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Alzheimer’s disease (AD) and Huntington’s disease (HD) are destructive worldwide diseases. Efforts have been made to elucidate
the process of these two diseases, yet the pathogenesis remains elusive as it involves a combination of multiple factors, including
genetic and environmental ones. To explore the potential role of forkhead box O1 (FOXO1) in the development of AD and HD,
we identified 1,853 differentially expressed genes (DEGs) from 19,414 background genes in both the AD&HD/control and
FOXO1-low/high groups. Four coexpression modules were predicted by the weighted gene coexpression network analysis
(WGCNA), among which blue and turquoise modules had the strongest correlation with AD&HD and high expression of
FOXO1. Functional enrichment analysis showed that DEGs in these modules were enriched in phagosome, cytokine-cytokine
receptor interaction, cellular senescence, FOXO signaling pathway, pathways of neurodegeneration, GABAergic synapse, and
AGE-RAGE signaling pathway in diabetic complications. Furthermore, the cross-talking pathways of FOXO1 in AD and HD
were jointly determined in a global regulatory network, such as the FOXO signaling pathway, cellular senescence, and AGE-
RAGE signaling pathway in diabetic complications. Based on the performance evaluation of the area under the curve of 85.6%,
FOXO1 could accurately predict the onset of AD and HD. We then identified the cross-talking pathways of FOXO1 in AD
and HD, respectively. More specifically, FOXO1 was involved in the FOXO signaling pathway and cellular senescence in AD;
correspondingly, FOXO1 participated in insulin resistance, insulin, and the FOXO signaling pathways in HD. Next, we use
GSEA to validate the biological processes in AD&HD and FOXO1 expression. In GSEA analysis, regulation of protein
maturation and regulation of protein processing were both enriched in the AD&HD and FOXO1-high groups, suggesting that
FOXO1 may have implications in onset and progression of these two diseases through protein synthesis. Consequently, a high
expression of FOXO1 is a potential pathogenic factor in both AD and HD involving mechanisms of the FOXO signaling
pathway, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. Our findings provide a
comprehensive perspective on the molecular function of FOXO1 in the pathogenesis of AD and HD.

1. Introduction

Neurodegenerative disease (ND), a heterogeneous group of
devastating and irreversible disorders, is characterized by a

progressive loss of neurons due to the deposition of isomer-
ism proteins, such as amyloid-beta (Aβ), prion, huntingtin
protein (HTT), tau, and alpha-synuclein [1, 2]. With the
extension of life expectancy in general population, the

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2022, Article ID 7619255, 14 pages
https://doi.org/10.1155/2022/7619255

https://orcid.org/0000-0001-5833-6381
https://orcid.org/0000-0003-4204-9235
https://orcid.org/0000-0002-4100-1259
https://orcid.org/0000-0002-3571-8130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7619255


incidence of ND is on the rise. Herein, our study focused on
two types of NDs, namely, Alzheimer’s disease (AD) and
Huntington’s disease (HD). As the most common cause of
dementia worldwide, AD is pathologically characterized by
deposition of Aβ plaques composed of amyloid-beta pro-
tein and neurofibrillary tangles (NFTs) consisting of hyper-
phosphorylated tau protein, which are attributed to the
overproduction and impaired clearance [3, 4]. The main
manifestation of HD is motor impairment and cognitive
deficit derived from neuronal dysfunction and death, which
is due to the toxicity of the expansion of the polyglutamine
region in the HTT protein as a consequence of the mutated
gene [5, 6]. Of note, these two diseases are associated with
aberrant proteins. Since there is no cure for either condi-
tion, efforts are under way to halt or even prevent them
by studying genetic factors along with their underlying
mechanisms in aberrant protein metabolism. So far, multi-
ple mechanisms have been found to be involved in the
occurrence and development of AD and HD [7].

