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Abstract
Background  Residual tumor tissue after pituitary adenoma surgery, is linked with additional morbidity and mortality. Intra-
operative magnetic resonance imaging (ioMRI) could improve resection. We aim to assess the improvement in gross total 
resection (GTR), extent of resection (EOR), and residual tumor volume (RV) achieved using ioMRI.
Methods  A systematic review was carried out on PubMed/MEDLINE to identify any studies reporting intra- and postopera-
tive (1) GTR, (2) EOR, or (3) RV in patients who underwent resection of pituitary adenomas with ioMRI. Random effects 
meta-analysis of the rate of improvement after ioMRI for these three surgical outcomes was intended.
Results  Among 34 included studies (2130 patients), the proportion of patients with conversion to GTR (∆GTR) after ioMRI 
was 0.19 (95% CI 0.15–0.23). Mean ∆EOR was + 9.07% after ioMRI. Mean ∆RV was 0.784 cm3. For endoscopically treated 
patients, ∆GTR was 0.17 (95% CI 0.09–0.25), while microscopic ∆GTR was 0.19 (95% CI 0.15–0.23). Low-field ioMRI 
studies demonstrated a ∆GTR of 0.19 (95% CI 0.11–0.28), while high-field and ultra-high-field ioMRI demonstrated a ∆GTR 
of 0.19 (95% CI 0.15–0.24) and 0.20 (95% CI 0.13–0.28), respectively.
Conclusions  Our meta-analysis demonstrates that around one fifth of patients undergoing pituitary adenoma resection convert 
from non-GTR to GTR after the use of ioMRI. EOR and RV can also be improved to a certain extent using ioMRI. Endo-
scopic versus microscopic technique or field strength does not appear to alter the impact of ioMRI. Statistical heterogeneity 
was high, indicating that the improvement in surgical results due to ioMRI varies considerably by center.

Keywords  Pituitary · Adenoma · Intraoperative magnetic resonance imaging · Imaging · Extent of resection · Gross total 
resection

Introduction

Pituitary adenomas (PA) are among the most common 
intracranial neoplasms, an can become symptomatic due to 
endocrine and mass effect manifestations [1]. Transsphe-
noidal surgery (TSS), either endoscopic or microsurgical, 
represents the standard of care for those patients requiring 

treatment, except for prolactinomas which can often be man-
aged medically [2–5]. In most patients, gross total resection 
(GTR) is the surgical goal and can be achieved in the major-
ity of patients [2, 6]. The likelihood of GTR is determined by 
several factors, including—but not limited to—PA diameter 
and volume, sellar and dural anatomy, histological features, 
cavernous sinus invasion, as well as surgical strategy [2, 
7–10]. Classifications have been developed for pre-operative 
evaluation of resectability, such as the Knosp classification 
and the Zurich pituitary score [7, 9, 11, 12].

In order to increase the proportion of patients where an 
optimal surgical resection is achieved, a number of stud-
ies evaluated the implementation of intra-operative MRI 
(ioMRI) which, in principle, allows to more accurately 
identify tumor remnants and has been extensively reported 
to improve surgical result, independently of surgical strat-
egy [11, 13–19]. This in turn reduces the need for revision 
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surgery, which has a higher inherent risk compared to pri-
mary interventions [20, 21]. Although several authors have 
reported their experience with low-field, high-field, and 
ultra-high field ioMRI, there is currently a lack of suffi-
ciently powered studies to assess the real benefits in terms 
of surgical outcomes (GTR, extent of resection [EOR], and 
residual tumor volume [RV]). [15, 16, 18, 22, 23] Moreover, 
controversies exist in the literature on the impact of ioMRI 
in TSS, whether endoscopic or microsurgical [15, 17, 22]. 
Concerns over false positive and false negative findings, as 
well as excessive costs—and resulting limited availability—
and increased surgical time have been raised, and warrant 
additional scrutiny [24].

Systematic reviews and statistical meta-analyses can lead 
to more realistic results through incorporation of data from 
many centers and consequently many surgeons, as well as 
increasing statistical power compared to single studies. We 
systematically reviewed the literature to evaluate the impact 
of low-, high- and ultra-high field ioMRI on GTR, EOR, and 
RV in endoscopic or microscopic transsphenoidal pituitary 
adenoma surgery.

