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A B S T R A C T   

Precisely predicting natural gas prices (NGPs) is important because it can provide the necessary 
decision-making basis for energy scheduling, planning and control. However, NGPs are affected 
by many factors and exhibit the characteristics of nonlinearity and randomness, which makes 
accurate predictions challenging. Therefore, in this paper, the information gain of multisource 
data and the global optimization ability of the gray wolf algorithm are used to build a multifactor- 
driven NGP hybrid forecasting model to improve the prediction performance. First, the emotional 
tendency and readability of news text are extracted and calculated by using VADER and textstat 
tools, respectively. Then the network search index is filtered and integrated by using the corre-
lation coefficient method and the CRITIC method to form alternative variables of multisource 
data (news and search index). Second, the gray wolf optimization algorithm is used to find and 
determine the best key parameter group in long short-term memory model. Finally, the spot price 
of natural gas in Henry Hub from March 1, 2012 to February 28, 2022 is selected as the prediction 
object, and multi-scenario numerical experiments are carried out to verify the effectiveness of the 
proposed model. The ablation experiment results show that the information gain brought by 
multisource data can effectively improve the prediction effect of NGPs. Furthermore, the pro-
posed model has the best prediction performance in different scenarios and can be regarded as a 
promising prediction tool.   

1. Introduction 

Due to global warming and rising energy demand, natural gas has become the best choice for different countries to adjust their 
energy structure and transform toward low-carbon development due to its high energy efficiency and economical, environmentally- 
friendly characteristics [1,2]. On a global scale, the tight supply of the natural gas market and the continuous increase in demand have 
led to a continuous rise in global natural gas prices. Changes in natural gas prices often have a profound impact on economic activities 
[3–6]. In this case, the accurate prediction of natural gas prices (NGPs) can effectively reduce energy risks, provide an important 
investment and decision-making basis for governments, investors and regulatory agencies, and promote the healthy and rapid 
development of the natural gas market. However, the NGP is often affected by a series of unconventional events or factors, such as 
market supply and demand levels, financial markets, foreign exchange markets, futures markets, geopolitics, and war, showing strong 
nonlinear and stochastic complex characteristics. There is no doubt that these complex data characteristics lead to severe challenges in 
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precisely predicting the NGP. Therefore, the establishment of an efficient and accurate prediction model to predict NGP has become a 
challenging issue in academic and industrial circles. As shown in Fig. 1, according to data released by the Henry Hub, natural gas spot 
price has fluctuated between $2 to $6 dollars per million btu in the past decade. It also has shown short-term downturn in 2015 and 
2020 respectively, and shown a rebound trend after 2021. Due to the complex and diverse factors that determine energy prices, 
including supply-demand relationships, geopolitical factors, market expectations, etc., natural gas prices have not shown very regular 
cyclical fluctuations, Fig. 1 also reflects this point. 

At present, NGP forecasting models can be divided into two categories: traditional statistical models and machine learning models. 
The former is mostly used in early price forecasting research, such as the gray model (GM), linear regression (LR) model, autoregressive 
integrated moving average (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). However, traditional 
statistical models need to meet the stationarity assumption, and the prediction effect is greatly affected by the law of data distribution 
[7–10]. Owing to the development of information technology, deep learning represented by long short term memory (LSTM) has good 
feature representation and fitting ability for complex price time series and is widely accepted and applied [11,12,13]. By introducing a 
gating mechanism to control the speed of information accumulation, LSTM can effectively solve the problem of gradient disappearance 
or explosion and reduce the risk of underfitting [14,15]. However, the setting and selection of hyperparameters in LSTM usually 
depend on the experience of users, which easily leads to the interference of subjective factors and reduces the prediction performance 
of the model. Therefore, it is necessary to use the optimization algorithm to optimize the hyperparameters of the model to weaken the 
influence of non-model factors on the prediction performance. The swarm intelligence algorithm connects single limited individuals 
through a certain mechanism to build swarm intelligence and uses the powerful overall ability to seek the optimal solution of complex 
problems through collaborative search in the solution space [16,17]. Among them, the gray wolf optimization algorithm (GWO) 
achieves the purpose of optimization by simulating the predation behavior and the cooperative mechanism of gray wolves. GWO has 
significant advantages in terms of solution accuracy and convergence speed by introducing the adjusted adaptive convergence factor 
and information feedback mechanism [18]. 

With the global marketization reform of natural gas, natural gas prices are driven by both market and unconventional factors, 
including financial market factors, exchange rate markets, commodity markets, and geopolitical factors. This makes the influencing 
factors and mechanisms of natural gas prices increasingly complex. In the era of big data, oil- and gas-related news reports are the 
mainstream media of current popular events in the energy field, with strong influence and representativeness, and can objectively 
record major social events in this field as well as relevant government decisions and market trends. Online news texts can be seen as an 
effective supplement to information, reflecting the impact of unconventional and unexpected events on natural gas prices in a timely 
manner [19]. The emotional tendency and readability of online news texts can not only measure the polarity and capacity of the 
information covered by the text, but also potentially affect the decisions and actions of readers. On the other hand, there may be a close 
correlation between online search data for social activity keywords and corresponding social activities [20,21]. Therefore, the search 
index can reflect the attention information of investors to a certain extent [22,23]. This raises two interesting research questions that 
we aim to answer in this paper: (1) Can multisource data mainly based on news texts and search indices effectively improve the 
effectiveness of NGP prediction? (2) How can multisource data be effectively utilized and efficient prediction models be established to 
achieve the accurate prediction of NGPs? 

To this end, the following work is conducted in this study. First, macroeconomic fundamental indicators such as the Nasdaq 
Composite and the Global Economic Policy Uncertainty Index, as well as commodity prices such as oil futures prices and gold futures 
prices are selected as exogenous variables. On this basis, we embed the text indicators obtained after processing news texts and search 
indices and generate a total of 20 variables as explanatory variables of the model. Second, the gray wolf optimization algorithm is used 
to automatically search for and determine the optimal key parameter group in a deep learning model-LSTM to achieve the automatic 

Fig. 1. The monthly spot price sequence of natural gas in Henry Hub.  
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optimization of the model’s key parameters. Finally, the spot price of natural gas in Henry Hub is selected as the prediction object, and 
multi-scenario numerical calculation experiments are conducted to verify the effectiveness of the proposed model, attempting to 
answer whether the information gain of multisource data can improve the prediction accuracy of NGPs. 

In short, the contributions of this paper to the literature on NGP prediction lie in the following three aspects: (1) Introducing text 
information such as online news and investor attention to predict NGPs, enriching the influencing factors of NGP prediction, and 
further verifying that the information gain of multisource data can effectively improve the NGP prediction performance. (2) Intro-
ducing the gray wolf optimization algorithm with global search capability to optimize the key parameters of the LSTM model, 
achieving the automatic optimization of key parameters. (3) Establishing a multisource data-driven hybrid forecasting model for NGP 
and design prediction experiments in different scenarios, emphasizing the applicability and effectiveness of the proposed model. 

The remaining parts of this paper are arranged as follows. Section 2 presents a literature review. Section 3 provides an introduction 
to the main methods and prediction framework. Section 4 discusses empirical analysis, including descriptive analysis, parameter 
setting, predictive experiments, robustness analysis and DM testing. Finally, the conclusions of this paper and future outlooks are 
summarized in Section 5. 

