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A B S T R A C T   

The purpose of this study was to develop and verify a convolutional neural network (CNN)-based deep-learning 
algorithm to identify tumor progression versus response by adding amide proton transfer-weighted (APTw) MRI 
data to structural MR images as the proposed model input. 145 scans with 2175 MR instances from 98 patients 
with malignant glioma (acquired between April 2010 and February 2018) were re-analyzed. An end-to-end 
classification framework based on a ResNet backbone was developed. The architecture includes a learnable 
subtraction layer and a hierarchical classification paradigm, and synthesizes information over multiple MR slices 
using a long short-term memory. Areas under the receiver-operating-characteristic curves (AUCs) were used to 
assess the impact of adding APTw MRI to structural MRI (T1w, T2w, FLAIR, and GdT1w) on classification of 
tumor response vs. progression, both on the slice- and scan-level. With both APTw and structural MRI data, 
adding a learnable subtraction layer and a hierarchical classification paradigm to the backbone ResNet model 
improved the slice-level classification performance from an AUC of 0.85 to 0.90. Adding APTw data to structural 
MR images as input to our proposed CNN classification framework led to an increase in AUCs from 0.88 to 0.90 
for the slice-level classification (P < 0.001), and from 0.85 to 0.90 for the scan-level classification (P < 0.05). 
Generated saliency maps highlighted the vast majority of lesions. Complementing structural MRI sequences with 
protein-based APTw MRI enhanced CNN-based classification of recurrent glioma at the slice and scan levels. 
Addition of APTw MRI to structural MRI sequences enhanced CNN-based classification of recurrent glioma at the 
slice and scan levels.   

1. Introduction 

Despite maximum feasible surgical resection followed by radio-
therapy with concurrent chemotherapy, malignant gliomas eventually 
progress, with a median survival of 12–15 months for glioblastoma 
(Stupp et al., 2005). Radiographic evaluation plays a critical role in the 
management of post-treatment malignant gliomas, in which magnetic 
resonance imaging (MRI) following the response-assessment-in-neuro- 
oncology (RANO) criteria remains the standard (Wen et al., 2010). 
However, structural MR images used in the clinical setting, including 
T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion 

recovery (FLAIR), and gadolinium-enhanced T1w (GdT1w) MR images, 
are not sufficiently tissue-specific to guide treatment decisions (Wen 
et al., 2010). These limitations have immediate clinical consequences 
confounding post-treatment diagnostics and treatment planning and 
complicating the procedures for new therapy development. Therefore, 
reliable, automated imaging diagnostic tools to assess malignant glioma 
response to therapies are urgently needed. 

Amide proton transfer-weighted (APTw) imaging, based on chemical 
exchange saturation transfer (CEST) MRI contrast mechanism (Ward 
et al., 2000), is an emerging molecular MRI technique that was designed 
to detect endogenous cellular proteins and peptides in tissue (Zhou et al., 
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2019). The APTw hyperintensity observed in malignant glioma is most 
likely associated with increased cytosolic protein content due to higher 
cellularity and slightly increased intracellular pH (Lee et al., 2017; Ray 
et al., 2019; Yan et al., 2015). Numerous research groups worldwide 
have confirmed that the hyperintensity on APTw images is a reliable 
imaging marker of malignant glioma before (Jiang et al., 2017; Jiang 
et al., 2022; Sotirios et al., 2020) and after (Liu et al., 2020; Park et al., 
2020a; Park et al., 2020b) treatment. Notably, consensus recommen-
dations on clinical APTw imaging approaches at 3 T for brain tumors 
have recently been published (Zhou et al., 2022). 

On the other hand, advances in artificial intelligence and computer 
vision have achieved powerful solutions for improving medical imaging 
techniques and automatic diagnosis (Eijgelaar et al., 2020; Hu et al., 
2021; Verma et al., 2020), including CEST MRI (Cohen et al., 2018; 
Glang et al., 2020; Goldenberg et al., 2019). Convolutional neural net-
works (CNNs) have recently been applied successfully to neuro- 
oncological imaging (Buda et al., 2020; Chang et al., 2018; Choi et al., 
2019; Havaei et al., 2015). However, the number of studies on post- 
treatment image analysis to predict true progression for patients with 
malignant gliomas (Bacchi et al., 2019; Li et al., 2020) is still limited. 
This study aims to develop and verify a CNN-based deep-learning al-
gorithm to identify tumor recurrence through a cross-sectional, multi- 
modal MRI exam. Our CNN analysis results demonstrate that adding 
protein-based APTw MRI to traditional structural MR images can 
significantly increase the accuracy of treatment response assessment 
compared to using traditional MR images only. 

