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Infant airway microbiota and topical immune
perturbations in the origins of childhood asthma
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Asthma is believed to arise through early life aberrant immune development in response to
environmental exposures that may influence the airway microbiota. Here, we examine the
airway microbiota during the first three months of life by 16S rRNA gene amplicon
sequencing in the population-based Copenhagen Prospective Studies on Asthma in Child-
hood 2010 (COPSAC5q10) cohort consisting of 700 children monitored for the development
of asthma since birth. Microbial diversity and the relative abundances of Veillonella and
Prevotella in the airways at age one month are associated with asthma by age 6 years, both
individually and with additional taxa in a multivariable model. Higher relative abundance of
these bacteria is furthermore associated with an airway immune profile dominated by
reduced TNF-a and IL-1p and increased CCL2 and CCL17, which itself is an independent
predictor for asthma. These findings suggest a mechanism of microbiota-immune interac-
tions in early infancy that predisposes to childhood asthma.
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sthma has risen to epidemic proportions during the past

half-century!-3. Like many other chronic inflammatory

non-communicable diseases (NCDs), it is believed to
originate in early life when the child’s immune system is devel-
oping?~%. Unfavorable or insufficient microbial stimulation of the
developing immune system has been suggested to increase the
propensity for chronic inflammation involved in development of
asthma and other NCDs’~!1. Epidemiological studies have found
associations between asthma risk and several environmental
exposures related to the microbiota. Living with farm animals,
older children in the home and daycare attendance have all been
associated with a decreased risk!>13, whereas delivery by cesarean
section may increase the risk!415,

All body compartments harbor their own distinct compositions
of microbes that affect local immune cells!®. This has driven a
search for microbial signatures related to human health and
disease!7-20, The airways contain a plethora of microbes, repre-
senting a diverse biogeographical continuum through the
respiratory tract?!=>4, We have previously shown associations
between neonatal pathogenic bacterial airway colonization and
later asthma?®, and described the airway immune profiles in
neonates colonized with such bacteria?®. However, these studies
were limited by the available culturing technique, which does not
capture the complexity of the entire airway microbiota.

Here, we therefore examine the early-life airway microbiota
using 16S ribosomal RNA (rRNA) gene amplicon sequencing and
analyze its relation to the development of asthma by age 6 years
among children participating in the unselected Copenhagen Pro-
spective Studies on Asthma in Childhood 2010 (COPSAC,;)
birth cohort. Simultaneously, we analyze the topical immune
profile from airway mucosal lining fluid hypothesizing that specific
bacterial taxa may increase the risk of asthma through perturba-
tions of the developing airway immune system. We show that the
diversity and composition of the airway microbiota, and the rela-
tive abundances of Veillonella and Prevotella, at age 1 month
are associated with the development of asthma by age 6 years.
Furthermore, these and other taxa together contribute to the risk of
asthma in a multivariable sparse partial least squares (sPLS) model.
From this model, we derive a bacterial asthma score for each child
based on abundances of these specific taxa, which is associated
with a specific topical immune profile characterized by reduced
tumor necrosis factor-a (TNF-a) and interleukin-1p (IL-1f) and
increased Chemokine (C-C motif) ligand 2 (CCL2) and CCL17.
Finally, this immune profile exhibits both a shared and a unique,
independent contribution to the risk of asthma. Collectively, these
findings indicate that the early-life airway microbiota may pre-
dispose to the development of asthma later in childhood through
dynamic interactions with the developing immune system.

Results

Sample characteristics. We successfully sampled and sequenced
the V4 region of the 16S bacterial rRNA gene in 1788 airway
aspirates (22000 reads) from 544 (77.7%) of the 700 children in
the COPSAC,p;p cohort at age 1 week, 622 (88.9%) at age
1 month, and 622 (88.9%) at age 3 months. In total, 695 children
(99.3%) participated with at least one sample. The children were
prospectively monitored for asthma development from birth with
frequent clinical visits. Full clinical follow-up during the first 6
years of life was available for 644 children (92.0%) and 146
children (22.7%) developed asthma in this period.