2. Literature review 

Table 1 has shown the methods used by representative literature in the field of natural gas price prediction and related fields, as 
well as information on exogenous variables and specific research objects. Initially, scholars often used traditional statistical models to 
predict natural gas prices. However, as major countries around the world relaxed their control of natural gas prices, the influencing 
factors of natural gas prices became more diverse, and the fluctuation patterns of natural gas prices became more complex. The de-
mand for improving the accuracy of time series prediction has led to a diversification of research methods in the field of NGP 
prediction. 

Traditional statistical models are often based on the assumption of stationarity, emphasizing causal inference to uncover the laws 
behind prediction. Therefore, their empirical results have good interpretability, and they can be used to conduct in-depth research on 
driving factors while predicting NGPs. Econometric methods such as autoregressive integrated moving average (ARIMA), generalized 
autoregressive conditional heteroskedasticity (GARCH) and their variants were once favored by scholars. For example [25], estab-
lished the GARCH-MIDAS-ES model to study the fluctuation law of the monthly futures price of natural gas and discussed the 
contribution of weather indicators to the prediction model [26]. constructed a state-space time series model to predict the daily closing 
price of natural gas and examined the impact of factors such as risk rollover on the price. However, traditional time series prediction 
requires solving parameters based on determining the model structure and using the solved model to complete the prediction task. 
Whether the parameters can be correctly selected largely determines the prediction effect. Therefore, the limitations of the parameter 
estimation process limit the prediction accuracy of the model. 

In recent years, due to the rapid growth of data scale and increasingly complex data structures in price prediction tasks, scholars 
have found that deep learning models have relatively better fitting ability and prediction accuracy for complex time series. Therefore, 
their applications in the field of price prediction have become increasingly widespread. Deep learning is essentially a multilayer neural 
network, and its main models include convolutional neural networks (CNNs) and recurrent neural networks (RNNs). It is necessary to 
strictly define the input and output when using such models to predict prices. At present, many scholars use deep learning models and 
other technologies in the prediction process to achieve better prediction effects. For example [27], used VNN technology combined 

Table 1 
Prediction methods for NGPs.  

Literature Prediction object(s) Exogenous variables Method(s) 

[24] Crude oil price / Traditional 
statistics 

VTFM 
[25] Natural gas price Temperature, precipitation, etc GARCH-MIDAS-ES 
[26] Natural gas price Crude oil price, coal price, etc State-space time series 

model 
[3] Crude oil price, coal price, natural gas 

price 
/ ARIMA, SES, KNN 

[27] Crude oil price, zinc price, natural gas 
price, gold price 

/ Deep learning VMD-ANN 

[28] Natural gas price Natural gas consumption, crude oil price, etc VMD-PSO-DBN 
[29] Natural gas price / CEEMDAN-SE and PSO-ALS- 

GRU 
[30] Natural gas price, carbon price / VMD and AR- 

IBiLSTMELMAN 
[31] Crude oil price, natural gas price / CEEMDan-SVM-ARMA 
[32] Crude oil price US dollar index, Dow Jones Industrial Average, 

crude oil price, etc 
Text assistance News text 

[33] Carbon price Coal price, crude oil price, electricity price, etc Social media text and baidu 
index 

[34] Carbon price Coal price, crude oil price, natural gas price News text and google Index 
[35] Soybean price / News text 
[36] Crude oil price Gold price, US dollar index, etc News text  
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with an artificial neural network to predict four different price time series, including natural gas prices [30]. used AR, an Elman neural 
network and an IBiLSTM network to predict low-frequency components, high-frequency components and other sublayers after 
decomposing the time series, effectively improving the prediction effect of natural gas prices. 

In addition, to incorporate some unconventional events or factors into the energy prediction system to optimize the prediction 
effect, some scholars have also used text information to assist in predicting energy time series. Many studies believe that this approach 
can effectively improve the prediction accuracy. Due to the similarity of time series predictions for different types of energy prices and 
the research approach of integrating text information for time series prediction having a certain universality, text-assisted prediction 
methods applied to energy prices such as crude oil and coal can also be used to predict natural gas prices. 

In terms of news reporting, behavioral finance challenges the traditional efficient market hypothesis, proving that human emotions 
and behavior can play important roles in investment decision-making. Based on this theoretical basis, many scholars have confirmed 
the auxiliary role of sentiment analysis in forecasting. Extracting text sentiment for auxiliary prediction has been applied in the field of 
price prediction, e.g., see Refs. [32,35,36]. In addition, quantifying text readability is another effective means of processing text in-
formation. From research in marketing, it has been noted that text readability can affect the transmission and sharing of information, 
thereby guiding the information receiver and ultimately influencing the behavioral decisions of potential investors. Both [37,38] 
demonstrated the contribution of text readability to time series prediction. Although there are limited researches about using text 
information to assist natural gas price prediction, many scholars have confirmed the feasibility of this approach and proposed opti-
mistic prospects for it [39]. introduced an economic index that cover text factors into the energy price prediction system, optimized the 
prediction results, and proposed that news text can be extracted to predict energy prices. In addition to news reports, there has been a 
strong interest in internet search data in academic communities in recent years. Previous studies have shown that search indices can be 
regarded not only as proxy variables for investors’ attention but also as important factors affecting asset prices and therefore are also a 
type of important text information. Both [33,34] attempted to integrate search indices for energy price prediction and achieved certain 
results [40]. used Google search indices to assist natural gas price prediction and demonstrated that the introduction of text infor-
mation such as search indices have significantly improved the accuracy of prediction. 

Due to the unique structure of time series and certain correlations between their samples, some leading-edge neural network 
models often have better prediction performance. Considering that key parameters in neural network models usually need to be set 
based on the experience of users, parameter optimization can be used to improve the prediction accuracy. Among optimization al-
gorithms, the swarm intelligence optimization algorithm can efficiently search for the optimal solution of complex problems through 
collaborative search in the solution space. Therefore, the combined method of using the swarm intelligence optimization algorithm to 
optimize key parameters of the neural network model can be used to predict the time series of energy prices. In this field [41], 
constructed a CEEMDAN-GWO CatBoost combination model to quickly and accurately capture the changing patterns of complex time 
series. They introduced the GWO algorithm into time series prediction model and achieved rapid parameter optimization [28]. 
proposed a mixed model based on variational mode decomposition (VMD), particle swarm optimization (PSO) and a deep belief 
network (DBN) [29]. proposed a new method combining complete ensemble empirical mode decomposition with adaptive noise and 
sample entropy (CEEMDAN-SE) with a gated recurrent unit optimized by particle swarm optimization and an adaptive learning 
strategy (PSO-ALS-GRU) [42]. demonstrated that a novel ICEEMDAN-R-AttGRU combination model can improve the prediction ac-
curacy of various energy price time series, such as Brent crude oil, Dacheng steel coke, and NYMEX natural gas price sequences. All the 
above studies proved that combined models can solve the limitations of traditional methods and make more accurate predictions. 

Meanwhile, previous studies have shown that neural network models have many key parameters, and changing these parameters 
will significantly change the prediction performance of the model: changing the number of hidden layer neurons will change the 
network structure and improve the optimized terrain; changing the batch size will change the loss reduction situation and affect the 
stability of training; and changing the learning rate will affect the rate of convergence and generalizability of the model. Therefore, the 
number of hidden layer neurons, batch size and learning rate can be selected for optimization to significantly improve the prediction 
accuracy [43–46]. 

In summary, on the one hand, integrating multisource data to predict natural gas prices can provide more information gain for the 
prediction system and ultimately improve the prediction accuracy. On the other hand, using a swarm intelligence algorithm to 
optimize neural network parameters for multivariate prediction of natural gas prices can theoretically effectively improve prediction 
performance. In this paper, a total of 16 exogenous variables are selected from two aspects: macroeconomic fundamental indicators 
and commodity futures prices. By integrating text information such as news reports and search indices, an NGP prediction system is 
established, and a GWO-LSTM combined model is constructed to predict natural gas spot prices. This is a relatively comprehensive and 
novel prediction approach. 