Materials and methods

Overview

A systematic review was carried out to identify any studies 
reporting intra- and postoperative (1) GTR (rate of radiologi-
cal gross total resection), (2) EOR (proportion of resected 
tumor volume compared to the preoperative tumor volume), 
or (3) RV (residual tumor volume in cm3) in patients who 
underwent resection of pituitary adenomas with ioMRI 
guidance. Title and abstract screening, full-text review, and 
data extraction were handled independently by two review-
ers (VES and ATP), and disagreements at any stage were 
resolved by discussion and consensus. Persisting disagree-
ments were resolved by discussion with a third reviewer 
(CS). We followed the preferred reporting items for system-
atic reviews and meta-analyses (PRISMA) protocol [25]. 
This review was registered on PROSPERO (www.​crd.​york.​
ac.​uk/​prosp​ero, Record ID: 177126).

Search strategy

The PubMed / MEDLINE database was searched to iden-
tify eligible articles. The search strategy included combina-
tions of the following terms: pituitary; intraoperative MRI; 
magnetic resonance imaging; intraoperative; intraoperative 
imaging; MRI; gross total resection; GTR; extent of resec-
tion; EOR; residual; and residual volume (see Table, Sup-
plementary material 1). Word variations and exploded medi-
cal subject headings were searched for whenever feasible. 

Additionally, reference lists were hand-searched to identify 
further studies of interest. The last comprehensive search 
was conducted on March 16th 2020.

Study selection

Only in vivo studies enrolling humans of all age groups in 
English, Italian, French, Dutch, and German were consid-
ered. As a small number of controlled trials were antici-
pated, prospective and retrospective single-arm cohort stud-
ies and case series of adult and pediatric individuals were 
also included. Case reports and small case series with less 
than 5 patients were excluded. To be considered, patients 
had to undergo endoscopic or microscopic trans-sphenoidal 
resection of pituitary adenomas using ioMRI. Studies had to 
assess at least one of the three abovementioned outcomes of 
interest at a minimum of the intraoperative and postopera-
tive time points. In this way, we were able to rate the poten-
tial improvement in resection achieved after intraoperative 
imaging. Studies reporting only resection of Rathke cleft 
cysts, craniopharyngiomas, or other lesions were excluded. 
We also excluded studies dealing mainly with transcranial 
or combined procedures. Studies dealing primarily with 
patients in which decompression only was the surgical tar-
get were excluded. Studies reporting the outcomes of interest 
with a mix of targeted GTR and STR (i.e. a realistic case-
load) were included. Exact cohort duplicates were excluded, 
although we did include updates of previously published 
cohorts with a sample size increase of at least 50%.

Data extraction and quality assessment

We extracted the following information if available from all 
included publications: study design and year of publication, 
number of patients, mean patient age and gender distribu-
tion, endoscopic or microscopic surgery, low-field (< 1.5 T), 
high-field (≥ 1.5 T), or “ultra-high” field (≥ 3 T) ioMRI [26], 
as well as intra- and postoperatively at least one of (1) GTR, 
(2) EOR, (3) RV. We also assessed whether studies evalu-
ated primarily primary adenoma resections, or primarily 
revision surgeries. If exclusively reported separately, we 
included the outcome measures for those patients with tar-
geted GTR. Methodological quality of included studies was 
graded using the newcastle–ottawa quality assessment scale 
for cohort studies [27].

Statistical meta‑analysis

The methodology for statistical meta-analysis of related 
samples is controversial and not well-established. As we 
were interested in the effect size of ioMRI on GTR, EOR, 
and RV before vs. after ioMRI, we calculated the individual 
differences (before vs. after ioMRI) in these three outcomes 
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per study. These effect sizes were then meta-analyzed, if 
enough appropriate data was available. Because major het-
erogeneity among the studies in terms of demographics, sur-
gical techniques, and so forth was expected, a random effects 
meta-analysis was decided upon. ∆GTR was meta-analyzed 
using the generic inverse variance method, with a Freeman-
Tukey Double arcsine transformation to estimate overall pro-
portions [28]. A formal meta-analysis of ∆EOR and ∆RV 
was not possible as most studies reporting these data did not 
provide measures of variance (i.e. standard deviations). For 
this reason, we were only able to calculate patient-weighted 
means for ∆EOR and ∆RV [29]. We performed stratified 
analyses for endoscopic and microscopic surgery, as well as 
for low versus high field ioMRI. Additionally, we evaluated 
the effect of ioMRI in the “ultra-high” field cohorts (≥ 3 T) 
[26]. All statistical analyses were carried out in R using the 
“meta” package [30]. Forest plots were generated to illus-
trate the main results of the meta-analysis.