FOXO belongs to the family of transcription factor
forkhead box O genes with four isoforms (i.e., FOXO1,
FOXO3a, FOXO4, and FOXO6), all of which share highly
conserved domains [8]. The functions of FOXO proteins
are thought to regulate the expression of genes during bio-
logical events including apoptosis, cell cycle control, glucose
metabolism, antioxidative stress, and life longevity. Hence,
dysfunction of FOXOs leads to diseases and conditions
involving shorten life span, cancer, metabolic diseases,
immune system disorders, and ND [9–11]. The processes
of phosphorylation through the PI3K/Akt, JNK/c-Jun, or
AMPK pathway in response to growth factors, insulin/IGF-
1, oxidative, and nutrient stress are the main regulatory
mechanisms of FOXO proteins. Although all the four iso-
forms have highly conserved domains and overlapping func-
tions to certain extent [12], additional evidence shows that
different isoforms of FOXO regulate a nonredundant set of
genes [13]. For instance, FOXO1 plays critical roles in the
processes of energy metabolism, longevity, cell cycle arrest,
and cellular senescence. Suppression of FOXO1 protein by
insulin/IGF-1 or growth factors through the PI3K/Akt path-
way decreases its transcriptional function to mediate nutri-
ent metabolism against food deprivation and energy
deficiency. Dysfunction of such pathway could lead to met-
abolic diseases including diabetes, insulin resistance, and
increase of food intake [14]. Moreover, FOXO1 mediates cell
cycle arrest and apoptosis via the JNK/c-Jun pathway, which
has been observed in cells under the condition of growth fac-
tor deprivation or oxidative stress [15–17]. With the pres-
ence of reactive oxygen species (ROS) or energy deficiency,
FOXO1 is activated via the AMPK pathway to induce
autophagy, an important mechanism for the clearance of
abnormal proteins and organelles; conversely, this process
is inhibited by activation of the PI3K/Akt pathway in non-
neuronal systems [18, 19]. One plausible interpretation is
that activation of FOXO1 protein induces neuronal loss,
resulting in persistent neurodegeneration [20]. Although
the regulatory role of FOXO1 proteins has been investigated,
few studies have focused on the coordinated mechanism of
FOXO1-related pathways in the development of AD and

HD. Accordingly, we performed a comprehensive genomic
analysis of FOXO1 based on gene expression data and
functional annotations with the aim of illuminating the
common underlying role of FOXO1 in the pathogenesis
of AD and HD.

2. Materials and Methods

2.1. Data Processing. We downloaded the RNA gene expres-
sion profiles of GSE33000 from the Gene Expression Omni-
bus (GEO) database, which included 467 patients with
neurodegenerative diseases (310 AD and 157 HD) and 157
nondementia controls [21]. We then selected a total of 465
patients and controls over 60 years of age, including 367
patients (305 AD and 62 HD) and 98 controls for analysis.
The normalizeBetweenArrays function in the limma package
of R software (version 3.6.2) was used to normalize the gene
expression profile [22]. Based on clinical data recorded in
previous studies, the age and gender between cases and
controls were matched [23, 24]. The mean age of AD and
HD was 79:24 ± 9:11 years (range: 60-100 years), and the
mean age of nondementia was 69:06 ± 7:70 years (range:
60-106 years). The enrolled samples were divided into the
FOXO1-high and low groups by defining the mean expres-
sion value of FOXO1 as the cut-off point.

2.2. Identification of Differentially Expressed Genes (DEGs).
DEGs were generated in the AD&HD/control and FOXO1-
high/low groups using the lmFit and eBayes functions of
limma package in R software. The fold changes (FC) in the
expression of individual genes were calculated, with ∣logFC
∣ >0:15 and false discovery rate- (FDR-) adjusted P < 0:05
considered thresholds [25].

2.3. Coexpression Network Construction and Functional
Enrichment Analysis of Coexpressed Modules. Using the
WGCNA package in R software, the gene coexpression net-
work analysis was constructed by clustering overlapping
DEGs between the AD&HD/control and FOXO1-high/low
groups into multiple functional modules. Weight gene
correlation network analysis (WGCNA), an advanced data
exploration technique, not only allows the construction of
interconnected node modules that represent network-based
data volumes and alleviate the problem of multiple testing
but also screens for modules that are relevant to clinical
traits [26]. The hclust function was used to eliminate outliers
from the samples. A pickSoftThreshold function was used to
determine the appropriate power value of 16 when the
degree of independence was set to 0.8. To ensure high reli-
ability of the results, each module contained at least 30
genes. From thousands of genes, interesting modules of
DEGs were identified by WGCNA, and then, the Kyoto
Encyclopedia of Genes Genomes (KEGG) pathway analysis
was performed on the genes in each module using the Clus-
terProfiler package in R software. FDR adjusted P < 0:05 was
used as the threshold to define the significant differences in
biological functions and enrichment pathways enriched in
each module.
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2.4. Construction of Module-Pathway Network of FOXO1.
Correlations between intramodular connectivity and clinical
phenotype were used to estimate module-pathway associa-
tions, so that highly phenotypically related expression mod-
ules could be readily identified. Gene significance (GS) was
calculated as the absolute value of the correlation between
the gene expression profile and each trait; module member-
ship (MM) was defined as the correlation between the gene
expression profiles in each module. Scatterplot of GS vs.
MM in each module was plotted using the verboseScatterplot
function to represent the correlation between intramodular
connectivity and clinical trait. In modules related to the trait
of interest, genes with higher module membership tend to
have higher genetic significance and biological importance
[27]. The global regulatory network of module genes with
the highest interest was constructed using the Search Tool
for the Retrieval of Interacting Genes (STRING; http://
STRING-db.org) online database [28], in which cross-
talking pathways of FOXO1 were annotated by the func-
tional enrichment analysis of the KEGG pathway. The visu-
alization of global regulatory network and cross-talking
pathways of FOXO1 were accomplished by employing
Cytoscape software [29].

