabetes, bipolar disorder, attention
deficit hyperactivity disorder (ADHD), and inflammatory
bowel disease, reports being associated with disturbances
in the circadian rhythms [3-6].

Circadian rhythm disruption affects a wide range of
physiological systems in mammals. Reproductive physi-
ology, in particular, is profoundly under the influence of
circadian rhythms [7, 8]. Circadian disruption is a risk
factor for impaired reproduction and fertility in both
men and women. Environmental circadian disruption
(ECD) has been recognized as a risk factor for fertility
problems among working women, and chronic ECD is
associated with abnormal reproductive cycles, irregular
menstrual cycles, increased risk of endometriosis, in-
creased latency to pregnancy, miscarriages, low birth
weight or preterm delivery, and a reduced incidence of
breastfeeding [9, 10]. The fertility of males has declined
over the past four decades. Although half of the cases of
male infertility remain unexplained, emerging evidence
implicates sleep disturbance in the risk of male infertility
[11, 12]. Indeed, the prevalence of circadian disturbance
appears to be increasing in parallel with a decline in
sperm quality, a commonly used surrogate marker of
male fertility [12]. Furthermore, a case-control study in-
dicated that genetic variability in the Clock gene associ-
ates with male infertility, implying the role of the
circadian timing system in human reproduction [13].
Clock gene expression occurs in tissues of the
hypothalamic-pituitary-gonadal (HPG) axis. Knockdown
of Clock gene expression in the testes of male mice led
to small litter size, low in vitro fertility rate, low blastula
formation rate, and low acrosin activity of sperm with
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Clock knockdown [14]. Male Bmall KO mice show in-
fertility, with smaller testes and reduced sperm counts
than normal males [7].

In mammals, circadian rhythms are involved in the
regulation of serum concentrations of many reproduct-
ive hormones, which are critical in mammalian fertility
[15, 16]. Steroidogenesis or biosynthesis of steroid hor-
mones is a complex multistep process by which precur-
sor cholesterol is converted to pregnenolone and
subsequently metabolized into other biologically active
steroids in steroidogenic tissues, including adrenal and
gonads [17]. The limited step of steroidogenesis is chol-
esterol transfer from outer mitochondrial membrane
(OMM) to the inner mitochondrial membrane (IMM),
which is dependent upon the steroidogenic acute regula-
tory protein (StAR) [18]. Several other enzymes or pro-
teins are involved in the process of steroidogenesis, such
as cytochrome P450 side-chain cleavage enzyme
(CYP11Al, carries out the first committed step in ste-
roidogenesis, i.e., conversion of cholesterol to pregneno-
lone), steroid 5 alpha-reductase 1 (SRD5A1, converts
testosterone to dihydrotestosterone) and hydroxysteroid
17-beta dehydrogenase 1 (HSD17B1, catalyzes ASD to
testosterone) [17]. The levels of several hormones fluctu-
ate according to the light and dark cycle and are also af-
fected by sleep [19]. Shift work modified the luteinizing
hormone (LH) surge and follicle-stimulating hormone (FSH)
levels, which might be related to the misalignment of cortisol
and melatonin rhythms during shift work [20, 21]. The dys-
regulation of reproductive hormone levels by circadian disrup-
tion contributes to low fertility or infertility [21]. While the
relationship between circadian rhythms and female pregnancy
being well studied [8, 22, 23], the effect of circadian disruption
on spermatogenesis and fertility in males and treatments that
addresses circadian disruption on fertility needs exploration.

Genipin, a natural aglycon of geniposide and an active
constituent of Gardenia jasminoides Ellis, has multipur-
pose biological and pharmacological activities, such as
antioxidant, antimicrobial, anti-inflammation, antitumor,
neuroprotective and hepatoprotective effects [24-29].
Additionally, genipin has been widely used as a natural
crosslinker for tissue engineering [30]. Current studies
implicated genipin in the regulation of steroid hormone
secretion and lipid metabolism [27, 31]. Moreover, geni-
pin inhibited the expression of mitochondrial uncoup-
ling protein 2, which affected androgen synthesis and
was associated with infertility [31, 32]. These reports im-
plicated genipin in the regulation of reproduction and
fertility in mammals. Here, we studied the effect of circa-
dian disruption on spermatogenesis and fertility in male
mice. We showed that circadian disruption impaired
spermatogenesis and fertility in male mice, and genipin
ameliorated sperm motility and fertility under circadian
disruption conditions.
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Materials and methods