Results

Literature search

The PubMed/MEDLINE search yielded 432 articles to 
which an additional 5 were added after retrieval from other 
sources. A PRISMA flowchart is shown in Supplementary 
Fig. 1. After duplicate removal (n = 1), 436 records were 
screened, and 58 were assessed for eligibility through full-
text screening. Of the 34 publications included for qualita-
tive synthesis, all were also eligible for quantitative meta-
analysis.[11, 13, 16–20, 22–24, 31–55]

Included study characteristics

Overview of the characteristics of the included studies is 
reported in Table 1. We identified 12 studies reporting use of 
low-field ioMRI. Sixteen studies used high-field ioMRI, six 
studies used ultra-high field ioMRI. With respect to surgi-
cal technique, 14 studies used an endoscopic resection tech-
nique while 19 studies used the microscopic technique. All 
included studies evaluated intra-operative and post-operative 
GTR rates, allowing the calculation of ∆GTR after ioMRI. 
Only 2 studies reported EOR improvement granted by use of 
ioMRI [11, 17], and only 4 assessed RV change after ioMRI 
[11, 17, 39, 44]. (Table 2).

Gross total resection

Random-effect meta-analysis showed that, in the 34 included 
studies (2130 patients), the proportion of patients with con-
version to GTR (∆GTR) after ioMRI was 0.19 (95% CI 

0.15–0.23). Heterogeneity—as measured by I2 statistic—was 
high with 78% (p < 0.01). (Fig. 1).

Extent of resection and residual tumor volume.
Formal meta-analysis was not possible for EOR and 

RV, thus patient-weighted means were calculated instead 
(Table 3). Among 191 patients, ∆EOR was + 9.07% after 
ioMRI on average.

Concerning RV, overall ∆RV was 0.784 cm3. Subgroup 
analysis stratified by surgical techniques was possible, with 
endo- (n = 73) and microscopic patients (n = 134) dem-
onstrating an average ∆RV of 0.503 cm3 and 1.183 cm3, 
respectively.

ioMRI in endoscopic versus microscopic technique

When only studies assessing endoscopic surgery (n = 14) 
were evaluated (1035 patients), ∆GTR proportion was 0.17 
(95% CI 0.09–0.25), while in studies performing micro-
scopic TSS (n = 19, 1048 patients), the GTR proportion was 
0.19 (95% CI 0.15–0.23) (Fig. 2).

Low‑ versus high‑ versus ultra high‑field ioMRI

Low-field ioMRI studies (n = 12) accounting for 691 
patients demonstrated a ∆GTR proportion of 0.19 (95% 
CI 0.11–0.28), while meta-analysis (Fig. 3) of publications 
reporting high-field ioMRI (n = 16) among 1439 patients 
had a ∆GTR proportion of 0.19 (95% CI 0.15–0.24). When 
studies employing ultra high-field ioMRI (Fig. 4) were meta-
analyzed, (n = 6) the ∆GTR proportion was 0.20 (95% CI 
0.13–0.28) among 337 patients.

Discussion

Our meta-analysis demonstrated that the use of ioMRI—
on average—grants an additional conversion to GTR in PA 
patients undergoing surgery ranging between 15 and 23%. 
EOR increased by an average of 9%, and RV decreased by 
0.784 cm3. In addition, when evaluating studies assessing 
ioMRI benefit in endoscopic TSS versus microscopic sur-
gery separately, ∆GTR was similar. When comparing differ-
ent magnetic field strengths, no major statistically significant 
differences could be accounted for.