2.5. Analysis of the Area under the Curve (AUC). Adopting
the pROC package, AUC analysis was performed to predict
the diagnostic performance of FOXO1 in differentiation
between AD&HD and controls. Bilateral P value of less than
0.05 was considered statistically significant.

2.6. Gene Set Enrichment Analysis (GSEA). According to the
median expression of FOXO1, samples were divided into the
FOXO1-high and low expression groups. After normaliza-
tion of the gene expression profile, GSEA was performed
to screen for the biological process of Gene Ontology (GO)
terms in the AD&HD and FOXO1-high groups [30]. The
threshold of significant enrichment was obtained based on
the permutation test (the number of permutations was set
to 1000, with a P value less than 0.05) applying default
weighting statistic for each parameter. Enriched data in
GSEA analysis was visualized using packages of ClusterPro-
fler, ggplot2, enrichplot, and GSEABase.

2.7. Workflow. To investigate the functions of FOXO1 in the
pathogenesis of AD and HD, we conducted systematic anal-
ysis following the steps in Figure 1. Differential expression
analysis of genes was conducted on basis of 19,414 back-
ground genes. GSEA was set to analyze biological processes
related to AD&HD and FOXO1. The overlapping DEGs
between the AD&HD/control and FOXO1-high/low groups
were further analyzed by WGCNA. Coexpression gene
modules were predicted for further functional enrichment
analysis. A global regulation network was constructed to
identify cross-talking pathways of FOXO1, thus exploring
the potential mechanism of FOXO1 in these two diseases.
Thenceforth, we applied the same method to screen out
the cross-talking pathways of FOXO1 in AD and HD,
respectively. AUC analysis was carried out to assess the

diagnostic performance of FOXO1 in differentiating AD
and HD from nondementia controls.

3. Results

3.1. Identification of DEGs. In the present study, 367 patients
and 98 nondementia controls over the age of 60 were
included for this computational analysis (Supplementary
Table 1). Figure 2(a) shows the comparison of mean expres-
sions of FOXO1 between patients and controls. The expres-
sion of FOXO1 in the AD&HD group (0:10 ± 0:11) was
significantly higher than those in controls (−0:11 ± 0:15)
(P < 0:0001). After removal of unannotated or duplicated
genes, 19,414 background genes were summarized for fur-
ther differential expression analysis. A total of 2,103 genes
were differentially expressed in AD&HD compared with
nondementia controls. Among them, 1,001 DEGs were
found to be significantly upregulated, while 1,102 were
downregulated (Figure 2(b)). In subjects with high versus
low expression of FOXO1, in total, 2,124 DEGs consisted
of 1,089 up- and 1,035 downregulated genes were identified
(Figure 2(c)). Of these, 1,657 DEGs were overlapped
between the AD&HD/control and FOXO1-low/high groups.
The cluster heatmap of the top 25 up- and downregulated
overlapping DEGs is shown in Figure 2(d).