Animal and housing

Eight to ten-week-old male and female ICR mice were
obtained from the Model Animal Research Center of
Nanjing University (Nanjing, Jiangsu, China). Mice were
initially housed under a 12-h light/dark cycle (12:12 LD)
at 25 °C with normal laboratory diet. The light-dark
(LD) cycle was set as described previously, with minor
modifications [33]. Briefly, male mice were randomly di-
vided into three groups after a minimum 1-week accli-
mation period: normal T cycles (T =24 hours, L:D =12
hours:12 hours) with saline (normal control, NC), short-
ened T cycles (T =8 hours, L:D =4 hours:4 hours) with
saline (disrupted + saline, SC), and shortened T cycles
with GNP (25 mgkg ') (disrupted + GNP, SG). GNP
(C11H1405, HPLC=>98%; Zelang, Nanjing, Jiangsu,
China) was dissolved in saline solution and given to mice
at the end of every light cycle by oral gavage until the
mice were used for the sperm quality assay [27]. Equal
volumes of saline solution were infused into mice as a
control. Mouse body weights and food intake were mon-
itored every two days.

Cell culture and treatment

To study the function of GNP on steroidogenesis, the
mouse leydig tumor MLTC-1 cells were cultured and
treated with GNP. MLTC-1 cells were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA). MLTC-1 cells were cultured in RPMI-1640 media
supplemented with 10% fetal bovine serum (FBS), and
100 unit/ml penicillin and 100 pg/ml streptomycin. Cell
cultures were maintained at 37 °C in a humidified incu-
bator in the presence of 5% CO,/95% air. For treatment,
cells were plated and cultured in 6-well or 12-well plates
with GNP (20 pM, dissolver in DMSO) for varying incu-
bation time. The supernatants of cultured media were
collected for progesterone measurement, and cells were
collected for RNA and protein extraction.

Fertility study

For male fertility evaluations, male mice were subjected
to different T cycles and treatments for 9 weeks, and
each male mouse was kept with two virgin females to-
gether. The female mice were obtained from the Model
Animal Research Center of Nanjing University and were
randomly divided into three groups for mating after a
minimum 1-week acclimation period. Mating behavior
was observed in the Plexiglas cage with a dim red light
source. Mating behavior was observed under a normal T
cycles to avoid a short-term effect of circadian disturb-
ance on female mice. Additional female mice were used
if the original female mice were unreceptive to mating.
After approximately a whole LD cycle with successful
sexual behavior and mating confirmed by the presence
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of vaginal plugs or the presence of sperm in vaginal
smears, the males were separated from the females, and
the females were maintained until spontaneous delivery.
The day of delivery was considered gestational day O.
The numbers of pups were counted, and pup sex, body
weight and body length were measured. The fertility
index was calculated by the following equation [34]: fer-
tility index = number of females that gave birth/number
of copulated females x 100%.

Sperm parameters

The males were fed for five or ten weeks under normal
T cycles or shortened T cycles with the administration
of GNP or saline. Then, the animals were sacrificed by
cervical-dislocation. Both sides of the epididymides
cauda were quickly removed and immediately crumbed
by syringe needles within the 0.2 ml of physiological sa-
line into a petri dish to release spermatozoa. Sperm con-
centration and sperm motility were assessed by
computer-assisted semen analysis (CASA, WLJY-9000,
Weili New Century Technology Development Co., Ltd.,
Beijing China). A Macro sperm-counting chamber (Nan-
jing Yuancheng Company, Nanjing, China) was used to
load the spermatozoa samples. Average path velocity
(VAP), curvilinear velocity (VCL), straight-line velocity
(VSL), and beating cross frequency (BCF) were calcu-
lated for the sperm of each group of mice by analyzing
three recordings of at least 100 spermatozoa.

Histological analysis

The testicular tissues were collected and fixed in 4%
paraformaldehyde solution. Paraffin-embedded samples
were cut into 5 pm transverse sections for routine
hematoxylin & eosin (H&E) staining. All the stained sec-
tions were examined by light microscopy (x 200
magnification).

