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Abstract: Early detection of exposure to a toxic chemical, e.g., in a military context, can be life-saving.
We propose to use machine learning techniques and multiple continuously measured physiological
signals to detect exposure, and to identify the chemical agent. Such detection and identification
could be used to alert individuals to take appropriate medical counter measures in time. As a
first step, we evaluated whether exposure to an opioid (fentanyl) or a nerve agent (VX) could be
detected in freely moving guinea pigs using features from respiration, electrocardiography (ECG)
and electroencephalography (EEG), where machine learning models were trained and tested on
different sets (across subject classification). Results showed this to be possible with close to perfect
accuracy, where respiratory features were most relevant. Exposure detection accuracy rose steeply
to over 95% correct during the first five minutes after exposure. Additional models were trained
to correctly classify an exposed state as being induced either by fentanyl or VX. This was possible
with an accuracy of almost 95%, where EEG features proved to be most relevant. Exposure detection
models that were trained on subsets of animals generalized to subsets of animals that were exposed
to other dosages of different chemicals. While future work is required to validate the principle in
other species and to assess the robustness of the approach under different, realistic circumstances,
our results indicate that utilizing different continuously measured physiological signals for early
detection and identification of toxic agents is promising.

Keywords: electrocardiography; electroencephalography; respiration; machine learning; chemical
exposure; toxidrome detection; differential diagnosis; opioid; nerve agent

1. Introduction

Exposure to chemical agents, e.g., in military or industrial contexts, can lead to
life-threatening conditions. Quick detection of exposure to such a chemical, followed
by differential diagnosis, is paramount in enabling timely (self-administered) treatment;
dependent on the type of chemical and route of exposure, intoxication can incapacitate
within minutes. Currently, diagnosis of an exposure is based on appearance of clinical
symptoms, the latter being dependent on the presence of medically trained profession-
als, followed by verification of exposure by specialized equipment. However, in many
situations, differential diagnosis to initiate appropriate medical countermeasures may be
too late.

In order to accelerate the detection of exposure, as well as the identification of the
nature of the chemical agent at hand, we may exploit recognition of physiological changes.
Dependent on the chemical class and the type of exposure (e.g., through inhalation or
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through the skin), unique profiles of change in different physiological variables are ex-
pected. Such profiles may be detectable before overt symptoms appear. Recent advances in
wearable sensors have improved user comfort, biological compatibility, signal quality, and
enabled monitoring multiple physiological parameters simultaneously [1–5]. Wearable sen-
sors are developed and applied in the context of monitoring patients with certain suspected
underlying conditions. They can be invaluable tools for diagnosing pathological conditions,
such as arrhythmias and epilepsy, which may only surface occasionally and thus might
easily be missed during a doctor’s visit [6]. Continuous physiological measurements can be
useful for other purposes as well, such as monitoring general health and mental state [7–9],
which are especially relevant in high risk (military) professions. This means that these
wearable sensors may be in place already and that minor adaptations could broaden the
applicability towards diagnosis of exposure to chemical agents.

Concerning the use of wearable sensors to detect specific chemical agents, such sensors
have been successfully used to continuously monitor alcohol intake by analyzing alcohol
levels in sweat [10,11]. Additionally, in cases where it is not possible to directly measure
the chemical of interest itself, wearable sensors have been shown to be potentially useful
for the detection of exposure to chemicals, based on the chemicals’ physiological and
behavioral effects [12–14]. These studies investigated the feasibility of using physiological
and locomotion information from wearable sensors to detect opioid intake. Users wore
a wristband that monitored electrodermal activity, skin temperature and acceleration. A
machine learning model was used successfully to automatically detect opioid intake based
on features derived from these physiological variables [13]. Relevant features were skin
temperature and locomotion.