2. Materials and methods 

2.1. Patient Enrollment and annotation 

This study is a secondary analysis of previously collected data, and 
part of the data used here have been published (Guo et al., 2021; Jiang 
et al., 2019; Ma et al., 2016). This study, based on the de-identified data, 
was approved by the Institutional Review Board (IRB) and the need for 
consent for this de-identified data reanalysis was waived. Patient in-
clusion criteria were as follows: ≥20 years old; diagnosis of WHO grade 
III or IV glioma; status-post initial surgery and chemoradiation or 
radiotherapy alone; suspected tumor recurrence and completed APTw 
imaging (in addition to structural MRI sequences) study after the 
completion of therapy; and an integrated clinical diagnosis of tumor 
recurrence or treatment effect. 

Each lesion was annotated as “response to treatment” (including 
complete response, partial response, stable disease, radiation necrosis, 
and pseudoprogression) or “progressive disease“ (including progression 
and pseudoresponse), according to the RANO criteria for two- 
dimensional (2D) images for each instance (Vogelbaum et al., 2012; 
Wen et al., 2010). Here, one instance indicates a set of APTw, T1w, T2w, 
FLAIR, and GdT1w MR images acquired at the same slice level. For the 
scan-level classification, scans with one or more slices of “progressive 
disease” were assigned as “progression”, and all other scans assigned as 
“response”. Notably, if patients underwent surgery within four weeks 
after the observed APTw-MRI scan, histopathologic diagnosis took pri-
ority over the longitudinal MRI analysis. 

2.2. MRI data collection 

APTw images were obtained on a 3 T human MRI scanner (Achieva; 
Philips Medical Systems) using body coil excitation and a 32-channel 
phased-array coil for reception. Three-dimensional (3D) APTw imag-
ing was based on a previously published sequence (Jiang et al., 2019; Ma 
et al., 2016), with the following image parameters: radiofrequency 
saturation duration, 830 ms; saturation power, 2 µT; field of view (FOV), 
212×186×66 mm3; resolution, 0.82×0.82×4.4 mm3 (reconstructed); 
and matrix, 256×256×15 (reconstructed). T2w was acquired with im-
aging parameters: TR, 4 sec; echo time (TE), 80 ms; 60 slices; thickness, 

2.2 mm, and FLAIR was acquired with imaging parameters: TR, 11 sec; 
TE, 120 ms; inversion recovery time, 2.8 s; 60 slices; thickness, 2.2 mm. 
T1w and GdT1w images were acquired with the following parameters: 
3D magnetization-prepared-rapid-gradient-echo sequence; TR, 3 s; TE, 
3.7 ms; inversion recovery time, 843 ms; flip angle, 8; 150 slices; 
isotropic voxel, 1.1 mm3), and the dose of Gd contrast agents was 0.2 
mL/kg body weight. The anatomic MRI sequences (T1w, T2w, FLAIR, 
and GdT1w) had the image parameters: FOV, 212×172×165 (or 
212×189×132) mm3; resolution, 0.41×0.41×1.1 mm3 (reconstructed); 
and matrix, 512×512×150 (reconstructed). For each scan, due to the 
fact that the 3D APTw MRI protocol provided 15 slices, volumetric MR 
images used 15 instances. Each instance included T1w, T2w, FLAIR, 
GdT1w, and APTw images with the matrix shape of 5 (sequences) × 256 
(pixels) × 256 (pixels). Instances were the input of proposed slice-level 
feature extractor CNN. 

2.3. Data preprocessing 

Data preprocessing steps, including co-registration (Lowekamp et al., 
2013), skull-stripping (Lipkova et al., 2019), N4-bias field correction 
(Tustison et al., 2010), and MRI standardization (Nyúl et al., 2000), 
were performed sequentially. Notably, based on our experience during 
the image preprocessing, in order to preserve the distinguishing radio-
graphic patterns on APTw-MRI, MRI scale standardization was not 
performed on APTw-MRI. We used a rigid-body registration for the co- 
registration across the APTw images and the anatomical MR images 
(T1w, T2w, FLAIR, and GdT1w) (Zhang et al., 2016). This was performed 
through the saturated images at 3.5 ppm to reconstruct the APTw im-
ages, which share the same spatial information with the APTw images. 
Preprocessing was performed by a medical imaging engineer and su-
pervised by a radiologist who also verified the image preprocessing 
outputs. Lesions of post-treatment malignant glioma that cover the re-
gions of abnormal intensities on multiparameter MR images were 
segmented on the co-registered FLAIR MR images. Then, the pre-surgery 
and all clinical follow-up MR images, together with all clinical reports in 
the electronic medical record system, were reviewed serially for 
annotation. 