Regarding the benefit of ioMRI in either microscopic or 
endoscopic surgery, a recent study by Soneru et al. com-
pared literature data on GTR after pituitary adenoma resec-
tion, and found endoscopic TSS with or with- out ioMRI 
resulted in a similar rate of GTR when compared to patients 
undergoing ioMRI-assisted microscopic TSS for all pituitary 
adenomas [15]. For macroadenomas, the pooled rate of GTR 
in endoscopic TSS + ioMRI was higher than microscopic 
TSS + ioMRI. More importantly, Soneru et al. found that 
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ioMRI lead to a higher rate of GTR than endoscopic TSS 
alone, even if comparisons were indirect [15, 55]. Their 
results, however have to be interpreted cautiously due to 
great heterogeneity among the included studies, which could 
not be corrected by meta-regression [2, 15]. It is important to 
consider that the contributions of ioMRI to GTR conversion 
are thought to derive mainly from identification of addi-
tional intrasellar remnants which are prone to safe surgical 
resection [13]. Additional advantages which may result from 

ioMRI may include increased EOR and therefore decreased 
RV and early identification of complications [16, 52, 53]. 
There is even some weak evidence that early post-operative 
imaging correlates more poorly with long-term surgical out-
come than intra-operative imaging [16].

Thus, focusing on GTR only may underestimate the 
resection improvement granted by ioMRI. A limited num-
ber of studies assessed EOR and RV improvement due to 
ioMRI. Therefore, we were unable to carry out statistical 

Table 1   Overview of the characteristics of the 34 included studies

NFPA non-functioning pituitary adenoma, SD standard deviation, NA not applicable

Author Year No. pts Microscopic/
Endoscopic, n

Field strength NFPA, n (%) Age, mean 
(± SD or 
range)

Male, n (%) Newcastle–
Ottawa scale 
(S/C/O)

Low-field
 Ahn et al 2008 51 51/0 0.15 T Polestar N20 NA NA NA 3/0/3
 Berkmann et al 2012 115 115/0 0.15 T Polestar N20 79 (69) NA NA 3/0/3
 Bohinski et al 2001 29 29/0 0.3 T AIRIS II 22 (76) 51 (24–74) 18 (62) 3/0/3
 Garcia et al 2017 30 0/30 0.15 T Polestar N30 15 (50) 55 13 (43) 3/0/3
 Hlavica et al 2013 104 104/0 0.15 T Polestar N20 104 (100) 59 (22–86) 57 (55) 3/0/3
 Jimenez et al 2016 18 0/18 0.15 T Polestar N20 10 (56) NA NA 3/0/3
 Martin et al 1999 5 5/0 0.5 T 0 (0) 36.2 (28–42) 2 (40) 3/0/3
 Ramm-Pettersen et al 2011 20 20/0 0.5 T Signa SP 16 (80) 54 (23–71) 13 (65) 3/0/3
 Schwartz et al 2006 15 0/15 0.12 T Polestar N10 11 (73) 49 (29–67) 9 (60) 3/0/3
 Steinmeier et al 1998 18 18/0 0.2 T 15 (83) 21–79 9 (50) 3/0/3
 Strange et al 2019 231 0/231 0.15 T Polestar N20 160 (69) 55.5 (18–88) 127 (55) 3/0/3
 Wu et al 2009 55 55/0 0.15 T Polestar N20 29 (53) 45.9 (± 12.6) 36 (65) 3/0/3

High-field
 Berkmann et al 2014 85 85/0 1.5 T Magnetom 85 (100) 55 (± 14) 57 (67) 3/0/3
 Chen et al 2012 13 13/0 1.5 T Magnetom NA NA NA 3/0/3
 Dort et al 2001 15 15/0 1.5 T NA 50 (15–80) 8 (53) 3/0/3
 Gohla et al 2019 42 42/0 1.5 T Espree 35 (83) 52 (17–79) 23 (55) 3/0/3
 Hlavac et al 2019 111 66/45 1.5 T Espree 91 (82) 57.3 (22–78) 75 (68) 3/0/3
 Kuge et al 2013 35 0/35 1.5 T 27 (77) 54.3 (± 15.5) 18 (51) 3/0/3
 Li et al 2015 30 30/0 1.5 T Espree 9 (30) 36 (21–65) 13 (43) 3/0/3
 Nimsky et al 2004 48 48/0 1.5 T NA NA NA 3/0/3
 Nimsky et al 2006 85 85/0 1.5 T Magnetom 85 (100) NA NA 3/0/3
 Pal’a et al 2017 96 68/28 1.5 T Espree 64 (67) 54 (7–78) 71 (74) 3/0/3
 Paterno et al 2014 49 0/49 1.5 T Espree 49 (100) NA NA
 Sylvester et al 2015 156 115/41 1.5 T Espree NA NA NA 3/0/3
 Szerlip et al 2011 53 53/0 1.5 T Espree 39 (74) 49 (1.8 SEM) 25 (47) 3/0/3
 Tanei et al 2013 14 0/14 1.5 T Magnetom 0 (0) 37.4 (± 11.8) 2 (14) 3/0/3
 Zhang et al 2017 137 0/137 1.5 T Espree 103 (75) 7–82 73 (53)
 Zhang et al 2019 133 0/133 1.5 T Espree 133 (100) 50 (± 12) 61 (46) 3/0/3