In the current study, and as a first step towards detecting intoxication following chem-
ical exposure in humans using wearable sensors, we assessed detection and identification
of acute exposure to two distinct potent chemicals in guinea pigs using continuously
recorded electrocardiogram (ECG), electroencephalogram (EEG) and respiration in combi-
nation with machine learning techniques. The chemicals used were an opioid, fentanyl,
and a nerve agent, VX, both potent chemicals that could be weaponized and used as
warfare agents by state actors or terrorist organizations [15,16]. Fentanyl and VX were
used as model compounds to study exposure scenarios involving inhalational exposure
to a potent opioid, or skin exposure to a nerve agent, respectively. Including both these
chemical classes is interesting because differential diagnosis may be hampered as a result
of overlap in symptoms [17]. Fentanyl is a highly potent synthetic opioid, with clinical
applications as an analgesic and sedative [18]. The major physiological effects associated
with fentanyl use are opioid-induced respiratory depression (OIRD), caused by central and
peripheral inhibition of the respiratory drive [19,20], and bradycardia [21]. VX is a low
volatile organophosphate nerve agent. Exposure leads to cholinergic crisis, associated with
various muscarinic (salivation, bronchorrhea, bradycardia, emesis) and nicotinic (paralysis,
sweating, fasciculations) symptoms. These symptoms, in combination with secondary
respiratory depression, may become fatal in severe poisoning cases [22,23]. Skin contami-
nation presents a major risk for VX, due to its low volatility and persistence. VX forms a
skin depot, through which it readily penetrates into the circulation and requires rigorous
and continuous treatment [24–26]. The routes of exposure the current study included the
intravenous (i.v.), subcutaneous (s.c.), and percutaneous (p.c.) routes, representing both
rapid (i.v., s.c.) and gradual (p.c.) intoxication scenarios.

In this study, a machine learning approach (LSTM neural network) was employed in
which a model was first trained and tested for detecting exposure to either of the chemicals.
A second model was used to differentiate between fentanyl and VX. Additionally, the timeline
of detection and differentiation after exposure was evaluated. To determine the relative
importance of ECG, EEG and respiration, models were trained and tested using different sets
of features derived from (combinations of) the three sensors. When studying and modelling
detection of toxic agents, generalization of concepts is important since toxic agents, which
could be used in chemical warfare, cannot be experimentally studied in humans. Here, it
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was examined whether models trained on a certain chemical exposure in animals, could
be used to detect exposure involving different conditions regarding the type of chemical,
dosage and route of administration.

2. Materials and Methods
2.1. Data

Four existing physiological datasets of guinea pigs, exposed to VX, fentanyl, or
placebo, were used. Animal procedures were described previously [27]. VX was ob-
tained from the TNO stocks. Purity was checked upon issue and was >98%. Fentanyl
citrate (European Pharmacopoea grade) was purchased from Spruyt-Hillen (IJsselstein,
The Netherlands). Purity was >99%. The VX doses used were 1–2 mg/kg (percutaneous),
corresponding to approximate 1.5–3 times the 24 h LD50 values in guinea pigs [28]. The
fentanyl doses ranged from 0 (placebo) to 32 mg/kg (intravenous or subcutaneous) and
were selected to elicit varying degrees of respiratory depression, up to lethality. Fentanyl
was dissolved in phosphate-buffered saline (PBS) to the required concentration before
administration. VX was either dissolved in 2-propanol (IPA) to the required concentration
or directly applied as neat agent. All experiments were carried out according to the EU
Legislation for testing on experimental animals (EU Directive 2010/63/EU) at the TNO
CBRN Protection Department, Rijswijk, The Netherlands.

2.1.1. Exposure and Recording

Table 1 gives an overview of the chemical exposure in the four sets of animals that
were examined in this study. Animals were exposed to VX percutaneously, or to fentanyl
intravenously or subcutaneously, with varying dosages. Control (placebo) animals were
included in the Fentanyl datasets. These animals received vehicle solution treatment
consisting of PBS.

Table 1. Overview of chemical exposure in the four datasets. While most animals in the dataset ‘Fentanyl subcutaneous’
were exposed to Fentanyl subcutanenously, 6 animals were exposed intraveneously.