Airway microbial composition in early life. The airway samples
had a median sequencing depth of 45,334 (interquartile range (IQR)
[22,216-70,667]) reads. We identified 3,582 unique operational
taxonomic units (OTUs) from 574 genera, with a median richness
of 70 OTUs [53-91] per sample. Alpha diversity increased from
1 week (median Shannon index 1.18, IQR [0.67-1.64]) to 1 month
(1.40 [0.93-1.82]) and 3 months (1.58 [1.13-2.04]), p < 0.0001. The
airway microbial populations were dominated by taxa from the
phyla Firmicutes and Proteobacteria at all time-points, specifically
the genera Staphylococcus, Streptococcus, Moraxella, Haemophilus,
and Corynebacterium (Supplementary Fig. 1). These genera showed
profound changes over time, most noticeably a decrease in Sta-
phylococcus, and increases in Streptococcus, Moraxella, and Hae-
mophilus. Less abundant genera also varied substantially over time,
in particular Neisseria, Rothia, Fusobacterium, and Prevotella, which
all increased several fold from the 1-week to the 3-month samples.
These changes point to a rapid and dynamic early-life development
of the airway microbiota.

Microbial diversity, differential abundances, and asthma. We
then compared the airway microbiota at the three early-life time-
points to asthma development in the first 6 years of life. At age
1 month, both an increased alpha diversity and a difference in
beta diversity were found in children who developed asthma in
the first 6 years of life compared to those who did not (Table 1
and Supplementary Fig. 2). Higher relative abundances of the
bacterial genera Veillonella (Cox regression, hazard ratio (HR)
1.45 per standard deviation (SD), 95% confidence interval
[1.21-1.73], p<0.0001, false discovery rate (FDR) g value =
0.003, n=573) and Prevotella (HR 1.32 [1.13-1.55], p = 0.0005,
q=0.017, n=573) were associated with asthma development
(Fig. 1 and Supplementary Table 1). At ages 1 week and
3 months, there were no significant associations between alpha or
beta diversity or any specific taxa and development of asthma
after FDR adjustment (Supplementary Table 2).

Table 1 Alpha and beta diversity and asthma

(A) Alpha diversity

Metric Asthmatics (median [IQR]) Non-asthmatics (median [IQR]) p Value

Shannon index 1.56 [1.11-1.90] 1.38 [0.87-1.80] 0.0046

Richness at 2000 reads 30 [25-36] 27 [21-34] 0.00044

Richness at 10,000 reads 49 [40-57] 43 [34-54] 0.0017
(B) Beta diversity

Metric F statistic p Value

Bray-Curtis 2.21 0.016

UniFrac, weighted 2.27 0.046

Diversity estimates from 1-month airway samples between children with asthma in the first 6 years of life, and children without asthma. n=573. (A) Alpha (within-sample) diversity estimates. (B) Beta
(between-sample) diversity estimates. F statistic is calculated as between-group variance vs. within-group variance
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Fig. 1 Differential abundance and asthma. Hazard ratios and corresponding p
values from Cox proportional hazards regression models using log-transformed
relative abundances for each genus as a predictor for asthma by age 6 years.
Dashed line indicates 5% false discovery rate (FDR) cutoff. Colored by
taxonomic phylum. n=573

Multivariate bacterial asthma score. At 1 month of age, we
found several groups of microbial genera with moderate to high
pairwise correlations (Supplementary Fig. 3). To further examine
associations with asthma, we therefore constructed a cross-
validated sparse PLS model to identify jointly relevant taxa at
age 1 month predicting asthma by 6 years of age, which resulted in
a one-component model based on relative abundances of seven
genera (Supplementary Fig. 4). These were Veillonella (relative
importance 28.1%), Prevotella (23.7%), Gemella (16.3%), Bacillales
incertae sedis (12.3%), Bacilli incertae sedis (12.2%), Streptococcus
(5.4%), and Lactobacillus (2.1%) (Supplementary Table 3). We
defined a continuous bacterial asthma score based on the model
(Supplementary Fig. 5), which was associated with paternal
asthma (higher score), season of birth (higher score in winter),
and having older siblings (lower score), but not with any other
environmental or heritable factors (Supplementary Table 4). We
therefore adjusted the asthma association models for paternal
asthma, older siblings, and season of birth. The bacterial asthma
score was associated with asthma development by age 6 years (Cox
regression, adjusted HR per SD 1.36 [1.13-1.63], p = 0.0009, n =
573, Fig. 2). The bacterial asthma score was associated with both
transient early, persistent, late-onset phenotypes and current
asthma at age 6 years (Table 2), with a tendency of higher effect
estimates in the late-onset and current at age 6 groups. When
stratifying for allergic sensitization to common inhalant allergens
at age 6 years, we found a significant association in both strata,
and a tendency of higher effect estimates in the sensitized vs. non-
sensitized group (Table 2). However, this difference was not sig-
nificant in an interaction test (p =0.36). The bacterial asthma
score was not associated with allergic sensitization at 6 years
(logistic regression, odds ratio (OR) 0.94 [0.75-1.17], p =0.57),
nor when restricting the analysis to children without asthma in the
first 6 years of life (OR 0.88 [0.675-1.13], p =0.31).