3. Methodology equation 

3.1. Long short term memory (LSTM) 

The long short-term memory (LSTM) network is a special recurrent neural network. Compared to other deep learning models, LSTM 
has the following advantages in time series prediction: (1) It can effectively capture the long-term dependencies in sequences, so it can 
be more suitable for prediction tasks that rely on historical input data while ensuring a relatively simple structure. (2) It introduces the 
gating mechanism, so it can maintain the continuity of gradients and effectively solve the problem of gradient disappearance or ex-
plosion. (3) By relying on multiple structures and parameters to control the flow of information, it can not only reduce the risk of 
underfitting but also be robust to noise [47,48]. 
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The unit structure of LSTM is shown in Fig. 2. The current hidden layer output ht and the current internal state ct are jointly 
determined by the previous hidden layer output ht− 1, the previous internal state ct− 1, and the current input xt. LSTM uses three gates to 
control the flow of information: the forget gate ft is used to set weights to select the proportion of information to be retained, the input 
gate it is used to filter new information to be input at the current time and the output gate ot is used to extract effective information 
from the current internal state to generate a new hidden layer. The calculation method for the three gates is shown in Equations (1)– 
(3). 

ft = σ(Wt ⋅ (ht− 1, xt)+ bt) (1)  

it = σ(Wi ⋅ (ht− 1, xt)+ bi) (2)  

ot = σ(Wo ⋅ (ht− 1, xt)+ bo) (3)  

where Wt and bt are the weight matrix and corresponding bias term of the forget gate, respectively. Wi and bi are the weight matrix and 
corresponding bias term of the input gate, respectively. And Wo and bo are the weight matrix and corresponding bias term of the output 
gate, respectively. 

An LSTM unit can process the current internal state using the tanh function to obtain the candidate state ̃ct , as shown in Equation 
(4). 

c̃t = tanh(Wc ⋅ (ht− 1, xt)+ bc) (4) 

After obtaining the candidate state, the LSTM unit will update the internal state based on the information selection of the forget gate 
and the input gate and then combine with the output gate to generate a new hidden layer, as shown in Equations (5) and (6). 

ct = ft ⊗ ct− 1 + it ⊗ c̃t (5)  

ht = ot ⊗ tanh(ct− 1) (6)  

3.2. Gray wolf optimization (GWO) algorithm 

The gray wolf optimization (GWO) algorithm achieves the goal of optimization by simulating the predatory behavior of gray wolf 
populations and the mechanism of wolf group collaboration. Integrating the GWO algorithm with deep learning models to predict 
energy time series yields better results, as the combination model can leverage the following advantages of the GWO algorithm: (1) It 
has a convergence factor and information feedback mechanism that can be adaptively adjusted to achieve a balance between local 
optimization and global search. (2) Without constraints of centralized control, it has good universality and robustness. (3) It has a 
relatively simple structure, so it has significant advantages in improving both accuracy and convergence speed [18,49]. 

Fig. 3 depicts the general process of the GWO algorithm. The dominance level of gray wolves can be divided into four levels: α, β, δ 
and ω. Among them, the α wolf is the highest activity decision-making wolf and the leader in the population. This wolf is responsible 
for leading the wolves to hunt prey, which is the optimal solution in the algorithm. The levels of the β wolf, δ wolf and ω wolf decrease 
in sequence, with the lower-level wolves subordinate to the higher-level wolves. β wolves are responsible for assisting their superiors, 
namely, the suboptimal solutions in the algorithm; δ wolves obey the commands and decisions of their superiors, are responsible for 
tasks such as reconnaissance and sentry and are also the suboptimal solutions in the algorithm; and ω wolves will update their positions 
around their superiors, namely, the candidate solution in the algorithm. The GWO algorithm includes the processes of encirclement, 

Fig. 2. The structure diagram of the LSTM unit.  
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pursuit, and attack. 
During the process of encirclement, the gray wolves update their positions, as shown in Equations (7)–(10). 

D→=

⃒
⃒
⃒
⃒C→· X→p(t) − X→(t)

⃒
⃒
⃒
⃒ (7)  

X→(t+1)= X→p(t) − A→· D→ (8)  

A→= 2 a→· r→1 − a→ (9)  

C→= 2 r→2 (10)  

where D→ is the distance between the gray wolves and their prey, X→ and X→p are the position vectors of the gray wolves and their prey, 

respectively, and A→ and C→ are coefficients. In the calculation of coefficients, r→1 and r→2 are random vectors, and a→ is the convergence 
factor. 

The process of hunting prey depends on the distance between different levels of wolves, as shown in Equations (11)–(13). 

D→α =

⃒
⃒
⃒
⃒C→1 · X→α − X→

⃒
⃒
⃒
⃒ (11)  

D→β =

⃒
⃒
⃒
⃒C
→

2 · X→β − X→
⃒
⃒
⃒
⃒ (12)  

D→δ =

⃒
⃒
⃒
⃒C
→

3 · X→δ − X→
⃒
⃒
⃒
⃒ (13)  

where D→α, D→β and D→δ are the distances between the ω wolf and the α wolf and between the β wolf and the δ wolf, respectively, while 

X→α, X→β, and X→δ are the positions of the α wolf, β wolf and δ wolf, respectively. 
The position vector of the gray wolves is updated, as shown in Equations (14)–(17). 

X→1 =

⃒
⃒
⃒X
→

α − A1 ⋅ D→α

⃒
⃒
⃒ (14)  

Fig. 3. Flowchart of the gray wolf optimization algorithm.  
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X→2 =

⃒
⃒
⃒
⃒X
→

β − A2 ⋅ D→β

⃒
⃒
⃒
⃒ (15)  

X→3 =

⃒
⃒
⃒X
→

δ − A3 ⋅ D→δ

⃒
⃒
⃒ (16)  

X→(t+1)=
(

X→1 + X→2 + X→3

)/

3 (17) 

The process of attacking prey is influenced by controlling the value of the convergence factor, as shown in Equation (18). 

a=2 ∗ (1 − t /T) (18)  

where T is the maximum number of iterations given. 

3.3. Generation of text indicators 

3.3.1. Online news reports 
In this paper, the oil and gas news website Oil and Gas Daily was selected, and a web crawler was used to collect text data. The daily 

news from March 1, 2012, to February 28, 2022, were crawled, and the title, content, release time and other information of each news 
report were organized. The emotional tendency and readability of the news text were also analyzed. News sentiment analysis requires 
the use of sentiment analysis methods to provide the emotional scores and polarity of the text. Given that a method based on sentiment 
dictionaries can efficiently and comprehensively depict the nonstructured features of news texts, the VADER (Valence Aware Dic-
tionary and sEntiment Reasoner) tool was selected to perform sentiment analysis on news texts. When conducting emotional analysis 
on news texts, VADER accounts for factors such as negative expression, punctuation that can express emotional information and in-
tensity, adverbs and phrases that express emotional intensity and obtains the sentiment score for text information (SS-TI). The analysis 
of news readability requires the integration of multiple readability indices to measure the readability of news texts from different 
perspectives. In this paper, the text readability calculation tool Textstat is used to analyze news texts. To measure the readability of the 
text by synthesizing multiple aspects such as words, sentences, letters, and syllables of the input text as much as possible, the Gunning 
Fog Index (GFI), Flesch Reading Ease (FRE) and Coleman–Liau Index (CLI) of the text were calculated and averaged to obtain the 
readability score for text information (RS-TI), as shown in Equations (19)–(22). 