Exposure Total nr of Animals Nr of Placebo Dosage Vehicle/Volume

Fentanyl intravenous 26 6 0–16 mg/kg PBS/1 mL/kg
Fentanyl subcutaneous 45 6 0–32 mg/kg PBS/1 mL/kg

VX percutaneous (1) 32 0 1 mg/kg IPA/16 µL/kg
VX percutaneous (2) 32 0 2 mg/kg Neat/1 µL

For continuous physiological measurements, animals were surgically equipped with
ECG and EEG leads. For ECG analysis, two leads were sutured in the superficial muscles
under the skin right below the right collar bone and between the second and third rib (con-
figuration II). For cortical EEG analysis, two leads were secured at the dura mater (A8.0 and
P1.2 mm relative to bregma and 1 mm from the sagittal suture). ECG and EEG data were
transmitted wirelessly to a hardware system (Data Sciences International) using F40-EET
or HD-S02 transmitters at sampling rates of 240 Hz and 375 Hz, respectively. Unrestrained
respiratory plethysmography (URP) data were obtained using whole-body plethysmogra-
phy cages (Data Sciences International), connected to a Universal XE signal conditioner.
All physiological data were upsampled at 1000 Hz and processed using Ponemah (v5.41)
and NeuroScore (v3.3.1) for ECG/URP and EEG data, respectively. Artefacts related to
disturbances in ambient surroundings were manually excluded. This concerned <2% of
the data. For each animal, at least 30 min of baseline data were acquired before exposure.

2.1.2. Extracted Parameters

All ECG/URP data were divided into epochs of 6 s duration (VX sets), 10 s or 60 s
duration (Fentanyl sets). For each epoch, the average values were calculated for different
parameters. For ECG, these were heart rate (HR), QT-interval and ST-interval. For URP,



Sensors 2021, 21, 3616 4 of 10

these parameters were tidal volume (TV), peak inspiratory flow (PIF) and peak expiratory
flow (PEF).

EEG spectral analysis was performed via Fast Fourier Transformation (FFT) over a
total bandwidth of 0.5–100 Hz. Epoch duration was set at 10 s intervals. Total power
was determined, and power spectra were divided into Delta (0.5–4 Hz), Theta (4–8 Hz),
Alpha (8–12 Hz), Sigma (12–16 Hz), Beta (16–24 Hz), and Gamma (24–100 Hz) bands and
calculated relative to the total bandwidth.

2.2. Pre-Processing of Data for Modelling

MATLAB R2020a was used to pre-process the data as described above, so that it could
be used for modelling. Data were divided into non-overlapping one-minute samples,
averaging the variables as assessed over 6 or 10 s into one value. For each animal, we
selected data 30 min before exposure until 45 min after exposure. We removed 4 min of data
around the moment of exposure to prevent any handling effects potentially influencing
our dataset. This resulted in a dataset of 71 samples per animal.

All data were obtained in freely moving animals. Signal artifacts, related to movement,
were excluded. These missing data points were imputed using the nearest neighbor
imputation algorithm [29]. When more than 40% of the data of a particular feature was
missing in one animal, that feature was removed entirely and replaced by the average
values of that particular feature over all animals. This happened in 7 animals for respiration,
in 9 animals for ECG and in 1 animal for EEG, out of a total of 135 animals. Average
percentages of imputed data across the four datasets were 6.8, 9.8 and 5.0 for respiration,
ECG and EEG, respectively.

Standardization was performed using the mean and standard variance of the first
30 min before (possible) exposure. Thus, output features were centered around the mean
of these 30 min with variance 1 ensuring similar feature characteristics across different
animals and features.

For all four datasets, samples from before exposure were labelled ‘healthy’. All
the samples of animals that received a placebo exposure were labelled ‘healthy’ as well.
Samples from animals after exposure to a chemical were labelled with their respective
chemical (fentanyl or VX).

2.3. Modelling

The type of classification model used was a Long short-term memory (LSTM) model [30].
LSTM is optimized to detect long term dependencies in the data and considers past (varia-
tions of) values to predict. For implementation, Python 3.9.0 was used with Tensorflow
2.4 and Keras 2.4.3.