3.2. Coexpression Network Construction by WGCNA. The set
of DEGs was used for hierarchical clustering analysis and

Gene expression profiles
(GSE33000)

Gene set enrichment
analysis

Co-expression modules

Functional enrichment
analysis

Potential mechanism of
FOXO1 in AD and HD

Cross-talking pathways
of FOXO1

Global regulation
network

Weight gene correlation
network analysis

Area under the curve
analysis

Differentially
expressed genes

Figure 1: The workflow diagram of the present study. AD:
Alzheimer’s disease; HD: Huntington’s disease.
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module-trait heatmap plotting. All samples passed the pre-
defined cut-off line (height = 16) for the next step of
bioinformatic analysis (Figure 3(a)). Using WGCNA, we
predicted four coexpression modules with different colours
based on the overlapping DEGs between the AD&HD/con-
trol and FOXO1-high/low groups (Figure 3(b)). As shown
in the module-trait relationships (Figure 3(c)), the blue
module of 344 DEGs had the strongest positive correlation
with AD&HD (correlation coefficient = 0:61, P = 5e − 49)
and FOXO1 (correlation coefficient = 0:71, P = 4e − 73);
the turquoise module of 1,151 DEGs had the strongest nega-
tive correlation with AD&HD (correlation coefficient = −0:6,
P = 1e − 46) and FOXO1 (correlation coefficient = −0:85, P
= 9e − 133), while the brown module of 127 DEGs was
positively correlated with AD&HD (correlation coefficient =
0:48, P = 5e − 28) and FOXO1 (correlation coefficient = 0:56,
P = 1e − 39); and for the grey module, 35 noncoexpressed
DEGs were clustered. These data suggest that DEGs in blue
and turquoise modules had the strongest correlation with
AD and HD.

3.3. Functional Enrichment Analysis of Coexpressed Modules.
The mainly enriched KEGG pathways in the blue module
were pathways of phagosome and cytokine-cytokine recep-
tor interaction; brown module was enriched in transforming
growth factor- (TGF-) β signaling pathway, extracellular
matrix (ECM)-receptor interaction, and advanced glycation
end product- (AGE-) receptors for AGEs (RAGE) signaling
pathway in diabetic complications; for turquoise module,
DEGs were involved in pathway of neurodegeneration,
GABAergic synapse, FOXO signaling pathway, cellular
senescence, and AGE -RAGE signaling pathway in diabetic
complications (Figure 3(d)).

3.4. Construction of Module-Pathway Network of FOXO1.
According to the scatter plot of relationship between GS
and MM, DEGs in blue and turquoise modules showed the
strongest correlation of intramodular connectivity with
genetic phenotype (blue: correlation coefficient = 0:59, P =
1:2e − 33; turquoise: correlation coefficient = 0:73, P = 3:8e
− 192) (Figure 4(a)). We extracted DEGs from the blue
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Figure 2: Differential expression gene analysis. FOXO1 expression between AD&HD and nondementia controls (a). Volcano plot of the
AD&HD/control (b) and FOXO1-high/low group (c): blue, black, and red, respectively, indicate downregulated, nonsignificant, and
upregulated DEGs. The heatmap of the top 25 down- and upregulated DEGs (d). AD: Alzheimer’s disease; HD: Huntington’s disease;
DEGs: differential expression genes.
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and turquoise modules and displayed them in the global reg-
ulatory network (Figure 4(b)). As shown in Figure 4(c), the
cross-talking pathways of FOXO1 were identified, including
cellular senescence, FOXO signaling pathway, and AGE-
RAGE signaling pathway in diabetic complications. Accord-
ing to the AUC value of 85.6%, FOXO1 has potential predict
value and may be a biomarker for AD and HD (Figure 4(d)).
Separately, we found that the cross-pathways of FOXO1 in
AD were related to FOXO signaling pathway and cellular
senescence (Figure 5(a)); and the cross-pathways of FOXO1
in HD were linked to insulin resistance, insulin signaling
pathway, and FOXO signaling pathway (Figure 5(b)).

3.5. GSEA Validation in Biological Processes. GSEA was
adopted to validate the biological processes in the AD&HD
and FOXO1-high groups. There were five biological pro-
cesses significantly enriched in AD&HD, including B cell-
mediated immunity, regulation of protein maturation, regu-
lation of protein processing, immunoglobulin-mediated
immune response, and T cell activation involved in immune
response (Figure 5(c)). Five biological processes including
regulation of postsynaptic membrane potential, regulation
of protein maturation, regulation of protein processing, reg-
ulation of synaptic vesicle cycle, and respiratory electron
transport chain were significantly enriched in the FOXO1-
high group (Figure 5(d)). Of these, regulation of protein

maturation and processing were both enriched in the
AD&HD and FOXO1-high groups, suggesting that FOXO1
have implications in the onset and progression of these
two diseases through protein synthesis.