Bacterial asthma score and topical airway immune profiles. We
analyzed the relationship between the bacterial asthma score and

aHR 1.36 [1.13-1.63] per SD, p = 0.0009
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Fig. 2 Bacterial asthma score and asthma. Sparse partial least-squares
(sPLS) model between genus-level relative abundances at 1 month of age
and asthma by age 6 years. Kaplan-Meier curve showing cumulative risk of
asthma by bacterial asthma score, divided into tertiles. n =573 (191 in each
tertile group). Adjusted hazard ratio (aHR) and 95% confidence interval
corresponds to each standard deviation (SD) of the continuous score from
the sPLS model, adjusted for paternal asthma, season of birth, and siblings
in a Cox regression (n=554). The displayed percentages are the
Kaplan-Meier estimates of asthma risk at 6 years in each tertile group

topical immune mediators from the airway mucosal lining fluid,
sampled concurrently at 1 month of age in 499 (80.2%) of the 622
children with available microbial samples (Supplementary Fig. 6).
We observed positive associations with the chemoattractants
CCL17 and CCL2 and negative associations with the cytokines
TNF-a and IL-1B (Fig. 3 and Supplementary Table 5). We
adjusted the model for common variation in other bacteria to
remove the immune effects not directly related to the bacterial
asthma score (Supplementary Fig. 7). The associations were fur-
ther examined in a multivariate sparse PLS model with cross-
validation, which showed a strong association between the bac-
terial asthma score and the immune mediators (Spearman’s
correlation 0.18, linear model p <0.0001), with TNF-a, IL-1,
CCL2, and CCL17 being the most important variables in the
model (Supplementary Fig. 8). The immune mediator score from
this model was independently associated with asthma by age 6
years, even after adjusting for the bacterial asthma score in a
mediation analysis that revealed a low degree of mutual media-
tion (Cox regression, restricted to children with immune med-
iator data available, n =499; bacterial asthma score alone: HR
1.42 [1.17-1.71], p = 0.0003; immune mediator score alone 1.34
[1.11-1.61], p=0.0019; combined analysis, bacterial asthma
score 1.37 [1.13-1.67], p=0.0012, immune mediator score aHR
1.29 [1.07-1.55], p=0.008, proportion mediated 10.5%
[2.2-28.2%], p = 0.0078, see details in Supplementary Table 6).

Discussion

We found that the diversity and the composition of the airway
microbiota in asymptomatic 1-month-old infants were associated
with the risk of developing asthma within the first 6 years of life.
Specific individual bacterial taxa and a composition enriched with
these taxa, in particular Veillonella, Prevotella, and Gemella,
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Table 2 Microbiota-asthma association according to age at onset, persistence, and sensitization status
Phenotype Definition OR aOR 95% ClI p Value N cases/controls
Asthma ever Asthma by age 6 1.50 1.44 117-1.79 0.00062 135/438
Current asthma at 6 years Active diagnosis at age 6 1.67 1.61 1.15-2.30 0.0072 44/438
Transient early Diagnosis before age 3, remission 1.37 133 1.04-1.72 0.025 81/438
before age 6
Persistent Diagnosis before age 3, still ongoing at age 6 1.45 1.44 0.95-2.20 0.091 28/438
Late onset Diagnosis after age 3 2.10 1.92 1.23-3.11 0.0056 26/438
Phenotype Definition HR aHR 95% CI p Value N cases/controls
Asthma; sensitized children Stratified by positive 1.64 1.67 1.03-2.69 0.037 25/74
SPT or sIgk at age 6
Asthma; non-sensitized children Stratified by negative 1.30 1.27 1.00-1.61 0.053 73/262
SPT or sIgkE at age 6
Asthma; sensitization not Missing sensitization data 153 1.47 0.99-2.21 0.059 37/102
assessed
OR odds ratio, Cl confidence interval, HR hazard ratio, SPT skin prick test, slgE specific immunoglobulin E
Estimates from logistic regression (OR, Cl) or Cox proportional hazards regression (HR) between the bacterial asthma score and asthma, according to age-dependent phenotype and allergic sensitization
status to inhalant allergens (SPT, sIgE). Crude and adjusted (aOR/aHR) estimates provided, after adjustment for season of birth, paternal asthma, and siblings in the home. Confidence intervals and p
values pertain to adjusted analyses. We found no evidence of an interaction effect between the bacterial asthma score and allergic sensitization (p = 0.36)
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Fig. 3 Airway immune profile and bacterial asthma score. Associations between the bacterial asthma score, based on Veillonella, Prevotella, Gemella, Bacilli
incertae sedis, Bacillales incertae sedis, Streptococcus, and Lactobacillus, and upper airway mucosal immune mediators. Linear models show that the
bacterial asthma score is associated with several immune mediators, expressed as relative concentration ratios of immune mediators per standard
deviation (SD) increase in bacterial asthma score, n=499. Error bars indicate 95% confidence intervals. Associations are adjusted for collinearity with