Different models were trained, with different purposes (Figure 1). ‘Model 1’ was
trained to distinguish healthy samples (from placebo animals, and from exposed animals
before exposure) from exposed (either VX or fentanyl) samples. ‘Model 2’ was trained
to differentiate the samples labelled as ‘exposed’ into VX or fentanyl. Both models had
the same setup of 5 LSTM cells. The output of the final LSTM cell was passed to a
dense layer (input and output shape both equal to 2) with a sigmoid activation function.
Hyperbolic tangent and hard sigmoid functions were used for activation and recurrent
activation, respectively, for each of the LSTM cells. Dropout regularization [31] was used
to avoid overfitting and training was done by the Adaptive moment estimation (ADAM)
method [32].

2.3.1. Cross-Validation Approach

The general cross-validation approach that was applied worked as follows. The data
samples were split into two sets of animals: a training set and a test set. The test set was
stratified so that a proportional number of animals from each of the four datasets was
present in the test set. Presence of placebo animals from the fentanyl datasets in both
the training and the test set was verified. The training set contained about 80% of the
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animals, the test set the remaining 20%. Optimization of the parameters was done using
cross-validation on the training set, in a repeated random sub-sampling fashion (Monte
Carlo). Multiple random splits were made of about 12.5% of the training set as a validation
set. This was again done using a stratified variant where each set contained a proportional
number of animals from each of the four sets. For each split, the validation data was used
to tune the hyperparameters and to decide on the final model parameters. The final model
was trained on the whole training set and applied on the independent test set to obtain the
final performance score. Table 2 gives an overview of the number of samples and animals
involved in the different sets.
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Figure 1. Overview of the study. After pre-processing, Model 1 classifies the samples into either ‘healthy’ or ‘exposed’.
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Table 2. Number of samples (number of animals) in the various sets for Model 1 and Model 2.

Model Training Set Validation Set Testing Set Total Set

1 6598 (93) 1136 (16) 1844 (26) 9578 (135)
2 3699 (85) 565 (13) 1042 (24) 5306 (122)

2.3.2. Exposure Detection Delay

Inevitably, some time passes between the exposure to the chemical and the chemical’s
specific effect on physiology that can be detected by the models. To examine how fast Model
1 detected exposure, and how fast Model 2 recognized the correct chemical, classification
accuracy is viewed over the successive one-minute samples, averaged across animals.

2.3.3. Feature Set Performance

We repeated the training and testing procedures of both models with only one of the
three different feature sets that correspond to the three sensors as input (ECG features: HR,
QT-interval and ST-interval; EEG features: Delta, Theta, Alpha, Sigma, Beta, Gamma, and
total power; respiratory features: TV, PIF and PEF), and the different possible combination
of sensors. We performed this procedure twice: once during cross-validation on the
validation set with the purpose of selecting which feature sets we want to use for that
particular model as a default, and once at the end on the test set with the purpose of
determining the relative feature importance for that model. Table 3 shows the results on
the validation set. Based on these results, only ECG and respiration features were chosen
to be used in the default Model 1 (i.e., a total of six features), and only EEG features for
default Model 2 (i.e., seven features).

Table 3. Model 1 and Model 2 classification accuracy for different combinations of features, defined
by sensor. The bold and underlined percentages mark the chosen default feature sets.

Feature Set Included Model 1 Validation Set:
Mean Accuracy (%)

Model 2 Validation Set:
Mean Accuracy (%)

EEG 73.67 98.12
ECG 81.48 79.24

Respiration 93.13 84.00
EEG + ECG 87.85 97.29

EEG + respiration 92.67 95.07
ECG + respiration 95.21 89.98

EEG + ECG + respiration 92.03 91.32
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2.3.4. Generalization

To assess to what extent Model 1 generalized from one dataset to other datasets, with
differences in chemicals and dosages, separate models were trained using one of the four
datasets. Each of these models was then tested on each of the other datasets as test sets.

2.3.5. Animal Classification

The results of Model 2 were also used to move from the sample level to the level of an
animal: for each animal, based on the sample results, we predicted whether this animal
was exposed to either VX or fentanyl. For each of the animals, the percentage of samples in
that window that were predicted as either ‘VX’ or ‘fentanyl’ by Model 2 was assessed and,
based on that percentage, the animal was labeled as either exposed or healthy. Note that
a similar analysis of translating results from the sample level to the animal level was not
done for Model 1, because of the low proportion of placebo animals (see Table 1).