Ultra-high-field
 Fomekong et al 2014 73 73/0 3 T Intera NA 50 (17–84) 46 (63) 3/0/3
 Netuka et al 2011 49 NA 3 T NA NA NA 3/0/3
 Qiu et al 2012 49 NA 3 T Mangetom NA NA NA 3/0/3
 Serra et al 2016 51 0/51 3 T Mangetom 33 (65) 52 (21–83) 27 (53) 3/0/3
 Staartjes et al 2019 95 0/95 3 T Magnetom 65 (68) 53.8 (20–82) 53 (56) 3/0/3
 Zaidi et al 2016 20 0/20 3 T Verio 14 (70) 51.6 (34–72) 9 (45) 3/0/3
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meta-analysis, although our numbers still show a small 
improvement in EOR and RV. Given the low number of 
studies and limited sample size, future studies should evalu-
ate this question with appropriate design and methodology, 
including precise volumetric tumor remnant segmentation 
[13, 17]. The improvement granted by increased extent of 
resection has been shown to positively influence progression 
free survival (PFS), and may also make the tumor remnant 
more amenable to salvage treatments such as radiosurgery 
or, more importantly, to spare the patient from revision sur-
gery, which is intrinsically associated with increased risks 
[37, 49]. Some authors also suggest that tumor remnants 
visualized using ioMRI in a significant number of patients 
may not be amenable to further safe resection, and that 
when aggressive resection is pursued, this may in turn lead 
to increased complications such as cerebrospinal fluid leak, 
arterial injury and hypopituitarism—even if the literature 
seem to rule out such occurrences [56].

In our study, we were unable to identify any selective 
advantage of high- or even ultra high-field compared to 
low-field ioMRI. This conclusion must be taken cautiously 
since we could not ascertain if the different patients cohorts 
were comparable concerning baseline variables known to 
affect the likelihood of achieving GTR. Published case series 
suggested that low-field ioMRI already improved GTR [18, 
19, 37, 55, 57]. Potential explanations for this finding are 
that low-field MRI already provides visualization accurate 
enough to identify remnants amenable to further resection, 
but that those remnants that cannot be resected after either 
high- or low-field ioMRI are not amenable to resection, 
either way. For example, tumor remnants lateral to the carot-
ids or invading the cavernous sinus profoundly may not be 
resettable even if detected at ioMRI.—There is however not 
enough data to assess if high- or ultrahigh field may provide 
better EOR and RV rates, being both outcomes particularly 
valuable in secreting adenomas. The evidence on this topic is 
controversial, as some authors report absence of false posi-
tive but variable false negative findings with low-field, but 
not with high-field ioMRI [18, 23]. The perceived improve-
ment may be more relevant in patients with functioning PAs, 
where size of the residual volume is more closely linked 
with endocrine remission. It has been claimed that high-field 
ioMRI can possibly grant increased sensitivity in patients of 
subtotal resection specifically in microadenomas [37, 58]. At 
the same time, parasellar anatomy, cavernous sinus invasion 
and small lesions cannot be as reliably evaluated—accord-
ing to some authors—with low-field than with high-field 
ioMRI [19].