other bacteria

increased the risk of developing asthma. These asthma-related
bacteria were associated with a distinct topical airway immune
profile, which was also associated, independently, with risk of
asthma by age 6 years. This suggests a potential involvement of
topical immune perturbation linking the early-life airway
microbiota to later asthma development.

A major strength of the study was the extensive and prospective
clinical assessment of asthma and environmental exposures in the
COPSAC,; population-based mother—child cohort®27, Samples
were collected in infancy before onset of symptoms and all chil-
dren were uniformly monitored for development of asthmatic
symptoms at a single-center research unit. Furthermore, the
diagnostic algorithm and treatment regimen were pre-defined and
consistently applied by study pediatricians avoiding the

heterogeneity in diagnostics and treatment of preschool asthma
that is common in the health care community.

Compared to studies analyzing samples from the nasopharynx?8-2?
or sputum, our technique allows for collection of biomaterial close to
the lungs without the need for bronchoscopy or other invasive
techniques. This involves sampling of microbes from the topical
hypopharyngeal airway mucosa as well as from lower airway
secretions transported via mucociliary clearance. Additionally, it
is a major strength that we simultaneously investigated the air-
ways’ topical immune signature at 1 month, providing insight
into the interaction between the bacterial taxa and the topical
immunity. While anatomically distinct and each possessing
unique microbiotas, the nose and hypopharynx are close enough
to allow a significant exchange of microbes within an
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individual?22430, Similar to how circadian fluctuations in the
lung microbiota of adults depending on sleeping positions have
been hypothesized, 1-month-old infants are often in a horizontal
position and it is recommended that they sleep supine, which
may facilitate microbial transfer between upper and lower air-
ways and microaspiration?431.

We applied 16S rRNA gene amplicon sequencing to deeply
characterize the taxonomic composition of the airway microbiota,
which greatly increases the power to detect non-cultivable and/or
difficult to culture anaerobic taxa, although at the expense of
discrimination at species level. All 16S rRNA regions, including
the V4 region used in this study, bias the observed composition
due to varying primer affinity and the inter-taxonomic variability
of the region in question. Airway samples furthermore contain
much lower absolute amounts of bacteria than, for example, stool
samples, which may result in an incomplete picture of the resi-
dent microbiota. Although these biases may skew the composi-
tional accuracy of the microbiota, they will not interfere with the
associations with asthma. The 16S sequencing technique does not
allow for direct estimation of microbial genes and their metabolic
functional potential, which may underpin some of the associa-
tions reported here. Future studies utilizing more detailed
meta’omic profiling may provide further mechanistic insight into
these associations?”.

Supervised analyses such as PLS models are designed to find all
possible associations in the data, but our application of a cross-
validation scheme ensures robust results without overfitting. The
inclusion of a constraint to yield sparse results further strengthens
this approach to restrict solutions to a limited set of predictors,
which are jointly associated with the outcome. The PLS metho-
dology has been developed to account well for highly collinear
feature matrices, which makes it well suited to apply to both the
microbiota and immune mediator data33.

The airway microbiota composition in healthy 1-month-old
infants, in particular the relative abundances of the taxa Veillo-
nella and Prevotella, was associated with later asthma, suggesting
a role of such a microbiota composition in asthma pathogenesis.
This asthma-associated composition furthermore correlated with
lower levels of topical pro-inflammatory airway immune media-
tors (IL-1p and TNF-a), which may characterize an inefficient
anti-bacterial response, and higher levels of monocyte and T-cell
recruiting chemoattractants (CCL2 and CCL17). This could
reflect a delayed general induction of immune stimulation exerted
by the microbiota, which has been suggested to predispose to
long-term immune dysregulation, low-grade inflammation, and
immune-mediated NCDs later in life>%34, Notably, although we
assayed mucosal lining fluid from the nose, the observed asso-
ciations may reflect systemic mucosal immune response patterns.
The airway immune profile identified via the bacterial asthma
score was independently associated with asthma, suggesting this
as a general risk factor for asthma development potentially
affected by other environmental exposures and/or genetic factors.
The association with an immune pattern suggests that these taxa,
despite being rare compared to other taxa, may exert clinically
relevant effects on the host through sensitive immune responses.