Reproductive hormones

The cell culture media were centrifuged at the speed of
5000r.p.m for 5 min and supernatant were collected for
progesterone measurement using the Pg ELISA kit (E-
EL-0090c, Elabscience Biotechnology Co.Ltd, Wuhan,
China). Blood samples were collected from the right ret-
roorbital plexus of different treated mice and centrifuged
at the speed of 3000r.p.m for 10 min at 4°C. The serum
levels of testosterone (#SBJ-M0439-96T), dihydrotestos-
terone (DHT) (#SBJ-M0909-96T), androstenedione
(ASD) (#SBJ-M0437-96T), and gonadotropin-releasing
hormone (GnRH) (#SBJ-M0558) were determined using
commercial kits (SenBeiJia Biological Technology Co.,
Nanjing, China) according to manufacturer’s instruc-
tions. The serum melatonin levels were tested by a com-
mercial ELISA kit from Shanghai Haling Biological
Technology Co. LTD (Shanghai, China).
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Real-time quantitative PCR

Total RNA was extracted from testicular tissues or MLTC
cells using Trizol reagent (Invitrogen, USA). Total RNA
(1 pg) samples were reverse-transcribed using superscript
IT reverse transcriptase (Life Technologies, Grand Island,
NY). Amplification of ¢cDNAs was performed using a
qPCR kit (TAKARA Biotechnology, catalog no. RR420A)
and gene-specific primers on an ABI StepOneplus system
according to manufacturer’s instructions [35]. 36B4 was
used as an internal control. All primer sequences used for
qPCR are presented in Table 1.

Western blot analysis

Testicular tissues were collected and lysed in RIPA buf-
fer using GeneReady Ultracool system (Life Real,
Hangzhou, China). Equal amounts of protein (10~
15 pg) were loaded on a 12% SDS-polyacrylamide gel
and blotted onto PVDF membranes. The membranes
were blocked with 5% skim milk in phosphate buffer sa-
line (PBS) with 0.1% Tween-20 for 1.5 h and incubated
with anti-StAR antibody (1:400) (A1035, ABclonal, Wu-
han, China), anti-CYP11A1 antibody (1:200) (13363-1-
AP, Proteintech, Wuhan, China) or anti-vinculin anti-
body (1:1000) (Abways Technology, Inc., Shanghai,
China) overnight at 4°C. Then the membranes were
washed with PBS for three times and probed with HRP
Goat Anti-Rabbit 1gG (1:5000) (ABclonal) for 1.5 h. The
blots were developed via Tanon-4500 luminescent im-
aging workstation (Tanon Science & Technology, Shang-
hai, China).

Statistical analysis

Statistical analysis was performed with GraphPad Prism
6.0. Data were analyzed for normality using the
Kolmogorov-Smirnov test, and homogeneity of variances
was analyzed by Bartlett’s test [35, 36]. Significant differ-
ences were identified using Student’s ¢-test or analysis of
variance (ANOVA), in the case of comparisons among
more than two groups. Statistical analyses were per-
formed using ANOVA followed by Bonferroni’s post-

Table 1 Primers for gPCR

Name Sequence

StAR 5-CGGAGCAGAGTGGTGTCATC-3-F
5-TGAGTTTAGTCTTGGAGGGACTTC-3-R

CYP11A1 5-ACTGTGAACTGAAGGCTGG-3-F
5-GGGAAAGAGGGAAAGAGGATG-3-R

SRD5A1 5-ACTTGCAGAGCCGATACTTG-3-F
5-TTTCTCAGATTCCGCAGGATG-3"-R

HSD17B1 5-GGAATTGGATGTCAGAGACTCC-3"-F
5-CCCACAGCGTTCAATTCATG-3-R

36B4 5-TTTGGGCATCACCACGAAAA-3"-F

5'-GGACACCCTCCAGAAAGCGA-3-R
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test. A p value of <0.05 was considered as statistically
significant. All data are expressed as the mean + SD [35].

Results

Induction of an animal circadian disruption model by a
shortened T cycle

To assess the impact of circadian disruption on fertility,
we subjected male ICR mice to normal/shortened T cy-
cles for ten weeks, as described in the Method section
(Fig. 1a). We measured daily food consumption and
body weight every two days. Figure 1b and c show that
the average final body weight and weight gain were sig-
nificantly higher in the mice subjected to shortened T
cycles (L:D =4 hours:4 hours) than those subjected to
normal T cycles (L:D =12 hours:12 hours). However,
there was no difference in the final body weight and
body weight gain of mice between the SG group and SC
group. Similarly, both SC mice and SG mice showed
higher daily food consumption than NC mice (Fig. 1d).