3. Results

The resultant accuracies were 97.84% correct detection of exposure with Model 1 and
94.14% correct differentiation between VX and fentanyl with Model 2, both achieved on
the independent test set.

Figure 2 shows the accuracy of the models as a function of time. For Model 1, exposure
detection accuracy is high before exposure, indicating that the model correctly classifies
healthy samples. Accuracy drops immediately after exposure, indicating that exposure
is not detected at once. About 5 min after exposure, samples are classified correctly as
‘exposed’. Differentiation between chemicals for those samples that were classified as
exposed (starting at the tenth minute after exposure) is over 90% correct for almost all
time samples.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 10 
 

 

 
 

(a) (b) 

Figure 2. Classification accuracy (%) for (a) Model 1 (exposure detection) and (b) Model 2 (chemical differentiation) as a 
function of elapsed time (minutes). The dashed line marks the start of exposure, the dotted lines mark the four minutes 
around exposure where were was removed due to potential handling effects. 

Table 4 shows the results of the feature importance analysis on the test sets. As found 
for the validation set, classification accuracies when features of single sensors are used 
show that respiratory features are most important for Model 1, and EEG features are most 
important for Model 2. Additionally, consistent with the validation results, adding ECG 
features to respiratory features in Model 1 (resulting in the default model) improved per-
formance. Again, for Model 2, including other features besides EEG did not improve per-
formance, but rather decreased it. 

Table 4. Model 1 and Model 2 classification accuracy for combinations of features, defined by sen-
sor. Classification accuracy of the default models is bold and underlined. 

Feature Set Included Model 1 Test Accuracy (%) Model 2 Test Accuracy (%) 
EEG 75.21 94.14 
ECG 81.97 84.81 

Respiration 94.22 89.58 
EEG + ECG 84.85 92.19 

EEG + respiration 94.23 93.60 
ECG + respiration 97.84 88.33 

EEG + ECG + respiration 96.13 94.03 

Table 5 shows the results for the generalization of Model 1 across datasets. Models 
were trained with data from one of the four datasets (rows in Table 5), and tested on each 
of the other three datasets (columns in Table 5), to explore how well the trained models 
generalize to other (types of) datasets. Models trained on one fentanyl dataset perform 
very well when tested on the other fentanyl dataset and models trained on one VX dataset 
perform well when tested on the other VX dataset (accuracies between 92% and 98% cor-
rect). However, models trained on VX also perform well on fentanyl datasets (accuracies 
84%–91%), and models trained on fentanyl performed well on the VX2 dataset (92% and 
95% correct). Detection of exposure in the VX 1 dataset was relatively difficult when mod-
els were trained on the fentanyl datasets. 

  

Figure 2. Classification accuracy (%) for (a) Model 1 (exposure detection) and (b) Model 2 (chemical differentiation) as a
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around exposure where were was removed due to potential handling effects.

Table 4 shows the results of the feature importance analysis on the test sets. As found
for the validation set, classification accuracies when features of single sensors are used
show that respiratory features are most important for Model 1, and EEG features are
most important for Model 2. Additionally, consistent with the validation results, adding
ECG features to respiratory features in Model 1 (resulting in the default model) improved
performance. Again, for Model 2, including other features besides EEG did not improve
performance, but rather decreased it.
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Table 4. Model 1 and Model 2 classification accuracy for combinations of features, defined by sensor.
Classification accuracy of the default models is bold and underlined.

Feature Set Included Model 1 Test Accuracy (%) Model 2 Test Accuracy (%)

EEG 75.21 94.14
ECG 81.97 84.81

Respiration 94.22 89.58
EEG + ECG 84.85 92.19

EEG + respiration 94.23 93.60
ECG + respiration 97.84 88.33

EEG + ECG + respiration 96.13 94.03

Table 5 shows the results for the generalization of Model 1 across datasets. Models
were trained with data from one of the four datasets (rows in Table 5), and tested on
each of the other three datasets (columns in Table 5), to explore how well the trained
models generalize to other (types of) datasets. Models trained on one fentanyl dataset
perform very well when tested on the other fentanyl dataset and models trained on one
VX dataset perform well when tested on the other VX dataset (accuracies between 92%
and 98% correct). However, models trained on VX also perform well on fentanyl datasets
(accuracies 84%–91%), and models trained on fentanyl performed well on the VX2 dataset
(92% and 95% correct). Detection of exposure in the VX 1 dataset was relatively difficult
when models were trained on the fentanyl datasets.