Specific functions of Veillonella and Prevotella may have direct
implications for the current findings. They are both Gram-
negative and largely anaerobic bacterial taxa prevalent in the gut,
and also key members of the oral microbiotal® from where they
presumably migrate to the lower airways through microaspira-
tion3>. Notably, they have both been identified in high abun-
dances in the lungs of subjects with chronic obstructive
pulmonary disease3® and associated with subclinical airway
inflammation in healthy adults>>37. Both Veillonella and Pre-
votella harbor the less immune-stimulatory penta-acylated lipo-
polysaccharide® that limits their capacity for activation of

immune cells®3°. This could lead to an inappropriate topical host
immune response, which is supported by our finding of reduced
secretion of airway TNF-a and IL-1p in children with high levels
of these asthma-associated bacteria, and increased levels of CCL2
and CCL17, of which the latter has previously been associated
with childhood asthma0. Such interpretation favors the notion
that the observed airway microbiota composition leads to per-
turbations of the topical immune response and not vice versa.

A recent study of the nasopharyngeal microbiota in 234 chil-
dren from the Australian Childhood Asthma Study cohort aged
2-12 months found that the microbial composition characterized
by 16S sequencing was dominated by Haemophilus, Streptococcus,
Moraxella, Alloiococcus, Corynebacterium, and Staphylococcus?®.
Of these, Streptococcus was associated with a questionnaire-based
chronic wheeze phenotype at 5 years. Lesser taxa, such as Veil-
lonella and Prevotella, were identified in the samples, but not
tested against disease. The larger ecosystem of the airway
microbiota may exhibit similar associations across different parts
of the respiratory tract due to inter-site communication, con-
sistent with previous reports22-2°,

In our older COPSAC,qo, cohort, we reported associations
between airway colonization with Moraxella catarrhalis, Hae-
mophilus influenzae, and Streptococcus pneumoniae at age
1 month and later asthma??. In the present study, Streptococcus
was associated with later asthma and contributed to the bacterial
asthma score, whereas Moraxella and Haemophilus were not. This
is probably due to different methodologies: 165 rRNA gene
amplicon sequencing vs. culturing, where the first approach
results in reduced detection specificity at the species level, but
increased sensitivity to non-cultivable genera. Additionally, the
COPSAC,4go cohort is a high-risk cohort born to mothers with
asthma. Finally, it may be that the members of the airway
microbiota that carry the association with asthma are not specific,
but simply reflect latent community structures.

Both the airway microbiota and the infant immune system
undergo dramatic development from birth21:41:42, Bearing this in
mind, any consequences of the airway microbiota for the devel-
oping immune system may be contingent upon a specific age
window, yielding different biological effects at different ages. The
absence of any associations with later asthma from the 1-week
and 3-month microbiota supports a hypothesis of a lasting
immune imprinting exerted in a narrow open window of devel-
opment in early life around 1 month of age?>. We found lower
bacterial asthma scores at age 1 month in children with older
siblings and higher scores in children born in winter. We there-
fore speculate that a part of the known sibling!® and seasonal
effects®> on asthma risk could be due to the airway microbiota
acting in the same narrow age frame.

We found that the association between the airway microbiota
and asthma was present regardless of age at onset or sensitization
at 6 years, with a non-significant tendency of higher effect esti-
mates for late-onset and sensitized phenotypes. Whether these
associations will stretch further into school age, adolescence, and
even adulthood is unclear, and further follow-up of the cohort is
therefore highly warranted.

The observational design of the study precludes direct eva-
luation of directionality or causality. It remains elusive whether
the early airway bacterial composition may contribute to asthma
pathogenesis through topical immune perturbations, whether the
airway immune composition predisposes to asthma through
inappropriate responses to airway bacteria and other environ-
mental exposures, or a latent host phenotype, unmeasured con-
founder, or complex unresolved immune-microbiota interplay is
the true cause. Furthermore, any bacteria-related effect may be
contingent upon a susceptible host genetic architecture. If, how-
ever, the bacteria are later determined to be the true causal agents
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in these associations, our data suggest a potential for asthma
prevention in early life by targeted manipulation of the devel-
oping airway microbiota.

We demonstrated an association between the composition of
the airway microbiota in asymptomatic 1-month-old infants and
the risk of developing asthma by age 6 years. Simultaneously, we
observed that this composition associated with a specific airway
immune profile, which was independently associated with asthma.
These findings support the hypothesis that specific microbial taxa,
in part through early-life interactions with the host immune sys-
tem, may predispose to asthma later in childhood.