Fertility parameters

To analyze the fertility of male mice subjected to short-
ened T cycles and GNP treatment, we compared the fer-
tility rates of NC, SC, and SG male mice through natural
mating. Only 50% (n=20) of female mice that mated
with SC males produced offspring, whereas 75% (n = 20)
of females that mated with SG males and 95% (n = 20) of
females that mated with NC males produced offspring.
These data indicated a significant decrease in the fertility
of mice subjected to shortened T cycles, and genipin
relatively fixed the circadian disruption-impaired fertility
of male mice. Moreover, the number of pups per litter
of females that mated with SC mice was lower than that
of those mated with NC mice (9.4 +0.92 vs.12+1.12,
n=20, P<0.001) (Table 2). The litter size of females
that mated with SG mice was rebuilt (12.67 + 1.14). Add-
itionally, the average body weight of the pups of SC mice
was markedly lower than that of NC mice pups (1.57 +
0.23 g vs. 1.79+£ 0.16 g, P < 0.001), whereas genipin treat-
ment regained pup body weight.

Changes in the gross anatomy of the testes

After ten weeks of treatment, the average body weight of
male SC mice was increased compared with that of NC
mice, while the average weight of the testes was slightly
decreased (Fig. 2a). Histological examination of the tes-
tes showed that the diameter of seminiferous tubules
remained similar among the three groups (Fig. 2b and
¢). We observed six to eight layers of aligned spermato-
genetic cells in the seminiferous tubules. The character-
istic of leptotene, zygotene, pachytene, diplotene, and
diakinesis was observed in the H&E staining of cross-
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sections of seminiferous tubules. We found marked atro-
phy of the seminiferous tubules and more vacuoles in
the SC group than in the NC group, whereas genipin
treatment alleviated this damage (Fig. 2b). The average
numbers of spermatogonia and spermatids were reduced
significantly in male SC mice (p <0.05) compared with
male NC mice, and genipin treatment reestablished
these effects on these cells (Fig. 2d and e).

Semen analysis
Finally, to evaluate whether the damaged testes subse-
quently affected sperm generation and function, we

isolated sperm and analyzed the concentration, motility
and motion parameters of the sperm by CASA. Com-
pared with that of male NC mice, the average sperm
concentration of male SC mice significantly reduced to
33% (P<0.001), and genipin reversed this effect
(Table 3). Moreover, sperm motility was impaired by cir-
cadian disruption for five or ten weeks, as characterized
by lower progressive motility (PR) (16.19% vs. 28.63%, 5
weeks; 2.955% vs. 16.94%, 10 weeks), lower nonprogres-
sive motility (NP) (28.82% vs. 29.7%, 5 weeks; 3.925% vs.
23.74%, 10 weeks) and higher IM (immotility) (54.99%
vs. 41.67%, 5 weeks; 93.12% vs. 59.31%, 10 weeks) in the
SC group than in the NC group (Fig. 3a-c). GNP

Table 2 Fertility parameters. All data are expressed as mean+SD. ¢ indicates a statistical difference when compared with the NC
group (P<0.001),  indicates a statistical difference when compared with SC group (P<0.001)

Fertility parameters NC SC SG
(Control) (Disrupted + saline) (Disrupted + GNP)
No. of housed male 10 10 10
No. of housed female 20 20 20
Fertility index (%) 95 (19/20) 50 (10/20)° 75 (15/20)°
Litter size 12+1.12 94 +092° 1267 + 1.14°
Pups body weight (g) 1.79 £ 0.16 1.57 + 0.23° 1803 + 0.223°
Pups body length (cm) 431 + 063 442 +0.22 459 +0.19°
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treatment increased sperm motility after circadian disrup-
tion. Regarding the motion parameters of mouse sperm,
the VAP variable did not differ in the samples treated
with/without circadian disruption; however, the other two
sperm kinetic values (VCL and VSL) decreased after five
weeks of circadian disruption and genipin treatment re-
stored it (Fig. 3d-f). Furthermore, circadian disruption and
genipin treatment did not change BCF of sperm (Fig. 3g).