Table 5. Generalization of Model 1 across datasets.

Accuracy (%)
Tested on . . .

Fentanyl i.v. Fentanyl s.c. VX 1 VX 2

Trained on . . .

Fentanyl i.v. - 97 68 95
Fentanyl s.c. 98 - 60 92

VX 1 84 89 - 95
VX 2 89 91 92 -

For Model 2, the predictions on animal level resulted in an accuracy of 95.83% correct
(23 correctly classified from 24 animals). This means that for each exposed animal most of
the samples were predicted correctly as either VX or fentanyl.

4. Discussion

In the current study, machine learning models (LSTM neural networks) were trained
on physiological data obtained from a heterogeneous sample of freely moving, chemical-
exposed guinea pigs, with the aim to detect exposure to chemicals in new, unseen animals,
and in case of exposure, to identify which of two chemicals (fentanyl or VX) the animal
was exposed to. Detection of exposure was possible with an accuracy of over 95% already
5 min following exposure. Correct differentiation between fentanyl and VX was possible
with an accuracy of almost 95%. Physiological features from the three different types
of sensors were differentially important depending on whether the purpose was the
detection of exposure (where respiration features proved to be most important) or chemical
differentiation (EEG features were most important). It is not feasible to obtain data for
training models to detect exposure to dangerous chemicals from human experiments due
to ethical reasons. It is therefore promising that the models generalized across chemicals
and dosages because training data may then be obtained using other chemicals (e.g., in the
case of nerve agent chemicals that have a reversible effect, such as a carbamate) or lower,
safe dosages.

We believe that our study illustrates the innovative and potentially valuable concept of
using physiology for early and automatic chemical exposure detection in a single individual,
such as a military professional. However, our study is limited when considering this
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ultimate goal, and a number of questions are open for future research as outlined in the
paragraphs below.

Physiological measurements were performed using equipment that is not likely to
be used in humans. As discussed in the introduction, the vision is to use physiological
variables recorded using wearable sensors. While wearable sensors for measuring heart
rate, respiration and EEG exist, signal quality is expected to be lower in such devices
compared to implanted sensors and the whole-body plethysmographs used. On the
positive side, additional potentially informative sensors can be included, most notably
movement sensors.

As discussed, the successful generalization across datasets indicates that detection of
exposure can be robust across conditions involving different dosages and types of chemicals.
These results suggest that, also in humans, generalization from detecting chemical exposure
following lower doses, leading to less physiological changes, may generalize to the early
detection of exposure to incapacitating or lethal doses of chemicals. This is promising for
the eventual translation to the human application. Results for highly toxic chemicals can
be derived from animal experiments, preferably from data sets that have already been
collected for other purposes to minimize animal use. Furthermore, future work should
examine features that are unaffected by variation in factors such as species or physical stress.
It might be that the interaction between physiological measures in healthy conditions and
exposed conditions is relatively constant.

Future studies should also consider the longer timelines and the imbalance of the
amount of ‘healthy’ and ‘exposed’ data. The current datasets contained very few placebo
animals and a roughly equal amount of healthy and exposed data. Data were baselined
using healthy data and, by definition, exposed data always occurred after healthy data.
Even though all datasets showed stable baseline behavior, exposure detection may have
been influenced by time-varying factors influencing physiology. Given the accurate per-
formance on placebo animals, this is not expected to be a major problem but, for future
studies, more placebo animals, or more healthy data, would be desirable.

5. Conclusions

We conclude that the present study yielded a promising approach to explore devel-
opment of machine learning models using physiological data from wearable sensors that
could provide an early trigger for countermeasures in case of exposure to a highly toxic
chemical. Quick, automatic diagnosis will allow a crucial increase in the time window
in which effective interventions may be administered. These results showed that quick
detection and differential diagnosis may be feasible, allowing for agent specific treatment
which would further increase the lifesaving potential of medical countermeasures.
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