Methods

Study population and sample collection. The study was embedded in the
population-based COPSACy,o prospective mother—child cohort of 700 children
and their families followed from week 24 of pregnancy®2744, Hypopharyngeal
aspirates were obtained at ages 1 week, 1 month, and 3 months, using a soft suction
catheter passed through the nose. The children attended scheduled visits to the
COPSAC clinic, where they were assessed by study pediatricians at ages 1 week, 1,
3, and 6 months, and 1, 1.5, 2, 2.5, 3, 4, 5, and 6 years. Acute care visits were
arranged whenever the children experienced lung or skin symptoms and the
research clinic was de facto acting as family practitioner for the children.

Ethics. We are aware of and comply with recognized codes of good research
practice, including the Danish Code of Conduct for Research Integrity. We comply
with national and international rules on the safety and rights of patients and
healthy subjects, including Good Clinical Practice (GCP) as defined in the EU’s
Directive on GCP, the International Conference on Harmonization’s (ICH) GCP
guidelines and the Declaration of Helsinki. We follow national and international
rules on the processing of personal data, including the Danish Act on Processing of
Personal Data and the practice of the Danish Data Inspectorate. The study was
conducted in accordance with the guiding principles of the Declaration of Helsinki
and was approved by the Capital Region of Denmark Local Ethics Committee (H-
B-2008-093), and the Danish Data Protection Agency (2015-41-3696). Both par-
ents gave oral and written informed consent before enrollment.

Clinical endpoints and covariates. Asthma was diagnosed using a pre-defined
validated quantitative symptom algorithm?274%, based on parental registration of
troublesome lung symptoms on structured daily diary cards from birth, verified by
study pediatricians at each clinic visit. This ensured that symptoms were compa-
tible with asthma, including exercise-induced symptoms, prolonged nocturnal
cough, and coughing outside common cold. Children with a symptom burden of at
least five episodes within 6 months each lasting at least 3 days, 4 weeks of con-
tinuous symptoms, or a severe exacerbation requiring hospitalization or oral cor-
ticosteroid treatment were prescribed a 3-month trial of inhaled corticosteroid
(ICS). Asthma was diagnosed in children with relapse of symptoms upon cessation
of the ICS trial. Remission was defined by the absence of relapse after 12 months
since last ICS treatment. For the present study, we further defined four subgroups
of asthmatics: a transient early, a persistent, and a late-onset asthma phenotype?®,
as well as current asthma at age 6 years.

Information on hereditary and environmental factors, including parental
history of asthma and allergy, antibiotics consumption, delivery mode, pets,
smoking, older siblings, and breastfeeding were obtained by parental interviews at
the scheduled visits.

Allergic sensitization was assessed by skin prick test (SPT) to common inhalant
allergens (Alternaria spp., birch, cat, Cladosporium spp., D. farinae, D. pteronyssinus,
dog, grass, horse and mugwort) and specific immunoglobulin E (sIgE) 20.35 kUA/I
in blood samples to common inhalant allergens (D. pteronyssinus (d1), cat (el),
horse (e3), dog (e5), grass (g6), birch (t3), mugwort (w6), Cladosporium herbarum
(m2), Aspergillus fumigatus (m3), Alternaria tenuis (m6)). Both were assessed at 6
years of age. Allergic sensitization to inhalant allergens was defined as one or more
positive tests in either SPT or sIgE.

The mothers were enrolled in two pregnancy factorial-designed randomized
controlled trials of fish oil and vitamin D3%%4, a subgroup were enrolled in a
randomized comparison of influenza A/California/2009 vaccines*”:43, and children
with persistent wheeze were randomized to azithromycin or placebo during acute
exacerbations?’.

Sequencing and bioinformatics. We examined the airway microbiota using a 16S
rRNA gene amplicon sequencing protocol targeting the V4 region?!: the aspirates
were diluted in 1 ml sterile 0.9% NaCl and transported to the microbiological
laboratory at Statens Serum Institut (Copenhagen, Denmark), where they were
separated into 150 pl aliquots and stored at —80 °C until DNA extraction. DNA
was extracted from 1 x 150 pl aliquots per sample using the PowerMag” Soil DNA
Isolation Kit optimized for epMotion® (MO-BIO Laboratories Inc., Carlsberg, CA,
USA) using the epMotion® robotic platform model (Eppendorf, Hamburg,

Germany) under the manufacturer’s protocol. All measurements were taken from
distinct samples. At least one DNA extraction negative control was included in
each 96-well plate, by adding 150 pl of molecular grade water (Sigma-Aldrich,
Merck, Germany) instead of a sample. DNA concentrations were determined using
the Quant-iTTM PicoGreen® quantification system (Life Technologies, CA, USA).
Extracted DNA was stored at —20 °C.