4. Discussion

The GSEA results showed that the background genes in both
AD&HD/control and FOXO1-high/low expression cohorts
were enriched in biological processes of protein maturation
and processing regulation. The newly synthesized proteins
are processed in the endoplasmic reticulum (ER) to form
mature proteins with physiological functions. In the pres-
ence of cellular crowding, gene mutations, oxidative stress,
etc., protein processing in the ER is compromised, resulting
in the formation of misfolded proteins. Subsequently, the
accumulation of misfolded proteins leads to a state of ER
stress to degrade these misfolded proteins. FOXO1 protein
participates in such processes by modulating autophagy of
misfolded proteins or apoptosis of impaired cells [31–33],
consistent with our results of functional enrichment analy-
sis. However, prolonged ER stress can also cause cell dam-
age. It has been reported that ER stress in glial cells elicits
the secretion of TNF-α, IL-1β, IL-6, and IL-8 [34]. These
proinflammatory factors, in turn, facilitate the production
of nitric oxide (NO) involving oxidative damage in glial cells

6
4

8
10

14

Sample dendrogram and trait heatmap

2

AD.HD
FOXO1

Age
Gender

H
ei

gh
t

(a)

Cluster dendrogram
1.0

0.9

0.8

0.7

0.6

0.5

Module colors

H
ei

gh
t

(b)

MEturquoise

MEblue

MEbrown

MEgrey

A
D

.H
D

FO
XO

1

A
ge

G
en

de
r

–0.6
(1e–46)

–0.38
(1e–17)

–0.45
(1e–24)

–0.37
(2e–16)

0.91
(6e–175)

0.61
(5e–49)

0.48
(5e–28)

0.56
(1e–39)

0.38
(4e–17)

0.71
(4e–73)

0.39
(9e–19)

–0.3
(7e–11)

–0.24
(1e–07)

–0.85
(9e–133)

Module–trait relationships

–0.4
(6e–19)

0.31
(6e–12)

1

0.5

0

–0.5

–1

(c)

TGF–beta signaling pathway

FoxO signaling pathway
ECM–receptor interaction

Cytokine–cytokine receptor interaction
Cellular senescence

AGE–RAGE signaling pathway in diabetic complications

Phagosome
Pathways of neurodegeneration

GABAergic synapse

0 3
–log10 (p_val)

6 9

Te
rm

_n
am

e

Blue
Module

Brown
Turquoise

(d)

Figure 3: Weighted correlation network analysis. Sample dendrogram and trait heatmap (a). Four different coloured modules are used to
form clustering dendrogram (b): grey stands for nonclustering genes. Heatmap of module-trait relationships (c): red indicates a positive
correlation, green a negative correlation. Enrichment analysis of KEGG pathways for genes in coexpression modules (d). AD:
Alzheimer’s disease; HD: Huntington’s disease; KEGG: Kyoto Encyclopedia of Genes and Genomes.

5Oxidative Medicine and Cellular Longevity



G
en

e s
ig

ni
fic

an
ce

 fo
r F

O
XO

1

0.3

0.5 0.6 0.7
Module membership in blue module

Module membership vs. gene significance
cor = 0.59, p = 1.2e–33

0.8 0.9

0.5

0.7

G
en

e s
ig

ni
fic

an
ce

 fo
r F

O
XO

1

0.4

0.5 0.6 0.7
Module membership in turquoise module

Module membership vs. gene significance
cor = 0.73, p = 3.8e–192

0.8 0.9

0.8

0.6

1.0

G
en

e s
ig

ni
fic

an
ce

 fo
r F

O
XO

1

0.2
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Module membership in brown module

Module membership vs. gene significance
cor = 0.086, p = 0.34

0.4

0.6

G
en

e s
ig

ni
fic

an
ce

 fo
r F

O
XO

1

0.20
0.2 0.4 0.6

Module membership in grey module

Module membership vs. gene significance
cor = –0.46, p = 0.0054

0.8

0.50

0.35

(a)

(b)

Figure 4: Continued.