GFI=0.4 ×

(
Numword

Numsentence
+100×

Numlong word

Numword

)

(19)  

FRE=206.835 − 1.015 ×
Numword

Numsentence
− 84.6 ×

Numsyllable

Numword
(20)  

CLI=5.89 ×
Numcharacter

Numword
− 30 ×

Numsentence

Numword
− 15.8 (21)  

RS − TI=(GFI+ FRE+CLI) /3 (22)  

where Numword, Numsentence, Numlong word, Numsyllable, and Numcharacter represent the numbers of words, sentences, long words, syllables, 
and letters in the input text, respectively. 

3.3.2. Network search index 
In this paper, Google search indices from March 2012 to February 2022 were obtained by searching for keywords related to natural 

gas, and monthly data were converted into daily data through linear interpolation, as shown in Equation (23). 

daymt+h =montht ×
h
m

+ montht+1 ×
m − h

m
(23)  

where montht is the index of the previous month and montht+1 is the index of the current month. 
For search keywords, in this paper, the root words were customized, and then an association search was conducted. Based on the 

research results of previous scholars, root words, such as “natural gas”, representing natural gas, and “macroeconomy”, representing 
the macroeconomy, were selected. Multiple association searches were conducted for each root word to obtain a series of related words. 
Then, the Pearson correlation coefficient was used to quantify the correlation between related words and root words. Finally, the tested 
related words were selected as the final search keywords. The CRITIC method, which can objectively assign weights based on the data 
itself [50,51], was selected in this paper to determine the weights of keywords. 

The calculation of conflict indicators and variation indicators is shown in Equations (24) and (25). 

Sj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
xij − xj

)

n − 1

√

(24) 
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Rj =
∑p

i=1

(
1 − rij

)
(25)  

where xj represents the mean of the j-th data and rij represents the correlation coefficient between the i-th and jth data. 
The weight of the j-th element, wj, is calculated based on the above indicators, as shown in Equations (26) and (27). 

Cj = Sj × Rj (26)  

Fig. 4. The chart of CRITIC weights.  
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wj =
Cj

∑m
j=1Cj

(27) 

The significance test results of the search indices for root words and related words are shown in Appendix 1. The weight of each type 
of search term was calculated using the CRITIC method, as shown in Fig. 4. Through screening and weighting, two comprehensive 
indices were ultimately obtained, namely, “natural gas” in text information (NG-TI) (the weights are shown in Fig. 4 (a)) and 
“macroeconomy” in text information (ME-TI) (the weights are shown in Fig. 4 (b)). 

3.4. Prediction framework 

Given the information gain of multisource data and the global optimization ability of the gray wolf algorithm, a multisource data- 
driven combination prediction model was constructed for NGP, and its prediction framework is shown in Fig. 5. 

Step 1. Data collection and preprocessing. First, online news texts, search indices, and macroeconomic variables were collected and 
obtained. Then, linear interpolation was used to fill in missing values (Equation (28)), outliers were removed using Equations (29) and 
(30), and the data were standardized using the min–max method (Equation (31)). 

dayk = dayk− i ×
i

i + j
+ dayk+j ×

j
i + j

(28)  

where dayk represents the data to be interpolated and dayk− i and dayk+j are the two data closest to dayk. 

x=
1
n
∑n

i=1
xi (29)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(xi − x)2

√

(30)  

x∗ =
x − xmin

xmax − xmin
(31)  

where x∗ is the standardized data, x is the original data, xmax is the maximum value, and xmin is the minimum value. 

Step 2. Proxy variables based on online news texts and search indices were constructed. In terms of news text, the VADER and 
Textstat tools were used to analyze emotional tendency and readability, respectively. In terms of the search index, the Pearson cor-
relation test was used to screen the search terms. Then, the search index of similar keywords was weighted and synthesized through the 
CRITIC method to obtain the final comprehensive index. 

Step 3. The GWO algorithm was used to optimize the parameters in the LSTM model, including the number of hidden layer neurons, 

Fig. 5. Prediction framework.  
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batch size and learning rate. Building the LSTM model based on the optimal hyperparameters weakens the impact of non-model factors 
on prediction performance to obtain more accurate prediction results. 

Step 4. The prediction results of the proposed model were compared with those of the benchmark model to verify the indispens-
ability of the model components, the rationality of the combination process and the necessity of incorporating text information. In 
addition, the advantages of the proposed model were further demonstrated by setting up multistep prediction and DM testing. 

4. Empirical analysis 

4.1. Dataset descriptions 

In this paper, the spot price of natural gas in Henry Hub in the United States was selected as the prediction object to verify the 
advantages of the proposed model. We provide a descriptive statistical analysis of the natural gas price and its related influencing 
factors, as shown in Table 2. Among them, the time span of natural gas prices is from March 1, 2012, to February 28, 2022, with a total 
of 2608 observations. The maximum value of the daily natural gas price is 23.86, the minimum value is 1.33, the average is 3.10, and 
the standard deviation is 1.01. According to the skewness result, the spot price of natural gas shows a right-skewed distribution, 
indicating that there may be maximum outliers in the spot price sequence of natural gas. The kurtosis result indicates that the dis-
tribution of the natural gas spot price sequence has a significant peak sharpness, indicating a clear trend toward central clustering. 

In this paper, the dataset was divided into a training set and a testing set in an 8:2 ratio, with the data from March 1st, 2012, to 
February 27th, 2020, serving as the training set and the data from February 28th, 2022, to February 28th, 2022, serving as the testing 
set. The selection of relevant variables in this paper not only involves macroeconomic fundamentals and commodity prices but also 
introduces indicators representing news texts and search indices to characterize the impact of unexpected events and social factors on 
natural gas prices [52,53]. The correlation coefficient between variables is shown in Fig. 7. To visually display the experimental 
subject, we plotted the fluctuation curve of the NGP, as shown in Fig. 6. From Fig. 6, it can be observed that the NGP had significant 
volatility and structural changes during the research period, including a sharp increase on approximately February 10, 2014, and a 
sudden increase on February 17, 2021. The former may be due to the tense situation in Eastern Europe at the beginning of that year, 
which led to an increase in the demand for safe energy from neighboring countries. The latter is due to the decline in global crude oil 

Table 2 
Descriptive statistical results of variables.  

Variable Symbol Mean Std. Minimum Median Maximum Skewness Kurtosis Source 

Spot price of natural gas SPNG 3.10 1.01 1.33 2.91 23.86 4.36 71.29 Energy Information 
Administration 

Sentiment score for text 
information 

SS-TI 0.33 0.83 − 1.00 0.90 1.00 − 0.73 − 1.31 Constructed in this paper 

Readability score for text 
information 

RS-TI 25.24 2.38 15.99 25.28 31.74 − 0.47 0.41 

“natural gas” in text 
information 

NG-TI 43.31 6.38 30.31 43.41 79.12 0.83 2.37 

“macro economy” in text 
information 

ME-TI 49.50 4.38 41.03 48.80 64.76 0.99 1.21 

Dow Jones Industrial 
Average 

DJIA- 
SMI 

21796.45 6472.90 12101.46 20549.37 36799.65 0.55 − 0.69 Tonghuashun Financial 
Database 

Nasdaq Composite NC-SMI 6880.21 3445.96 2747.48 5834.72 16057.44 1.08 0.23 
USD/EUR exchange rate DE-ER 0.85 0.06 0.72 0.86 0.96 − 0.46 − 0.93 
USD/GBP exchange rate DP-ER 0.71 0.07 0.58 0.72 0.87 − 0.16 − 1.32 
5-year break-even 

inflation rate 
BIR-IR 1.78 0.43 0.14 1.75 3.17 0.29 0.90 Federal Reserve Bank of 