2.4. Deep-learning classification pipeline 

The classification framework consisted of two main stages: slice-level 
classification and scan-level classification (Fig. 1a). During the slice- 
level classification, a CNN using three concatenated residual learning 
blocks (ResNet-18) (He et al., 2016) served as a feature extractor and the 
backbone model in a previous study. This backbone architecture without 
any modification was denoted as the standard model. As explained 
below, we introduced a learnable subtraction module (LS) and a hier-
archical classification (HC) paradigm as modifications to the standard 
ResNet-18 architecture. To aggregate predictions across all slices and 
obtain a scan-level prediction, a long short-term memory (LSTM) mod-
ule was added that sequentially processed all embedded feature repre-
sentations of all slices. The detailed descriptions of each module are 
presented in the following sub-sections. 

2.5. Slice-level feature extractor CNN 

The classification consists of three hierarchical binary-classification 
sub-tasks (Fig. 1b). The ResNet-18 architecture was modified accord-
ing to this hierarchy by inserting classification branches for three binary 
classification tasks above at increasing depths into the network. This 
procedure increases gradient flow as additional gradients are injected 
during back-propagation, and promotes generalizable learning since the 
extracted features must inform several related tasks rather than only 
one. Binary cross entropy loss was adopted for each branch and is 
defined as follows: 

P. Guo et al.                                                                                                                                                                                                                                     



NeuroImage: Clinical 35 (2022) 103121

3

LBCE(x, y) = − (ylog(x) + (1 − y)log(1 − x))

where × is the predicted probability and y is the binary indicator (0 or 1) 
for the target label. The loss function of a CNN is a weighted summation 
of all branches, LBCE, and is defined as follows: 

LCNNs =
∑D

d=1
ωdLd

BCE(x, y)

where D is the number of branches, Ld
BCE is the binary cross entropy loss 

of the corresponding branch, and the weight ωd is used to control the 
relative importance of each branch. 

The most accurate slice-level CNN classification framework was used 
to perform the sanity check. 

2.6. Learnable subtraction module and long short-term memory 

Informed by the radiologic reading workflow for such images, we 
proposed an LS module on top of the CNN to perform a learnable- 
parameter-adjusted image subtraction (Fig. 2a). The LS module was 
calculated between GdT1w and T1w, as well as between T2w and FLAIR 
images for image comparison. An LSTM was proposed to obtain all 
extracted, slice-based features from the same scan as the sequential 
input for scan-level classification. 

2.7. Long short-term memory 

The proposed LSTM takes all extracted slice-level features from a 
scan as a sequential input to perform scan-level diagnosis. For each 
element of the input sequence, LSTM was computed as follows: 

it = σ(Wiixt + bii + Whih(t− 1) + bhi)

ft = σ(Wif xt + bif + Whf h(t− 1) + bhf )

gt = tanh(Wigxt + big + Whgh(t− 1) + bhg)

ot = σ(Wioxt + bio + Whoh(t− 1) + bho)

ct = ft ⊙ c(t− 1) + it ⊙ gt  

ht = ot ⊙ tanh(ct)

where xt , ct, and ht are the input, cell state, and hidden state for slice t, 
respectively. σ is the sigmoid function and tanh is the hyperbolic tangent 
function. ⊙ is the Hadamard product. it, ft, gt, and ot are the input, forget, 
cell, and output gates, respectively. We denoted the output features of 
the last layer of the LSTM as H. Then, H was passed through a fully 
connected layer to produce the final scan-level prediction based on all 
extracted slice-level features of a single scan from the slice-level CNN. 
Thus, the dependence between input instances and scan-level prediction 
in our task was modeled. 