6 Oxidative Medicine and Cellular Longevity



[35]. Indeed, increased NO synthetase has been found in glia
cells surrounding NFTs and amyloid deposition in AD
brains [36], along with upregulated immunoreactivity in
neurons adjacent to NO in these regions [37]. The mutant
Huntingtin in cultured cells and neurons of postmortem
HD brains exacerbates ER stress to impair ER-associated
protein degradation (ERAD) early in the onset of HD
[38–40]. Moreover, translocation of mutant Huntingtin into
the nucleus is also inhibited, leading to persistent ER stress
and long-term autophagic damage [41]. In addition,
reduced organelle synthesis in ER that degrades misfolded
proteins is also closely associated with the development of
neurodegenerative diseases [42, 43]. It is reported that ER
stress can be induced by mutations in the PSEN1 gene con-
tributing consequently to dysfunctional lysosome synthesis,
a cause potentially responsible for familial AD [44]. There-
fore, these findings lend strong support to our notion that
FOXO1 plays an essential role in protein processing and
maturation and is closely associated with the pathology of
proteotoxicity-related diseases such as AD and HD.

FOXO factors lie in the center of a complex regulatory
network of multiple upstream pathways and downstream
target genes, receiving upstream signals simultaneously or
sequentially to regulate transcriptional activity of down-
stream target genes in normal or pathological cells. The
PI3K/Akt/FOXO pathway is one of the major FOXO path-
ways that regulates the activation and localization of FOXO1.
Knockdown of the upstream insulin receptor substrate (IRS)
of this pathway leads to hyperactivation of FOXO1 [45].
Subsequently, activated FOXO1 disrupts mitochondrial oxi-
dative and phosphorylation activities (OXPHOS), resulting
in deficient ATP synthesis and metabolic disorders [46].
Notably, the resultant bioenergetic deficits in astrocytes
and neurons are one of the most prevalent early features of
AD [47]. This is in line with evidence in HD mouse models
that mutant HTT (mHTT) aggregation recruits IRS-2 to

activate FOXO1 via the PI3K/Akt/FOXO1 pathway, which
contributes to mitochondrial dysfunction [48]. Furthermore,
mHTT affects mitochondrial oxygenation to enhance anaer-
obic metabolism in the basal ganglia and hippocampus of
HD patients, leading to increased levels of ROS; in turn, this
process accelerates mitochondrial dysfunction and thus to
form a vicious circle [49]. Several experiments have found
a strong link of impaired insulin secretion and insulin resis-
tance to HD. The incidence of diabetes in HD patients is
seven times higher than that of normal diabetes, whose path-
ological features are reduced insulin secretion and increased
insulin resistance. Moreover, even in HD patients with nor-
mal glycaemia, there is substantial insulin resistance [50].
Yamamoto et al. have demonstrated that activation of IRS-
2 not only affects mitochondrial function but also leads to
autophagy of accumulated mHTT proteins via the PI3K/
Akt pathway, a branch of insulin signaling pathway high-
lighting the importance of insulin regulatory mechanisms
for HD pathogenesis [47]. This is consistent with our results
on the cross-talking pathways of FOXO1 in HD patients.

ROS are mainly produced by and act on mitochondria
to regulate cell growth and differentiation at low concentra-
tions [51]. JNKs belong to the mitogen-activated protein
kinase (MAPK) family. The JNK pathway is predominantly
activated by oxidative stress, and activation of phosphory-
lated substrates by JNK extensively induces apoptosis [52].
It is well known that aberrant accumulation of ROS leading
to neuronal exposure to oxidative stress is a common fea-
ture of both AD and HD [53]. And a major consequence
of this feature is an increase of cellular apoptosis. Specifi-
cally, MAPK kinase (MAP3K) is activated to form the JNK/
FOXO1 signaling pathway, which induces neuronal apoptosis
by nuclear translocation and phosphorylation of FOXO1 [54,
55]. In experiments of APP transgenic mouse brains, it has
been shown that ROS-induced oxidative stress enhanced neu-
ronal apoptosis [56]. Aggregation of Aβ induces excessive
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mitochondrial production of ROS; conversely, sustained
activation of the JNK pathway induces increased expression
of β-secretase and γ-secretase under conditions of oxidative
stress, which in turn promotes Aβ production [57]. In HD
pathology, mutant HTT increases the length of CAG repeats
in neurons to overproduce mitochondrial ROS, which then
activates the JNK pathway [58, 59], upregulating the expres-
sion of proapoptotic genes and thus to apoptosis [60, 61].