ST.Louis 
10-year bond yield BY-IR 2.04 0.61 0.52 2.07 3.24 − 0.44 − 0.28 Federal Reserve System 
Discount rate DR-IR 0.63 0.77 0.04 0.15 2.45 1.18 − 0.13 
Consumer price index CPI-O 246.46 13.06 227.72 243.59 283.63 0.74 − 0.21 United States 

Department of Labor 
Global economic policy 

uncertainty index 
GEPUI- 
O 

184.74 69.27 86.29 165.78 430.26 0.92 0.30 Tonghuashun Financial 
Database 

Crude oil futures price CO-FP 19.98 5.17 11.74 17.78 35.61 1.03 0.08 Energy Information 
Administration 

Gold futures price GO-FP 1425.73 405.76 820.00 1349.48 3150.00 1.69 3.75 New York Commodity 
Exchange Silver futures price SI-FP 1426.08 242.29 1050.80 1317.40 2051.50 0.66 − 0.94 

Wheat futures price WH-FP 14289.04 4426.05 9095.00 12970.00 29520.00 1.52 1.62 Chicago Board of Trade 
Maize futures price MA-FP 65.50 22.07 − 37.63 59.63 110.53 0.34 − 0.80 
Glass futures price GL-FP 563.81 116.85 361.00 527.20 928.00 0.67 − 0.44 Zhengzhou Commodity 

Exchange 
Natural rubber futures 

price 
NR-FP 444.95 120.83 301.50 383.00 760.20 1.15 − 0.05 Shanghai Board of Trade 

Training set 2012.03.01–2020.02.27 
Testing set 2020.02.28–2022.02.28  
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Fig. 6. The daily spot price sequence of natural gas in Henry Hub.  

Fig. 7. Thermodynamic diagram of the variable correlation coefficient.  
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inventories during the pandemic and the strict implementation of production reduction agreements by OPEC countries. 

4.2. Evaluation criteria 

In this paper, the root mean square error (RMSE), mean square error (MSE), mean absolute percentage error (MAPE), and mean 
absolute error (MAE) were selected to evaluate the accuracy of the model [54], as shown in Equations (32)–(35). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2
√

(32)  

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (33)  

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (34)  

MAE=
1
n
∑n

i=1
|yi − ŷi| (35)  

In addition, Diebold–Mariano (DM) statistical testing was introduced to determine whether the prediction accuracy of Model A is 
significantly better than that of Model B. The calculation method of DM statistics is shown in Equations (36)–(38). 

DM=
1
n
∑n

t=1gt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
γ0 + 2

∑∞
l=1γl

)/
n

√ ∼ N(0, 1) (36)  

gt = e2
A,t − e2

B,t (37)  

γl = cov(gt , gt− l) (38)  

where eA,t and eB,t are the prediction errors of Model A and Model B, respectively. 

4.3. Benchmark models and parameter settings 

4.3.1. Benchmark model 
To verify the advantages of the proposed model, 15 models were selected as benchmark models, including LSTM, GWO-LSTM, T- 

PSO-LSTM and T-GWO-GRU. By conducting multiple experiments on all benchmark models and calculating relevant evaluation in-
dicators, the T-GWO-LSTM model was compared from different perspectives to demonstrate its predictive performance [55,56]. In-
formation on the benchmark models is shown in Table 3. 

In terms of neural networks, in this paper, RNNs and GRUs were selected for comparative analysis. A recurrent neural network 
(RNN) is a type of neural network that can efficiently utilize the characteristics of data sequences. However, as the network hierarchy 
deepens, RNNs are highly likely to experience gradient disappearance or explosion [57,58]. A gated recurrent unit (GRU) suppresses to 
some extent the characteristic of the RNN that cannot be relied on for a long time by introducing an update gate and reset gate. 
However, its relatively simple structure may lead to underfitting when there is a large amount of input information [59,60]. 

Table 3 
Benchmark model explanation.  

No. Category Model 

1 Neural network Using different neural network RNN 
2 GRU 
3 Component of the proposed model LSTM 
4 Text assist + neural network Using different neural network T-RNN 
5 T-GRU 
6 Components of the proposed model T-LSTM 
7 Swarm intelligence optimize parameters + neural network Changing the swarm intelligence part ACO-LSTM 
8 PSO-LSTM 
9 Change the neural network part GWO-RNN 
10 GWO-GRU 
11 Components of the proposed model GWO-LSTM 
12 Text assist + swarm intelligence optimize parameters + neural network Changing the swarm intelligence part T-ACO-LSTM 
13 T-PSO-LSTM 
14 Change the neural network part T-GWO-RNN 
15 T-GWO-GRU 
16 The proposed model T-GWO-LSTM  
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In terms of swarm intelligence, in this paper, ACO and PSO were selected for comparative analysis. Ant colony optimization (ACO) 
optimizes by simulating the behavior of ant colonies using pheromones to achieve indirect communication for foraging. This algorithm 
has strong robustness but slow convergence speed [61]. The core idea of particle swarm optimization (PSO) is that particles determine 
their next motion through their own experience and the experience of the best among their peers. Its advantage is that the steps are 
simple and relatively easy to converge, but it may also fall into a local optimal solution [62]. 

4.3.2. Parameter setting 
The initial parameter settings for the combined model and its comparison model are shown in Table 4. To ensure fairness in the 

comparison, the structure, loss function and other parameters of different neural networks are set to be consistent. Similarly, pa-
rameters such as the number of individuals and the maximum number of iterations in each swarm intelligence optimization algorithm 
should also be set the same. 

The GWO optimization process combines the hyperparameters to be optimized (number of hidden layer neurons, batch size, and 
learning rate) to form a multidimensional array for combinatorial optimization. Only when the input array reaches a stable minimum 
fitness value can the number of iterations in this state be determined as the optimal number of iterations. The convergence process of 
parameter optimization for the combined model is shown in Fig. 8. From Fig. 8(a), The fitness value stabilizes before 50 iterations, 
reaching 0.233657876, which also proves the rationality of the iteration number setting in this paper. In addition, as shown in Fig. 8 
(b), (c) and (d), the three parameters to be optimized stabilize before 50 iterations. Therefore, we set the number of hidden layer 
neurons to 43, the batch size to 50, and the learning rate to 0.0117825032. 

4.4. Prediction results 

To verify the good performance of the T-GWO-LSTM combined model proposed in this paper, ARIMA, LSTM, T-LSTM, GWO-LSTM, 
T-PSO-LSTM, T-GWO-GRU and other models were selected as comparative models to calculate multiple evaluation indicators for each 
model. The results are shown in Table 5. 

From Tables 5 and it can be observed that the T-GWO-LSTM model has the best prediction performance, and models that have good 
performance include T-RNN, GWO-LSTM, GWO-GRU, and T-GWO-RNN. Among them, the RMSE, MSE, MAPE and MAE values of the 
T-GWO-LSTM model decreased by 6.38 %, 12.26 %, 5.81 %, and 11.10 %, respectively, compared to those of the second-best model 
GWO-GRU. Meanwhile, compared with other comparative models, the T-GWO-LSTM model significantly improved in terms of 
evaluation indicators, which proves that the T-GWO-LSTM model has good predictive performance. 