Changes in serum hormone levels

Hormone imbalance correlates with male infertility [37].
We collected the blood of NC, SC, and SG mice to
evaluate the effect of circadian disruption, and genipin
on hormone balance in vivo. We assessed serum testos-
terone, DHT, ASD, GnRH, and melatonin levels by ELIS
A. Circadian disruption for five weeks slightly increased
testosterone levels (Fig. 4a). However, circadian disrup-
tion for five or ten weeks decreased the DHT, while ten
weeks of circadian disruption decreased another male
hormone, ASD (Fig. 4b and c). GNP treatment improved

Table 3 Sperm concentration

the serum levels of both of these hormones, which were
diminished by circadian disruption. Moreover, the serum
GnRH levels attenuated in mice after circadian disrup-
tion and were restored by GNP treatment (Fig. 4d). The
melatonin levels showed no changes after circadian dis-
ruption and got upregulated by GNP treatment (Fig. 4e).
As steroidogenesis is primarily mediated by the steroidogenic
acute regulatory protein (StAR) and cytochrome p450 family
11 subfamily a member 1 (CPY11A1) [18], we measured the
mRNA and protein levels of StAR and CYP11A1 in the testes
of different treated mice. Western blot analysis indicated that
the protein expression of StAR and CYP11A1 was significantly
inhibited after circadian disruption, whereas genipin at least
partially repaired the protein levels of StAR in testes (Fig. 4f
and g). The mRNA levels of StAR and CYPIIAI in mouse
testes also decreased after the circadian disruption and upreg-
ulated by GNP treatment (Fig. 4h). Furthermore, we assessed
the mRNA levels of SRD5A1 and HSDI7BI. qPCR results
showed that GNP treatment augmented the mRNA levels of
SRD5A1, which downregulated by circadian disruption, while
the expression of HSD17B1 in mouse testes showed no sig-
nificant change under the experimental conditions (Fig. 4h).

NC SC SG
(Control) (Disrupted + saline) (Disrupted + GNP)
Sperm Con., x10° 100.04 + 35.53 3322 +11.54° 102.55 + 37.68°
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J

Genipin regulates steroidogenesis in mouse Leydig tumor
MLTC-1 cells

To further investigate the effect of genipin on steroido-
genesis, MLTC-1 cells were cultured and treated with
GNP. Following the addition of GNP for 24 hours, sam-
ples of the media were collected and analyzed for pro-
gesterone content by ELISA. The results in Fig. 5a
demonstrate that treatment with GNP significantly in-
creased the levels of progesterone secreted by MLTC
cells. Next, we assessed the effects of GNP treatment on
the mRNA and protein levels of StAR and CYP11A1 in
MLTC cells. The western blot analysis results demon-
strated that GNP treatments promoted StAR and
CYP11A1 protein expression in MLTC-1 cells (Fig. 5b
and c). The mRNA expression of both StAR and
CYPI11A1I got upregulated by GNP after 2 to 4 hours of
treatment (Fig. 5d). These results indicated that GNP in-
creases steroidogenesis in MLTC-1 cells.

Discussion

The Circadian rhythms are present in most living organ-
isms from, eubacteria to humans, that most cells and tis-
sues express autonomous clocks [1]. Disruption of

circadian rhythms results in several kinds of metabolic
disorders, revealing the interactions between metabolism
and circadian rhythms at neural, molecular, and cellular
levels [1, 2]. Circadian disruption can impact upon re-
productive capacity, which is highlighted most obviously
in mouse models with deletion or mutation of clock
genes, resulting not only in circadian disruption, but also
compromised male and female reproductive capacity [8].
Shift work gets associates with an increased risk of
reproduction, such as endometriosis, infertility, miscar-
riage, and low birth weight in humans [21]. In this study,
we identified that circadian disruption impairs spermato-
genesis and fertility in male mice. Constant exposure to
shortened T cycles increases the food intake and body
weight gain of the mice. In male mice, it results in
smaller litter size and lowers the average body weight of
pups. Comparison with control conditions, circadian dis-
ruption significantly decreased sperm amounts. Simi-
larly, the motility of sperm diminished. Genipin
treatment remarkably enhances fertility and sperm pa-
rameters. Collectively, this evidence indicated that circa-
dian disruption is detrimental to male fertility, and
genipin treatment can improve this effect (Fig. 5e).
Reduced sperm concentration and diminished sperm
motility can cause subfertility and infertility in mice [7].
In our study, circadian disruption reduced the sperm
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concentration by nearly 30% after ten weeks of exposure.
Several factors may decrease sperm production, such as
spermatogonia loss, cell cycle arrest, and intermediate
stage sperm death. Morphological analysis revealed atro-
phy of the seminiferous tubules and a reduction in the
number of spermatogonia and spermatids (Fig. 2). Al-
though male infertility is multi-factorial, sperm motility
is one of the most significant factors that regulate male
fertility. In the SC mice, the decrease in sperm motility
was time-dependent. Total motility decreased from 45—
6.88% when the exposure time to shortened T cycles
prolonged from five weeks to ten weeks. Although
sperm motility reduced to less than 10%, the fertilization
rate was approximately 50% in SC mice compared to
95% in NC mice. Our results were consistent with stud-
ies on human couples; male partners with less than 32%
sperm motility were observed to be subfertile [38]. We
observed high levels of sperm IM in the NC mice (>
40%), due to the exposure of the sperm extracted from
the caudal epididymis to the experimental environment.
These data are supported by reports that room
temperature exposure causes a significant reduction in
sperm motility and viability [39]. In addition to environ-
mental factors, many genetic and physiological factors
get implicated in sperm motility. At the molecular level,
several signaling pathways and proteins are responsible