Following the process of apoptosis, the removal of apo-
ptotic and senescent cells by phagocytosis contributes to
the emergence of phagosomes, which are vesicles formed
by the fusion of the cell membrane of the phagocyte around
the granule. Fusion with lysosomes results in maturation of
phagosome, which not only contains hydrolases and ROS
to digest debris but also forms proinflammatory factors via
activation of MAPK signaling and PI3K/Akt pathways
[62]. Microglia, as special phagocytes of the central nervous
system (CNS), recognize aggregated Aβ and mHTT, leading
to a sustained release of neuroinflammatory factors for
inflammatory damage and cell death [63]. Neuroinflamma-
tory cell infiltration and microglia activation are inhibited
through the PI3K/Akt/FOXO1 pathway, thus alleviating
apoptosis and neurologic impairment after intracerebral

hemorrhage [64]. Similarly, Chen et al. found that neurocog-
nitive disorders could be ameliorated through the PI3K/Akt/
FOXO1 pathway [65], consistent with our enrichment anal-
ysis of the blue module.

Autophagy is another essential mechanism for eliminat-
ing organelles in response to stress or starvation. It is
involved in the phosphorylation of the downstream target
FOXO1 in dynamic equilibrium through synergistic, inhibi-
tory, or cross-talking action of the AMPK, PI3K/Akt, and
JNK pathways [66]. Recent experiments have confirmed that
JNK activation responds to oxidative stress by inhibiting
FOXO-induced autophagy related gene expression, leading
to reduced clearance of cell debris and aggregative proteins
[67]. Thus, the JNK pathway plays a deleterious role in neu-
rological impairment in neurodegenerative models by pro-
moting apoptosis and inhibiting autophagy [68]. Under
oxidative stress caused by aberrant protein synthesis, aggre-
gation, or mitochondrial dysfunction, neurons or glial cells
regulate nuclear translocation and activity of FOXO1
through PI3K/Akt and JNK pathways, hence mediating the
pathological process of neurodegeneration. Likewise, these
findings are in line with functional enrichment analyses of
AD and HD obtained in combination or separately.
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Oxidative stimulation acts on cellular components
through different signaling pathways or exerts varying effects
via the same pathways, determining diverse or even
completely opposite cell fates. The precise mechanism is
not fully understood, and the results of related experiments
are variable and controversial. Salih and Brunet reported that
apoptosis was the preferred cellular mechanism of FOXO1-
activated neurons exposed to oxidative stress [69]. Neverthe-
less, Li et al. presented evidence that autophagy was initially
triggered and only after prolonged stress could cells undergo
apoptosis, which degraded aggregated proteins and damaged
cells [70]. Hence, additional experiments are needed to prove
the most realistic conclusion.

Cellular senescence participates in physiological pro-
cesses including wound healing, tissue repair, and embryonic
development, which is also a protective mechanism against
tumor propagation triggered by oxidative stress-induced
DNA damage or oncogenic signals. Moreover, it has also
been observed that increased cellular senescence may con-
tribute to senescence-associated diseases including ND [71].
Senescent cells alter proteostasis, promote the secretion of
inflammatory cytokines, or allow the synthesis and aggrega-
tion of misfolded proteins, either of which ultimately leads
to AD [72]. Cell senescence can also trigger iron accumula-
tion, giving rise to oxidative death of neurons and glia cells
associated with AD pathology [73]. Sirtuin 1 (SIRT1), a cellu-
lar senescence regulatory gene, has been shown to suppress
FOXO1 expression in animal models of AD and HD, thereby
attenuating neuronal degeneration and death [74, 75]. Addi-
tional evidence of in vivo HD model has also confirmed that
SIRT1 activation provides a positive complement to mito-
chondrial failure, improving motor coordination and learn-
ing in HD [76].

The glycosylate modification of proteins by sugars and
aldehydes in an oxygenated environment can produce AGEs
[77]. AGEs binding to their receptors namely, RAGEs,
promote the synthesis of inflammatory factors and the pro-
duction of ROS, [78], leading to the accumulation of glyco-