Note that the model proposed in this paper has a significant improvement in prediction accuracy compared to traditional models 
such as ARIMA and combination models such as ARIMA-SVR. This reflects the relatively better fitting ability of the combination model 
based on deep learning methods and swarm intelligence optimization for complex time series. This is not only due to the effective 
capture of patterns in a large amount of historical data by neural networks, but also due to the advantages of both universality and 
robustness of swarm intelligence optimization algorithms in determining parameters. 

Multiple experiments were conducted in one step, and the results were compare with those of the reduced component model, as 
shown in Fig. 9, and the RMSE, MSE, MAPE, and MAE values of each model were shown in Fig. 9 (a)–(d), respectively. The evaluation 
index values of the T-GWO-LSTM model were significantly lower than those of the LSTM model, T-LSTM model, and GWO-LSTM 
model. At the same time, the data of each index value of the T-GWO-LSTM model were also relatively more concentrated, which 
proves the indispensability of the model components in this paper. 

In addition, the results of the model that changed the swarm intelligence optimization algorithm are shown in Fig. 10, and the 
RMSE, MSE, MAPE, and MAE values of each model were shown in Fig. 10 (a)–(d), respectively. The evaluation index values of the T- 
GWO-LSTM model were significantly lower than those of ACO-LSTM, PSO-LSTM, GWO-LSTM, T-ACO-LSTM and T-PSO-LSTM. 
Meanwhile, the T-GWO-LSTM model had no abnormal data in multiple prediction processes, which proves that the GWO algorithm has 
a stable and significant advantage in the combination process. 

Moreover, for the model with the modified neural network, the results are shown in Fig. 11, and the RMSE, MSE, MAPE, and MAE 
values of each model were shown in Fig. 11 (a)–(d), respectively. The evaluation index values of the T-GWO-LSTM model were 
significantly reduced compared to those of the comparison models such as GWO-RNN, GWO-GRU, GWO-LSTM, T-GWO-RNN, T-GWO- 
GRU and T-GWO-LSTM, which proves the rationality of choosing the GWO algorithm to optimize the LSTM network in this paper. 

Table 4 
Parameter setting.  

Model Parameters 

Neural network RNN Structure: fully connected input layer + RNN layer + fully connected output layer, loss function: mae, iteration: 100 
GRU Structure: fully connected input layer + GRU layer + fully connected output layer, loss function: mae, iteration: 100 
LSTM Structure: fully connected input layer + LSTM layer + fully connected output layer, loss function: mae, iteration: 100 

Swarm intelligence 
optimization 

ACO Number of ants: 10, iteration: 50, pheromone volatilization rate: 0.8, pheromone release amount: 1 
PSO Number of particles: 10, iteration: 50, inertia weight: 2, acceleration coefficient: 1.5 
GWO Number of gray wolves: 10, iteration: 50 

Combined model Search dimension: 3 
Search scope (number of hidden layer neurons, batch size and learning rate): the lower limit is [10,50,0.001], the higher 
limit is [200,100,0.8]  

J. Hao et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33387

14

According to the results in Tables 5 and it can be seen that compared to not using swarm intelligence optimization algorithms to 
optimize neural network parameters, the evaluation index values of models using optimization algorithms are usually significantly 
reduced, and the indicator data obtained from multiple experiments are relatively more concentrated. This proves the advantage of 
constructing a combination model for prediction. At the same time, by replacing the optimization part of the T-GWO-LSTM model with 
other swarm intelligence optimization algorithms, the evaluation index values of the prediction results have not decreased. Compared 
with other combination models containing the GWO algorithm, the prediction results of the T-GWO-LSTM model are significantly 
optimal and relatively stable. This proves that choosing GWO algorithm to optimize LSTM network is the most reasonable choice in this 
paper. 

Based on the analysis of Table 5 and Figs. 9–11, it was found that the prediction accuracy of the text-assisted prediction model was 
significantly better than that of the corresponding non-text-assisted prediction model by comparing the models predicted using only 
exogenous variables with the corresponding models with text-assisted prediction. This proves the necessity of adding text information 
and further verifies that the information gain of multisource data can effectively improve the prediction performance of the model. 

Furthermore, in order to demonstrate the superiority of the prediction results, the evaluation index values of the empirical results in 
this paper are compared with those of relevant researches and summarized in Table 6. This paper compares the RMSE value and MAPE 
value of prediction results. RMSE preserves data units and is relatively insensitive to outliers, so it can be used to compare prediction 
results containing zero or data closed to zero. MAPE is calculated based on absolute percentage error and is not affected by data scale 
and range when comparing model performance on different datasets. Based on Tables 6 and it can be seen that the prediction results of 
the model proposed in this paper have certain advantages over other similar research topics in terms of RMSE and MAPE value, which 
further proves that the T-GWO-LSTM model has good prediction performance. 

Fig. 8. The iterative convergence diagram of the parameter optimization process.  
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4.5. Robustness analysis 

To further validate the significant advantages of the proposed model in prediction, multistep prediction experiments were con-
ducted on T-GWO-LSTM and models that performed well in the one-step prediction empirical process (T-RNN, GWO-GRU, GWO- 
LSTM, and T-GWO-RNN). The results are shown in Table 7. It can be observed that as the step size increases, the prediction accuracy of 
each model decreases from Table 7. Although the T-GWO-LSTM model is not the optimal model in some steps, overall, the T-GWO- 
LSTM model still exhibits excellent prediction performance. 

To provide a more intuitive test of the performance of the T-GWO-LSTM prediction model, prediction fitting and error analysis were 
conducted on the T-GWO-LSTM model with different step sizes. The fitting results and relative errors of six kinds of steps (1, 2, 3, 5, 10, 
and 20) are shown in Fig. 12 (a) - (f), respectively. As shown in Fig. 12, the one-step model has the best fitting effect. Compared to 
relative error of multistep prediction, the relative error of one-step prediction is lower and more stable, with a maximum relative error 
of no more than 0.6, and it mostly remains below 0.2. At the same time, the smaller the step size is, the closer the predictive value 
matches the true value, and the smaller the relative error, which is in line with objective logic. 

From Fig. 12, the relative error values are relatively large in areas with dense sequence changes. On the one hand, intensive 
fluctuations may represent a high level of uncertainty in the market during the period, which is caused by multiple factors such as 
macroeconomic changes, policy adjustments, changes in market supply-demand, etc. The increase in uncertainty makes it difficult to 
predict, resulting in an increase in relative error values. On the other hand, intensive changes may indicate the presence of inefficient 
or incomplete information in the market during the period. Due to higher risks, companies and investors will make more cautious 
decisions, which will lead to delayed or reduced investments, resulting in more complex changes in natural gas prices. Market factors 
may also fail to reflect the real supply-demand dynamics in a timely manner, and the accuracy of prediction results may decrease. 

In addition, the relative error values predicted at the outliers of the series are also relatively large. It may be due to extreme values 
typically indicate the occurrence of abnormal events, such as natural disasters, economic crises, political conflicts, etc. These situations 
often occur suddenly and uncontrollably, making them difficult to predict. Meanwhile, outliers may also be caused by intervention 
measures taken by the government and regulatory agencies, such as implementing new policies, changing the power of supervision, 
conducting market regulation, etc. These changes are structural, so they will reduce the accuracy of predictions using historical in-
formation. Therefore, the model needs more time to train appropriate parameters to achieve its original effect. 