2.8. Training and implementation details 

We adopted the binary cross entropy loss and the Adam (Kingma and 
Ba, 2015) optimizer to minimize the loss function, with an exponential 
decay rate β = (0.9, 0.999) for both CNN and LSTM. The initial learning 
rate was set to 10e− 4 and 10e− 2 for training CNN and LSTM, respec-
tively. The learning rate of first five epochs was an initial learning rate ×
0.1 and constant in the first 50 epochs, and then linearly decayed to zero 
in the last 50 epochs, with a warm-start, learning-rate scheduler. The 
batch size was set to 15 and 8 for training CNN and LSTM, respectively. 
The importance parameter ωd was set to 1 for all branches. The inference 
time for the proposed CNN and LSTM was 0.018 s per instance and 
0.001 s per scan, respectively. We implemented the proposed approach 
on an Ubuntu 18.04 computer using an NVIDIA 2080Ti GPU and 
PyTorch. We utilized the class activation map (CAM) to expose the 
attention of the CNN on the input slices, which highlights the most 
informative image regions relevant to the predicted class (Zhou et al., 
2016). High-response regions with a salience score of higher than the 
95th percentile value were further generated, which were denoted by 
CAM*. 

2.9. Statistical analysis and model evaluation 

Scan-based data was split into 70% training, 10% validation, and 
20% testing according to the chronological order of the MRI scan date 
(Table 1). The rationale of chronological order data split is to simulate 
the real-world clinical practice. Our data split reflects the attempt of 
attaining unbiased performance estimates in prospective deployment. 
Notably, for the scan-level analysis, all instances from the same scan 
were treated as an individual sample to prevent data sharing across the 
split datasets, and the scans from the same patient were not shared 

Fig. 1. (a) Overview of the proposed deep-learning pipeline, which consists of a ResNet-18 backbone, a learnable subtraction module, three classification branches 
for the hierarchical training paradigm, and an LSTM module for scan-level prediction. (b) The schematics of the proposed hierarchical training. The tumor pro-
gression classification is decomposed into three binary classification sub-tasks. The number in parentheses is the number of instances reported for the entire dataset. 
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between training and testing datasets. The diagnostic performances of 
the proposed methods, including sensitivity, specificity, and the area 
under the receiver-operating-characteristic (ROC) curve (AUC), were 
measured on the testing dataset. Notably, to explicitly evaluate the in-
cremental diagnostic impact of APTw MRI, the ROC curves were 
compared between inputs with and without APTw (DeLong et al., 1988). 
We ran all experiments three times and reported the mean metrics. Data 
analysis was performed with the Python scikit-learn package (Pedregosa 
et al., 2011). 

3. Results 

3.1. Patient demographic information 

A total of 145 scans obtained from 98 patients between April 2010 
and February 2018 were included in this study. Patient demographic 
information and basic lesion characteristics are shown in Table 1. Based 
on the integrated clinical pathologic results, 86 scans were classified as 
“progression“, while the remaining 59 scans were classified as 
“response”. Based on the slice-level features, this led to 2175 instances in 
total, 742 of which were grouped as “progressive disease“. 

3.2. Slice-level diagnostic performance 

The slice-level classification performance was first evaluated in the 
standard CNN model, where the contribution of using GdT1w and APTw 
as a part of the input was investigated (Table 2). In the slice-level 
backbone CNN model using T1w, T2w, and FLAIR MRI data as the 
baseline input, the AUC for distinguishing progressive disease from non- 
progression was 0.77 (CI, 0.70–0.81). Adding GdT1w or APTw MRI 
alone to the baseline input, the AUCs were increased to 0.82 (CI, 
0.79–0.87) or 0.84 (CI, 0.81–0.89), respectively. Adding GdT1w and 
APTw MRI jointly achieved the highest AUC, with 0.85 (CI, 0.82–0.89). 
This input ablation study indicates that the use of GdT1w and APTw MRI 
data, either individually or jointly, significantly improved the progres-
sive disease vs. non-progression classification. Moreover, APTw MRI 
yielded a marginally higher value compared to GdT1w. 

A thorough ablation study to analyze the separate or joint effects of 
the LS module and a HC paradigm was further performed (Fig. 3a). For 
input without APTw data (T1w, T2w, FLAIR, and GdT1w), the AUCs were 
increased from 0.82 to 0.83 (adding the LS module), to 0.85 (adding the 
HC paradigm), and to 0.88 (adding them jointly), respectively. For input 
with APTw images (APTw, T1w, T2w, FLAIR, and GdT1w), the corre-
sponding AUCs were increased from 0.85 to 0.86, to 0.88, and to 0.90. 