for sperm motility [40]. However, the molecular mecha-
nisms by which circadian disruption impairs spermato-
genic function needs future elucidation. In addition to
sperm motility, circadian disruption diminished two
other sperm velocity parameters, VCL and VSL, while
the average path velocity of sperm showed no changes
among the three groups. All these results indicated that
circadian disruption impaired spermatogenic function.
In male reproduction and spermatogenesis, sex hor-
mones such as testosterone, DHT and ASD are the piv-
otal endocrine factors that control testicular functions
and sexual behaviors [15, 37]. Steroidogenesis is a com-
plex multistep and multienzyme process that is regulated
by many factors, including tropic hormones and miR-
NAs [18, 41]. Previous studies showed that the dysregu-
lation of circadian rhythm genes such as Bmall and
Clock results in the reduction of testosterone levels in
serum [7, 14, 42]. The serum level of Testosterone dis-
plays circadian variation, and the change of testosterone
level is dependent on sleep restriction rather than circa-
dian disruption [43]. We detected a slight increase in
testosterone levels in mice under circadian disruption in
our study. These results may be due to the different L/D
cycle between our control and circadian disruption
group. Moreover, circadian disruption attenuated DHT,
ASD, and GnRH levels in mice, while GNP treatment
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restored these hormones levels. The serum melatonin
levels got strongly enhanced by GNP treatment. Further-
more, the protein levels of StAR and CYP11A1 decreased
in the mouse testes after circadian rhythm disruption, in-
dicating the transcriptional/posttranscriptional regulation
of key steroidogenesis proteins by circadian rhythm.
Genipin is a natural extract from G. jasminoides Ellis,
traditionally utilized as an herbal medicine in many Asian
countries including, China. Also, as a natural crosslinker,
GNP exerts antioxidant and anti-inflammatory effects by
activating/inhibiting several signaling pathways [26, 28,
44]. On molecular levels, GNP was reported to regulate
the expression of miR-142a-5p, which negatively regulated
Srebp-1c, an important regulator of steroidogenesis and
lipogenesis [27]. Furthermore, GNP shows the choleretic
effect by enhancing bilirubin disposal and augment of
genes in charge of the efflux of a number of organic an-
ions [45]. GNP widely implicates in the inhibition of

uncoupling protein 2 (UCP2) in various experimental
models of ROS generation [45-47]. This study demon-
strated the protective effect of GNP against circadian
disruption-induced damage of spermatogenesis and fertil-
ity in male mice. Additionally, GNP treatment rescued the
levels of the hormones DHT and ASD, as well as StAR,
CYP11A1, and SRD5A1 mRNA and protein levels, in male
mice under circadian disruption. In addition to the animal
studies, GNP showed a positive effect by promoting ster-
oid product secretion and the expression of key steroido-
genic proteins (StAR and CYP11A1l) in MLTC-1 cells.
The protective effect of genipin may depend on its anti-
oxidant and anti-inflammatory functions. Indeed, the cir-
cadian regulation of protein expression plays a significant
role in the cellular response to oxidative stress and inflam-
mation, whereas circadian disruption induced the aug-
mentation of oxidative stress level and inflammatory
response [48-50].
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Conclusions

In conclusion, this study shows that circadian disruption
impairs spermatogenesis and fertility, which could be re-
stored by genipin treatment in male mice. We showed
that exposure to shortened T cycles reduces sperm con-
centration and motility in mice, resulting in decreased
fertility index, litter size and pup body weight in mice.
Furthermore, the levels of the serum reproductive hor-
mones testosterone, DHT, ASD, and GnRH remained al-
tered after exposure to shortened T cycles due to the
dysregulation of StAR, CYP11A1l and SRD5A1 expres-
sion. Collectively, our findings may have implications for
general health under circadian disruption and provide
results that suggest genipin as a treatment.
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