4.6. DM testing 

The prediction performance of the T-GWO-LSTM model and other comparative models with different step sizes is tested, and the 
results are shown in Table 8. From Tables 8 and it can be seen that with one step, the p value of the DM test for the T-GWO-LSTM model 
proposed in this paper and the GWO-GRU model, which is the second-best model, is less than 0.05. Therefore, the original hypothesis 
can be rejected at a 5 % confidence level, indicating that the two models have different effects. The negative DM statistic value 
(− 4.3227) of the test indicates that the proposed model is significantly superior to the second-best model. In addition, the majority of 
the results in Table 8 are consistent with p values less than 0.05 and negative DM statistic values, indicating that the two models tested 
have different effects at a 5 % confidence level, while the proposed model is significantly better (Li et al., 2021). Although the T-GWO- 
LSTM model has no significant advantage compared to the GWO-GRU model and T-GWO-RNN model in some steps, overall, it can be 
considered that the T-GWO-LSTM model is superior to the GWO-GRU model and T-GWO-RNN model. Therefore, it can be 

Table 5 
Results of one-step prediction performance evaluation.  

No. Model RMSE MSE MAPE MAE 

value rank value rank value rank value rank 

1 SVR 0.7583 10 0.5751 10 0.1517 9 0.5241 10 
2 ARIMA 1.6355 19 2.6748 19 0.3294 18 1.2239 19 
3 ARIMA-SVR 0.8352 13 0.6975 13 0.1687 10 0.5682 11 
4 RNN 0.4554 8 0.2074 8 0.1114 8 0.3465 8 
5 GRU 1.1289 18 1.2744 18 0.2119 13 0.7970 17 
6 LSTM 0.9606 15 0.9227 15 0.2395 16 0.7330 14 
7 T-RNN 0.3533 5 0.1248 5 0.0958 6 0.2642 5 
8 T-GRU 0.8264 12 0.6830 12 0.2146 14 0.6574 13 
9 T-LSTM 1.0246 17 1.0498 17 0.3559 19 0.9044 18 
10 ACO-LSTM 0.9880 16 0.9762 16 0.2166 15 0.7742 16 
11 PSO-LSTM 0.8090 11 0.6545 11 0.1848 11 0.6500 12 
12 GWO-RNN 0.4249 7 0.1806 7 0.1048 7 0.3157 7 
13 GWO-GRU 0.2587 2 0.0669 2 0.0688 3 0.1865 3 
14 GWO-LSTM 0.3035 4 0.0921 4 0.0834 5 0.2264 4 
15 T-ACO-LSTM 0.8856 14 0.7844 14 0.2587 17 0.7384 15 
16 T-PSO-LSTM 0.5422 9 0.2940 9 0.2048 12 0.4736 9 
17 T-GWO-RNN 0.2632 3 0.0693 3 0.0637 1 0.1808 2 
18 T-GWO-GRU 0.3734 6 0.1395 6 0.0829 4 0.2653 6 
19 T-GWO-LSTM 0.2422 1 0.0587 1 0.0648 2 0.1658 1  
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Fig. 9. Comparison of the prediction performance of different models.  
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Fig. 10. Comparison of the prediction performance of different models.  
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Fig. 11. Comparison of the prediction performance of different models.  
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demonstrated that the T-GWO-LSTM model has statistically significant advantages under asynchronous steps. 

5. Conclusions 

Precisely predicting natural gas prices is crucial because it can provide the necessary decision-making basis for energy scheduling, 
planning, and control. However, natural gas prices are influenced by many factors and exhibit characteristics of nonlinearity and 
randomness, posing serious challenges to accurate prediction. This raises two interesting questions that we aimed to answer in this 
paper: (1) Can multisource data, mainly news texts and search indices, effectively improve the prediction effect of NGP? (2) How can 
multisource data be effectively utilized and efficient prediction models be established to achieve accurate prediction of NGPs? 
Therefore, we utilized the information gain of multisource data and the global optimization ability of the gray wolf algorithm to 
construct a multifactor driven hybrid forecasting model for NGPs. First, we extracted and calculated the emotional tendency and 
readability of news texts and then filtered and integrated network search indices to form alternative variables for multisource data 
(news texts and search indices). Second, the gray wolf optimization algorithm was used to find and determine the key parameter group 
in the deep learning model-LSTM. Finally, the spot price of natural gas in Henry Hub was selected as the prediction object, and multi- 
scenario numerical experiments were conducted to verify the effectiveness of the proposed model. The experimental results indicate 
that (1) the information gain brought by multisource data can indeed effectively improve the prediction effect of NGPs, indicating that 
using text information to assist NGP prediction is an effective approach. (2) The proposed model in this paper has the best prediction 
performance with different step sizes and can be regarded as a promising prediction tool. The RMSE, MSE, MAPE and MAE values of 
the T-GWO-LSTM model are reduced by 6.38 %, 12.26 %, 5.81 %, and 11.10 %, respectively, compared to those of the second-best 
model GWO-GRU. (3) By comparing the T-GWO-LSTM model with other models, such as GWO-LSTM, T-PSO-LSTM, and T-GWO- 
GRU, it can be proven that the components of the proposed model are indispensable, the combination process is reasonable, and the 
necessity of adding text information is essential. 

The results of this paper can be served as the theoretical basis of feasible suggestions about stabilizing natural gas prices. Due to the 
various market factors involved in the natural gas price prediction system, governments of various countries should promote the 
implementation of natural gas price linkage policies to avoid the occurrence of natural gas purchase-sale inversion or difficulties on 
NGP stability, and alleviate the operational difficulties of gas enterprises due to political, climate and other reasons. Specific measures 
include: (1) Provide subsidies or incentives to natural gas producers and importers, reduce relevant taxes or lower tax rates, and 
encourage natural gas production and supply to stabilize price. (2) Establish a NGP regulation-reserve mechanism, purchase excess 
natural gas when there is excess supply, sell reserve natural gas when there is insufficient supply, balance supply and demand to 
ultimately stabilize price. (3) Strictly control the upper and lower limits of NGP, establish a corresponding adjustment mechanism, 
regularly monitor the market, evaluate and adjust the price, and ensure it fluctuate within the specified range. (4) Establish anti- 
monopoly agencies and price supervision agencies, promulgate relevant laws and regulations, publicly disclose market information 
on natural gas trading, and reduce the possibility of price manipulation and market monopoly. 

In addition, this paper confirms that text information can assist in predicting NGP, providing important insights for NGP prediction. 
Relevant institutions can hire professional teams about news and public opinion collection and monitoring to regularly summarize text 

Table 6 
Evaluation index values of energy price prediction.  

Literature Prediction object(s) Method(s) RMSE MAPE 

This paper Natural gas price T-GWO-LSTM 0.242 0.065 
[28] Natural gas price PSO-DBN 0.273 0.099 
[30] Natural gas price VMD-LSTM / 0.075 
[3] Natural gas price ARIMA 5.073 2.565 
[63] Carbon price ET-MVMD-LSTM 0.376 1.109 
[64] Carbon price WT-GWA-LSTM 0.710 0.820  

Table 7 
Results of multistep prediction performance evaluation.  