Fig. 2. Visual illustration of the concept of the learnable subtraction module. The schematics of the learnable subtraction in a pixel-wise dot product (a) and an 
example of visualization of image subtraction (b). * denotes the dot product. The learnable parameters for this pixel-wise operation were implemented by a 1×1 
convolutional layer with a kernel size of 1 using predefined initializing parameters. Notably, in order to avoid trivial solutions during training, instead of initializing 
with zero, we set those zero values to a small number (i.e., 1e-3). 
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Adding APTw images is capable of significantly improving the classifi-
cation performance compared to the structural images, with the LS 
module and the HC paradigm, either jointly (P < 0.01) or separately (p 
< 0.001 and p < 0.01 respectively), Notably, the best performance was 
achieved by the model that employed the LS module and the HC para-
digm jointly, using APTw MRI data (AUC, 0.90; sensitivity, 0.87; spec-
ificity, 0.83). In addition, images of learned GdT1w – T1w and T2w – 
FLAIR subtractions, as the output of LS, show the distinguishable fea-
tures that the module learned from the comparisons between GdT1w and 
T1w images, as well as between T2w and FLAIR images (Fig. 2b). 

Two examples that applied CAM to generate saliency maps that 
highlighted the regions on which the model focused during inference are 
shown in Fig. 4. The derived CAMs, and especially the CAM*s, covered 
the vast majority of lesions, including the Gd-enhancing regions, sur-
gical cavity, and edema areas for both lesions with progressive disease 
and response. 

3.3. Scan-level diagnostic performance 

The AUCs for the classification of true progression versus response 
were 0.85 (sensitivity, 0.70; specificity, 0.91) and 0.90 (sensitivity, 0.81; 
specificity, 0.85) for input without and with APTw images, respectively 
(Fig. 3b). A significant incremental value of APTw images over struc-
tural MRIs was also observed in the scan-level classifier (P < 0.05). 

4. Discussion 

Determining whether a person with malignant glioma has tumor 
progression versus response after chemoradiation remains pivotal in the 
postoperative management of people with malignant gliomas. We pre-
sent a multiparameter MRI processing pipeline for the classification of 
post-treatment patients with malignant gliomas, which provides an end- 
to-end model for both slice-level and scan-level assessment. For 145 
scans from 98 patients, we made the following observations: (i) multi-
parameter MRIs, including structural MRIs and APTw MRIs, are capable 
of building a compelling deep-learning classification model; (ii) APTw 
MRI provides incremental diagnostic performance compared to struc-
tural MRIs as the input for both slice-level and scan-level classifications; 
(iii) LS and HC are able to improve the classification performance for the 
backbone model; and (iv) generated CAMs, especially CAM*s, visually 
highlighting the evidence for classification, localize the majority of ab-
normalities on structural MRIs and APTw MRI. 

Our proposed approach has the following three advantages. First, we 
developed the LS module. When assessing MR images, besides other 
imaging modalities, patient history and lab tests, radiologists usually 
observe the Gd-enhancement pattern and the water-signal suppression 
pattern (Eisele et al., 2016; Wen et al., 2010; Wolf, 2019) by compre-
hensively comparing the GdT1w and T1w images, as well as the T2w and 
FLAIR images. However, direct image-subtraction might not be optimal 
for the subsequent feature extraction due to the variety of the original 
intensities on the structural MRIs. The learnable-parameter-adjusted 
image subtraction derived from the proposed LS demonstrated more 
discriminative features (Fig. 2), thus improving the classification per-
formance both with and without APTw data. Second, we introduced the 
HC paradigm to the CNN by decomposing the final task into three hi-
erarchic subtasks (Kowsari et al., 2017; Zhu and Bain, 2017). The 
shallower layers in the CNN can provide hierarchical priors for the 
subsequent deeper layers, thus serving as an extra supervised guidance 
on the intermediate layers. As a result, without increasing the depth of 
the network, these two coarse prediction branches boosted the perfor-
mance in this study. Last, because of the extreme intratumoral hetero-
geneity, it is not uncommon that a progressive lesion partly contains 
some regions that either are not tumor (i.e., cavity or edema) or non- 
progressive aspects of the tumor (details in Methods). In this scenario, 
simply averaging the slice-level logits from the CNN will result in 
impractical high specificity and low sensitivity for scan-level classifi-
cation. In this study, slice-level pipeline is more specific for regional 
analysis, which is for essential for diagnostic surgery procedure, while 
the scan-level pipeline corresponds to patient/case diagnosis. Thus, the 
slice-level and scan-level diagnostic performances are slightly different. 
They might be less comparable due to distinguishing clinical scenarios. 
An LSTM (Hochreiter and Schmidhuber, 1997) was recently introduced 
to multiparametric MRI data with favorable results (Lee et al., 2020). 
Inspired by this, we proposed a set of data from the five MRI sequences 
as a spatial sequence input for the scan-level classification framework. 
This LSTM model could thus incorporate the entire information via 75 
MR slices (15 instances × 5 MR sequences) affiliated with a scan for the 
scan-level classification. Furthermore, using chronological order data 
split in this study reflects the attempt of attaining unbiased performance 