16S rRNA gene amplification of the hypervariable V4 region was performed
over two PCR steps. First, amplification of the 16S rRNA gene, using broad range
primers (515F (5'-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5'-GGACTAC
HVGGGTWTCTAAT-3")), with a reaction mixture consisting of 1x AccuPrime
PCR Buffer II, 0.6 U AccuPrime Taqg DNA Polymerase (Invitrogen, Life
technologies, CA, USA), 0.5 uM primer 515F, 0.5 uM primer 806R, 2.0 ul template
DNA, and molecular grade water (Sigma-Aldrich, Merck, Germany) to a total
volume of 20.0 ul per sample. Reactions were run in a 2720 thermal cycler (Applied
Biosystems®, Life Technologies, CA, USA) according to the following cycling
program: 2 min of denaturation at 94 °C, followed by 30 cycles of 20 s at 94 °C
(denaturing), 30 s at 56 °C (annealing), and 40 s at 68 °C (elongation), with a final
extension at 68 °C for 5 min. For each plate, a negative template-free control and a
positive control containing 2.0 ul DNA from a known bacterial mock community
(1.0 ng/ul; HM-782D, BEI Resources, VA, USA) were included. The PCR products
were quantified using the Quant-iT™ PicoGreen® quantification system (Life
Technologies, CA, USA) and samples with a PCR product concentration above 6.0
ng/ul were diluted to ~3.0-6.0 ng/ul prior to further analysis. Sequencing primers
and adaptors were added to the amplicon products in the second PCR step: 2.0 ul
of the diluted amplicons were mixed with a reaction solution consisting of 1x
AccuPrime PCR Buffer II, 0.6 U AccuPrime Tag DNA Polymerase (Invitrogen, Life
Technologies, CA, USA), 0.5 uM fusion forward and 0.5 uM fusion reverse primer,
and molecular grade water (Sigma-Aldrich, Merck, Germany) (total volume 20 pl).
The PCR was run according to the cycling program above, except with a reduced
cycling number of 15.

The amplification products were purified with Agencourt AMPure XP Beads
(Beckman Coulter Genomics, MA, USA) using 0.7x volume beads and quantified
as described above. Equimolar amounts of the amplification products were pooled
together in a single tube. The pooled DNA samples were concentrated using the
DNA Clean & Concentrator™-5 Kit (Zymo Research, Irvine, CA, USA), and the
concentrations were then determined using the Quant-iT™ High-Sensitivity DNA
Assay Kit (Life Technologies). Paired-end sequencing of up to 192 samples were
performed on the Illumina MiSeq System (Illumina Inc., CA, USA), including 1.0%
PhiX as internal control, using MiSeq Reagent Kits v2 (Illumina Inc., CA, USA).
Automated cluster generation and 250 paired-end sequencing with dual-index
reads were performed.

Fastq-files demultiplexed by the MiSeq Controller Software were trimmed for
amplification primers, diversity spacers and sequencing adapters (biopieces®’),
mate-paired, and quality filtered (USEARCH?! v7.0.1090; parameter: -maxee 0.5).
UPARSE®? was used for OTU clustering (>97% identity) as recommended, in
particular removing singletons after de-replication. Chimera checking was
performed with USEARCH against the Genomes OnLine Database®> as
recommended. Representative sequences were classified (Mothur®® v1.25.0, using
the wang function at 0.8 confidence threshold) against the Mothur formatted
version of the Ribosomal Database Project>® v9. A phylogenetic tree was
constructed from an alignment of representative sequences made with Mothur’s
align_seqs function against the Greengenes®’ database (may 2013 version).
Alignments were then input to Fasttree® in nucleotide mode.

Airway immune profiles. Unstimulated airway mucosal lining fluid was obtained
from the children at age 1 month by insertion of a pre-casted filter strips based on
synthetic absorptive matrix (fibrous hydroxylatedpolyester sheets, Accuwik Ultra
(cat no. SPR0730), Pall Life Sciences, Portsmouth, Hampshire, UK) in both nostrils
for 2 min, followed by immediate storage at —80 °C. For protein extraction, filter
strips from both nostrils were immersed in 300 pl Milliplex assay buffer (cat no. L-
AB, Millipore, MA, USA) containing 1 protease inhibitor tablet (Roche) per 25 ml
buffer, and then transferred to the cup of a cellulose acetate tube filter (0.22 pm)
placed in an Eppendorf tube (Spin X centrifuge tube filter, cat no. CLS8161, Sigma-
Aldrich, St Louis, MO, USA). The tube was centrifuged for 5 min at 16,000 x g, 4 °
C. The obtained protein extract was stored immediately at —80 °C until determi-
nation of 20 immune mediators (cytokines and chemokines) using high-sensitivity
electrochemiluminescence multiplex assays (Meso Scale Discovery, Rockville, MD,
USA)26’59‘60.