Number Model H = 1 H = 2 H = 3 H = 5 H = 10 H = 20 

Panel A: RMSE 
4 T-RNN 0.3533 0.4118 0.4467 0.4930 0.5536 0.6604 
10 GWO-GRU 0.2587 0.3395 0.3845 0.4490 0.5192 0.6255 
11 GWO-LSTM 0.3035 0.4333 0.5210 0.6322 0.8327 0.9986 
14 T-GWO-RNN 0.2632 0.3468 0.3868 0.4509 0.5213 0.6217 
16 T-GWO-LSTM 0.2422 0.3445 0.3905 0.4301 0.5079 0.6607 
Panel B: MAPE 
4 T-RNN 0.0958 0.1099 0.1203 0.1243 0.1508 0.1890 
10 GWO-GRU 0.0688 0.0830 0.0933 0.0998 0.1104 0.1378 
11 GWO-LSTM 0.0834 0.1091 0.1320 0.1432 0.1713 0.1986 
14 T-GWO-RNN 0.0637 0.0823 0.0939 0.1044 0.1146 0.1353 
16 T-GWO-LSTM 0.0648 0.0929 0.1059 0.1008 0.1075 0.1362  
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data and timely incorporate the data into NGP prediction models, in order to better grasp the fluctuation of NGP. Specific measures 
include: (1) Establish a comprehensive data collection and analysis system to obtain data covering various market factors and energy 
production-marketing, including macroeconomic indicators and related energy prices. (2) Strengthen cooperation and information 
sharing with other countries and international organizations, establish cooperative relationships with energy departments of different 
countries and international energy agencies in order to obtain more accurate data and more comprehensive market information. (3) 
Establish a specialized text information collection system, combined with technologies such as web crawler and natural language 

Fig. 12. Out-of-sample fitting curve and relative error value of the T-GWO-LSTM model.  
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process, to collect relevant text data from multiple information sources and add the data into the NGP system. (4) Regularly evaluate 
the prediction results of NGP, continuously input new data and update parameters for prediction, continuously improve the accuracy 
and reliability of predictions. 

In future work, multisource data can be used to provide richer information and achieve a systematic and comprehensive description 
of the object. Therefore, we will consider using multisource heterogeneous data to establish a prediction model to better improve the 
prediction performance of the model. Second, due to the numerous influencing factors in the natural gas market, it is necessary to 
establish dynamic prediction models to capture price trends. Finally, we will consider deploying a multisource data-driven combi-
nation prediction model into online prediction tools, which can benefit practitioners and better leverage their role in supporting in-
vestment decisions. 
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Table 8 
DM statistical test results.  

No. Model H = 1 H = 2 H = 3 

DM P value DM P value DM P value 

1 RNN − 14.3146 （0.0000） − 8.8072 （0.0000） − 7.6430 （0.0000） 
2 GRU − 17.9659 （0.0000） − 15.5375 （0.0000） − 14.8623 （0.0000） 
3 LSTM − 21.3609 （0.0000） − 17.7380 （0.0000） − 16.5588 （0.0000） 
4 T-RNN − 11.3478 （0.0000） − 6.3980 （0.0000） − 5.4036 （0.0000） 
5 T-GRU − 23.3349 （0.0000） − 19.4137 （0.0000） − 17.9706 （0.0000） 
6 T-LSTM − 37.4542 （0.0000） − 31.1464 （0.0000） − 29.3893 （0.0000） 
7 ACO-LSTM − 22.1425 （0.0000） − 20.3835 （0.0000） − 18.8429 （0.0000） 
8 PSO-LSTM − 21.9839 （0.0000） − 20.0846 （0.0000） − 11.4719 （0.0000） 
9 GWO-RNN − 12.6712 （0.0000） − 7.5962 （0.0000） − 6.6700 （0.0000） 
10 GWO-GRU − 4.3227 （0.0000） 1.2535 0.2106 1.4545 （0.1464） 
11 GWO-LSTM − 10.4103 （0.0000） − 6.8034 （0.0000） − 8.1018 （0.0000） 
12 T-ACO-LSTM − 27.9012 （0.0000） − 23.0191 （0.0000） − 21.5310 （0.0000） 
13 T-PSO-LSTM − 30.2625 （0.0000） − 26.9673 （0.0000） − 13.7521 （0.0000） 
14 T-GWO-RNN − 2.8765 （0.0042） 2.6138 （0.0092） 3.0773 （0.0022） 
15 T-GWO-GRU − 8.8686 （0.0000） − 4.0557 （0.0001） − 3.0361 （0.0025） 

No. Model H = 5 H = 10 H = 20 
DM P value DM P value DM P value 

1 RNN − 12.6501 （0.0000） − 15.9707 （0.0000） − 18.1895 （0.0000） 
2 GRU − 16.3953 （0.0000） − 17.5448 （0.0000） − 17.8886 （0.0000） 
3 LSTM − 17.8674 （0.0000） − 17.6581 （0.0000） − 15.0153 （0.0000） 
4 T-RNN − 7.5109 （0.0000） − 7.1790 （0.0000） − 3.8117 （0.0002） 
5 T-GRU − 19.5828 （0.0000） − 19.6757 （0.0000） − 14.6946 （0.0000） 
6 T-LSTM − 28.4431 （0.0000） − 24.9809 （0.0000） − 18.8525 （0.0000） 
7 ACO-LSTM − 27.5971 （0.0000） − 26.3812 （0.0000） − 22.1296 （0.0000） 
8 PSO-LSTM − 21.6371 （0.0000） − 26.9530 （0.0000） − 12.7673 （0.0000） 
9 GWO-RNN − 13.2066 （0.0000） − 18.4513 （0.0000） − 19.7680 （0.0000） 
10 GWO-GRU − 2.3140 （0.0211） − 1.8888 （0.0595） 2.1056 （0.0357） 
11 GWO-LSTM − 12.5299 （0.0000） − 15.5484 （0.0000） − 15.4017 （0.0000） 
12 T-ACO-LSTM − 23.0958 （0.0000） − 21.9583 （0.0000） − 16.5139 （0.0000） 
13 T-PSO-LSTM − 18.2534 （0.0000） − 25.4698 （0.0000） − 21.6645 （0.0000） 
14 T-GWO-RNN − 3.8207 （0.0001） − 4.2524 （0.0000） 3.8702 （0.0001） 
15 T-GWO-GRU − 6.6922 （0.0000） − 9.9144 （0.0000） − 9.9034 （0.0000）  
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Appendix1  

Table A1 
Pearson correlation test results of root word and related word search index.  

Root word Related word Correlation coefficient P-value 

natural gas carbon 0.0685** （0.4385） 
coal energy 0.5053 （0.0000） 
coal 0.3416 （0.0001） 
fuel − 0.0927** （0.2941） 
natural gas conversion 0.5773 （0.0000） 
natural gas generator 0.2342 （0.0073） 
natural gas grill − 0.2660 （0.0022） 
natural gas heater 0.0777** （0.3794） 
natural gas news 0.5038 （0.0000） 
natural gas price 0.2563 （0.0032） 
oil price − 0.2355 （0.0070） 
oil − 0.5143 （0.0000） 
petrol − 0.2507 （0.0040） 
petroleum 0.7905 （0.0000） 
propane − 0.3556 （0.0000） 
renewable energy 0.1626** （0.0646） 
what is natural gas 0.1512** （0.0859） 

macro economy cpi 0.3429 （0.0001） 
economic crisis 0.4857 （0.0000） 
economic policy 0.6736 （0.0000） 
economic 0.6972 （0.0000） 
export 0.2084* （0.0173） 
financial market 0.8401 （0.0000） 
gdp 0.7061 （0.0000） 
globalization 0.7495 （0.0000） 
inflation 0.6589 （0.0000） 
interest rate 0.5737 （0.0000） 
international situation 0.7320 （0.0000） 
investment 0.5984 （0.0000） 
macro business 0.7817 （0.0000） 
macro environment 0.7835 （0.0000） 
macro factors 0.7930 （0.0000） 
market economy 0.6903 （0.0000） 
micro economy 0.7840 （0.0000） 
production 0.7325 （0.0000） 
stock market 0.3309 （0.0001） 
unemployment 0.0994** （0.2604） 
what is macro economy 0.7618 （0.0000） 
world trade 0.0740** （0.4025） 

Note: * and ** represent insignificant at confidence levels of 1 % and 5 % respectively. 
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