The cost-benefit ratio favors ioMRI use, even when 
increased costs are accounted for as the increased rate of 
GTR reduces reoperations or additional therapies and their 
associated expenses, according to a recent analysis [55]. 
Limiting the use of such technology to patients where the Ta
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Fig. 1   Forest plot representing the results of the statistical meta-analysis of the change in gross total resection (∆GTR) in percent from intraop-
erative to postoperative imaging
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benefit is clearer such as those with suprasellar extension 
has been suggested as a viable strategy to further reduce 
costs [20]. Predictive tools such as the Zurich pituitary 
score, which has demonstrated its ability to predict in 
which patients ioMRI may be most useful, could be used 
for cost–benefit assessment [9, 11, 12]. When applying the 
Zurich pituitary score, it has been found that ioMRI is most 
useful in Grade I and II patients—small tumors—where 
GTR can almost always be achieved in a safe fashion when 
ioMRI is applied, compared to Grade IV adenomas which 
are seldom amenable to GTR anyway—In these patients, 
ioMRI can serve to increase EOR.

Past literature correctly points out at the main concern in 
evaluating ioMRI results, namely that knowledge of ioMRI 
availability may result in a more conservative first resection, 
falsely increases the conversion rate enabled by ioMRI [13, 
16, 24, 48, 55]. Randomized studies comparing ioMRI to no-
ioMRI are not available and none are ongoing. Some authors 
report that intra-operative imaging was pursued only when 
the neurosurgeon believed GTR had been achieved or when 
additional potentially unnecessary exploration was feared due 
to the risk of complications or morbidity [52]. Important con-
cerns remain related to selection bias, lack of blinding in the 
evaluation of the resection, and a lack of randomized studies. 
Irrespective of this bias, reports about the early intraoperative 
identification of complications and proven advantages such 
as increasing maximally safe resection add to the evidence 
supporting the use of ioMRI [20]. Future studies evaluating 
the use of ioMRI should ideally assess not only GTR but also 

EOR an RV quantitatively to better evaluate its contribution 
and to allow formal meta-analysis [13].

Limitations

The main limitation is that there are no data stemming from 
randomized studies. This only allows us to describe the real-
world improvements in GTR, EOR, and RV observed, with-
out considering the implicit biases described above. Due to 
the substantial heterogeneity observed, our results have to be 
interpreted with some caution and suggest a large variability 
in the use and consequences of ioMRI in different centers. 
Intrinsic biases of included publications cannot be ruled out. 
EOR and RV were evaluated using very limited data from 
only few studies. Because of a lack of granularity in the 
data identified in our systematic review, we were unable to 
perform stratification for functioning versus non-functioning 
adenoma. Additionally, we did not include endocrinological 
remission as an outcome of interest. Tumor size stratifica-
tion was not possible, limiting our insights on the benefit 
of ioMRI for small versus large adenomas. Other outcomes 
such as safety and cost-effectiveness were not investigated.

Conclusion

Our meta-analysis demonstrates that around one fifth of 
patients undergoing pituitary adenoma resection convert 
from non-GTR to GTR after the use of ioMRI, in accordance 
with previous findings. EOR and RV can also be improved 
to a certain extent using ioMRI. When considering GTR, 
the benefit of ioMRI does not change for endoscopic versus 
microscopic transsphenoidal surgery, nor does field strength 
seem to influence results. Statistical heterogeneity was high, 
indicating that the improvement in surgical results due to 
ioMRI varies considerably by center. While it is likely that 
ioMRI truly increases GTR and EOR and leads to lower RV, 
only randomized studies can take this question to a higher 
level of evidence by avoiding the implicit biases introduced 
through the mere use of ioMRI. Regardless, future studies 
on ioMRI should provide quantitative assessment of surgical 
results, including volumetric assessment of EOR and RV.

Table 3   Patient-weighted 
means of the two outcomes 
not amenable to formal meta-
analysis. For residual volume, a 
subgroup analysis of endo- and 
microscopic cases was feasible

EOR extent of resection, RV 
residual volume

Parameter N Case-
weighted 
mean

ΔEOR (%)
Overall 191 9.07
ΔRV (cm3)
Overall 387 0.784
Endoscopic 73 0.503
Microscopic 134 1.183



652	 Pituitary (2021) 24:644–656

1 3

Fig. 2   Stratified analysis of endoscopic versus microscopic surgery. Forest plots represent the results of the statistical meta-analysis of the 
change in gross total resection (∆GTR) in percent from intraoperative to postoperative imaging
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Fig. 3   Stratified analysis of low-field versus high-field transsphenoidal surgery. Forest plots represent the results of the statistical meta-analysis 
of the change in gross total resection (∆GTR) in percent from intraoperative to postoperative imaging
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