Selection of the immune mediators was decided a priori to represent different
types of immune responses: type 1 (Th1/CD8+/natural killer cells/innate lymphoid
cell 1 (ILC1)), type 2 (Th2, eosinophils, ILC2), type 17 (Th17, neutrophils, ILC3),
and regulatory type responses. Children with excessive nasal secretions on the day
of sampling (n = 44) were excluded from the analysis.

Statistical analysis. All data analyses were conducted using the statistical software
R v3.3.06L, Samples below 2000 reads (1 = 146, 7.5%) were omitted from the
analysis. Sequencing and taxonomy data handling, genus-level agglomeration,
alpha diversity (analyzed using Shannon index), and beta diversity (analyzed using
Bray-Curtis®? and weighted UniFrac®? distances) estimates were done using the R-
package phyloseq®. Samples from children with/without asthma were divided
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evenly across batch variables (extraction tray, sequencing run). Bootstrap richness
estimates were computed as sample-wise median number of OTUs in 100
resamples with replacement at 2000 or 10,000 reads. Differences in alpha diversity
were tested using Wilcoxon’s rank-sum tests or linear mixed-effects models when
analyzing repeated measures from the same child, using child ID as random
intercept, with the effect of time-point calculated as a single-term deletion®>.
Differences in beta diversity were tested using permutational multivariate analysis
of variance (PERMANOVA)%® with 10,000 permutations.

Differential abundance was tested with Cox proportional hazards regression
models using time to asthma diagnosis as outcome, after filtering genera (=10%
presence, >0.01% mean relative abundance) and log-transforming relative
abundances, using half the lowest nonzero value as a pseudocount. Multiple
inference was controlled using the Benjamini-Hochberg FDR approach (g values).
We used PLS®” modeling of asthma by age 6 years as a binary variable using log-
transformed, z-scaled relative abundances of genera. PLS is a statistical modeling
framework specifically well suited for dealing with highly collinear or redundant
feature data matrices and excels in situations where the number of features/
variables (p) are high or even greater than the number of observations (#). Similar
to, for example, principal component analysis (PCA), features are combined to
components via loadings on the original variables, but in a supervised manner to
maximize covariance with an outcome, which can be univariate or multivariate. We
selected the optimum number of input variables using repeated 10-fold cross-
validation of the area under the curve (AUC) statistic to avoid overfitting. The final
model was chosen by the highest median AUC value. The predicted values of left
out folds were combined to form a bacterial asthma score. Relative importance per
taxon was calculated as the median taxon loadings across folds divided by the sum
of these median loadings. Associations between the bacterial asthma score and
asthma were calculated using Cox proportional hazards regression. The models
were not influenced by inclusion of batch variables. Immune mediator
concentrations were standardized, total sum normalized per sample, log
transformed, and z-scored before further analysis. Missing immune mediator
values (1.2%) were imputed using the k-nearest-neighbors algorithm® prior to
normalization. Immune mediators were analyzed in relation to the bacterial asthma
score using linear models and cross-validated sparse PLS as described above,
adjusted for other bacteria using PCA with four components. Causal mediation
analysis was conducted in a model structure with the bacterial asthma score as the
predictor, the immune mediator score as mediator and asthma as the outcome®®. A
significance level of 0.05, using two-sided p values, was used in all analyses, except
PERMANOVA, which is one-sided by design.

Data availability

The 16S rRNA gene sequencing data is deposited at the Sequence Read Archive (SRA)
with the accession no. PRINA340273. Summary- and feature-level data underlying
Figs. 1, 2, and 3 and Supplementary Figs. 1, 3, 4, 6, 7, and 8, and Supplementary Table 3
are provided as a Source Data file. All other data that supports the findings in this study,
including clinical data, are available from the corresponding author upon reasonable
request: participant-level personally identifiable data are protected under the Danish
Data Protection Act and European Regulation 2016/679 of the European Parliament and
of the Council (GDPR) that prohibit distribution even in pseudo-anonymized form, but
can be made available under a data transfer agreement as a collaboration effort.

Code availability
The R code used for generating figures and analyses is available from the corresponding
author upon request.
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