Table 1 
Participant Demographic Information, and Basic Characteristics of the Datasets.  

Parameter Dataset 

Training Validation Testing 

No. of instancesa 1530 210 435 
No. of scans 102 14 29 
No. of patients 72 10 16 
No. of females (scan based, %) 31 (30.4%) 2 (14.3%) 16 (55.2%) 
Age (scan based, year) 52.7 46.1 50.4 
No. of grade IV (%) 63 (61.8%) 9 (64.3%) 22 (75.9%) 
Time interval after radiation (day) 

b 
257 
(95–448) 

183 
(89–375) 

287 
(190–542) 

No. of first progression (%) 66 (64.7%) 5 (35.7%) 11 (37.9%) 
No. of progression at the slice level 

(%) 
547 
(35.8%) 

59 (28.1%) 136 (31.3%) 

No. of progression at the scan level 
(%) 

61 (59.8%) 7 (50.0%) 18 (62.1%) 

Enrollment time of first scan 
(YYYY/MM) c 

2010/04 2014/10 2015/07 

Enrollment time of last scan 
(YYYY/MM) c 

2014/10 2015/07 2018/02 

Note. a One instance indicates a set of APTw, T1w, T2w, FLAIR, and GdT1w MR 
images acquired at the same slice level. b Time interval after radiation indicates 
the timing of research MRI acquisition with regard to the end of radiation, 
described as median with 25th percentile and 75th percentile. 

c To simulate the practical use of this algorithm in a simulated prospective 
study, the whole dataset was split according to the chronological order of the 
MRI scan date. 

Table 2 
Comparisons of performances with different MRI sequence data as input for the slice-level classification in the backbone model.  

Data Input Diagnostic Performances 

APTw GdT1w T1w T2w FLAIR AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) P value#   

√ √ √ 0.77 (0.70, 0.81) 0.61 (0.53, 0.69) 0.81 (0.77, 0.85) –  
√ √ √ √ 0.82 (0.79, 0.87) 0.82 (0.75, 0.88) 0.75 (0.70, 0.80) P < 0.001 

√  √ √ √ 0.84 (0.81, 0.89) 0.87 (0.81, 0.92) 0.68 (0.62, 0.73) P < 0.001 
√ √ √ √ √ 0.85 (0.82, 0.89) 0.92 (0.87, 0.96) 0.63 (0.58, 0.69) P < 0.001 

Note. √ indicates that the input instance contains the corresponding MR sequence. 
# P value for the ROC curve comparison with respect to the input of T1w, T2w and FLAIR data. 
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estimates in prospective deployment. However, with this data split 
method, the clinical and demographic characteristics could barely be 
controlled to evenly distribute among data splits, such as gender ratio or 
first progression v.s. in subsequent therapy this study. 

In this study, pairs of models using data with and without APTw MRI 
were compared to explore the incremental value of APTw MRI to 
structural MRIs. Our data show that APTw MRI improves the diagnostic 
performance for both slice-level and scan-level classifications. This is 
consistent with previous studies that demonstrated the value of APTw 
MRI for post-treatment malignant gliomas (Zhou et al., 2019). 
Furthermore, CAMs were calculated from the slice-level CNN. As a 
visualization and attribution method with which to elucidate CNNs, 
CAM explanations correspond to the gradient of the class score (logit) 
with respect to the feature map of the last convolutional unit of a CNN 
(Selvaraju et al., 2016). This mapping uses the gradients of any target 
concept flowing into the final convolutional layer to produce a coarse 
localization map, that highlighs the important regions in the image for 
predicting the concept. CAM is capable of generating images that 
highlight salient regions, arguably acting as a localizer for important 
regions that contain highly discriminative information, with great 
promise for clinical translation (Fong and Vedaldi, 2017; Sundararajan 
et al., 2017). The CAMs, especially the CAM*s of our study, substantially 
localized the majority of regions of abnormal MRI signals (Fig. 4). The 
results indicate that the proposed methods can successfully extract truly 
and biologically relevant distinguishable information from multi- 
modality MRIs. 

There are several limitations to this study. First, the proposed models 
were trained and tested on single-center data. Our next work will 
incorporate data from multiple external institutions to create a 

generalizable algorithm. Second, for the scan-level prediction, the pro-
posed method was developed to use the embedded 2D-CNN-features. An 
alternative is to directly use volumetric data to build 3D CNN algo-
rithms. However, there was a discrepancy in resolution along the z-axis 
between APTw images and the structural MR sequences (4.4 mm vs. 1.1 
mm). Consequently, a dramatically compromised fidelity for APTw 
images due to resampling for an isotropic 3D volume, impedes a 3D 
CNN. Third, several critical genetic markers, such as the status of iso-
citrate dehydrogenase (IDH) mutation, 1p19q codeletion and (O-6- 
methylguanine-DNA methyltransferase (MGMT) methylation, were not 
included in the CNN due to limited, assessable genetic data. Only with 
these additional data, the added value of APTw imaging in these definite 
glioma patient subsets can be established. We will collect and analyze 
genetic profiles in our ongoing prospective study. Forth, perfusion MRI, 
an advanced MR imaging with great diagnostic value for post-treatment 
glioma patients, was not included in the analysis of this study. The lack 
of any analysis with perfusion and APTw images left an unexplored 
question for the further study. Last but not least, malignant gliomas 
infiltrated throughout the whole brain. However, APTw MRI only 
covered up to 66 mm in the z direction (4.4 mm × 15 slices) due to the 
technique limitation. This led to the fact that a whole brain comparison 
was not performed in this study. 

5. Conclusion 

We propose a deep learning-based pipeline to identify true tumor 
progression versus treatment effects after radiation for patients with 
malignant glioma utilizing multiparameter MRIs. The proposed learn-
able subtraction layer shows promise, which indicates the improvement 

Fig. 3. (a) ROC curves showing the slice-level diagnostic performance of the models evaluated (the standard model and with the LS module and HC paradigm, alone 
and jointly; two inputs, structural MR images, including T1w, T2w, FLAIR, and GdT1w, without or with APTw MRI data). (b) ROC curves showing the scan-level 
prediction from the LSTM. *, **, and *** denote the ROC comparison (with APTw vs. without APTw data) results with P < 0.05, < 0.01 and < 0.001, respectively. 
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on the data usage plays an important role in increasing automated 
analysis outcome. The boosted performance achieved by supervising the 
natural hierarchy of general-to-specific order under targets class dem-
onstrates that the proposed hierarchical classification paradigm can 
provide prior for deeper layers as a good guide during the training. The 
AUCs of our best-performing models (0.90 for both slice-level and scan- 
level models) verifies our motivation that complementing structural 
with functional APTw MRI can further improve the diagnostic perfor-
mance. Based on this performance, the proposed method could be a 
highly efficient solution that could help clinical experts to make precise 

diagnoses for patients with post-treatment malignant gliomas. 
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Fig. 4. Examples of applying CAM to generate saliency maps for an instance with progressive disease (a) and an instance with non-progressive disease (b). An artifact 
from the adjacent nasal sinus (white arrow) is visible on the APTw image of case (a). For the annotation, the cavity (including surgical cavity and cavity with 
liquefactive necrosis) within the lesion was labeled for each instance. In addition to the tumor portion (annotated as either progression or response) and cavity, the 
remaining portion of the lesion was defined as edema. On the lesion masks, gray, blue, yellow, and green represent the annotated portions with edema, cavity, tumor 
progression, and tumor response, respectively. High-response regions with a salience score of higher than the 95th percentile value were denoted by CAM*. On CAM 
and CAM*, red regions indicate a stronger contribution and blue regions have little to no contribution toward the classification. They, especially CAM*, cover the 
majority of lesions, including the gadolinium-enhancing regions, surgical cavity, and edema areas for instances of both progressive disease and non-progression. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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