sylated proteins in different organs and tissues [79–81].
The coupling of AGE with RAGE and their interaction in
the development of diabetes and its complications have
been well established [82]. In the CNS, neurons exposed
to oxidative stress also tend to form glycosylated proteins.
Glycosylation of mitochondrial enzymes leads to disruption
of energy transduction, affecting adenosine triphosphate
(ATP) synthesis and subsequent biological processes [83].
The resultant deposition of glycosylated proteins utilizes
ROS as second messengers to synthesize and bind inflam-
matory factors involved in HD and AD through the AGE-
RAGE signaling pathway [84–86]. In fibroblasts, ROS gen-
erated via the AGE-RAGE signaling pathway acts on JNK
to activate FOXO1, thus inducing apoptosis and preventing
diabetic wound healing [87]. The vast majority of experi-
ments on the role of FOXO1 in the AGE-RAGE signaling
pathway have focused on diabetes and its complications.
However, our findings suggest that this pathway may also
be involved in AD and HD through the action of ROS
and inflammatory factors. And the findings on endothelial
cell integrity [87] may provide novel insights into investi-
gating the integrity of cerebrovascular endothelium in rela-
tion to FOXO1-mediated AGE-RAGE signaling pathway in
AD or HD.

Cumulating evidence suggested that GABAergic synap-
tic dysfunction aggravated cognitive impairment in patients
with dementia [88–90]. Although few studies have linked
GABAergic synapses to FOXO1, Zullo et al. found that
GABAergic neurotransmitters and FOXO1 are regulated by
the same transcription factors involved in life longevity
[91]. Recently, GABA has been reported to be essential for
the localization of DAF-16, a homologous transcription fac-
tor of the FOXO family in C. elegans, which triggers nuclear
translocation by inhibiting insulin phosphorylation of
FOXO via the DAF-2/IGF1R pathway [92].

The multifunctional TGF-β signaling pathway plays an
important role in maintaining cellular homeostasis through
apoptosis, autophagy, and cellular senescence in a variety
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Mitochondrial
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ECMTGF-𝛽

ROS MAPK pathway
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AGE–RAGE signaling pathway in diabetic complications

GABAergic
synpase

Figure 6: Cross-talking pathways of FOXO1 in AD and HD. AD: Alzheimer’s disease; HD: Huntington’s disease.
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of cells [93–95]. As a signal transducer, FOXO1 binds to
Smad complex to activate the TGF-β/Smad signaling path-
way, thus hampering neuronal growth and participating in
the pathogenesis of AD [96, 97]. Alternatively, cellular senes-
cence is regulated by the interaction of the TGF-β/Smad
pathway with the PI3K/Akt/FOXO1 pathway [98]. Likewise,
the TGF-β signaling pathway has implications in the pathol-
ogy of neurodegeneration by interacting with the FOXO sig-
naling pathway, which is consistent with the results of our
functional enrichment analysis in the brown module.

ECM is a highly dynamic, continuously remodeling tis-
sue with a specific structure [99]. Expression of collagen, a
major component of ECM, is substantially upregulated in
the subclinical and clinical phases of AD, which is associated
with increased Aβ deposition [100]. In addition, our enrich-
ment analysis has clarified that FOXO1 is associated with the
regulation of ECM-receptor interaction pathway, in line
with evidence of osteoarthritis for the involvement of aber-
rant FOXO1 expression in ECM-receptor interaction path-
way [101].

The onset and progression of AD or HD are the out-
comes of the interaction of multiple mechanistic pathways.
The cells are always in homeostasis by means of coordina-
tion, cross-regulation, and even mutual restraint among
various pathways (Figure 6). For instance, AGE-RAGE
interaction induces the release of TGF-β involving the syn-
thesis of ECM proteins [102]. Furthermore, deposited glyco-
sylated proteins modify the composition of ECM under
oxidative stress, which triggers apoptosis of endothelial pro-
genitor cells [103]. Additionally, previous studies in schizo-
phrenia have demonstrated that abnormal EMC disturbs
the connectivity of GABAergic synapses due to low expres-
sion of TGF-β1 [104, 105].

In the scatter plot between MM and GS, the strongest
correlation between DEGs and FOXO1 expression was
found in blue and turquoise modules. According to the
cross-talking pathways of FOXO1 identified in the global
regulatory network of DEGs, FOXO1 plays pleiotropic roles
in the physiopathology of AD and HD via cellular senes-
cence, FOXO signaling pathway, and AGE-RAGE signaling
pathway in diabetic complications. The result of AUC anal-
ysis showed a good diagnostic performance in differentiating
AD and HD patients from nondementia controls, which
indicated that FOXO1 was possibly a predictive factor for
the incidence of AD and HD. Collectively, the findings
emerging from this study provide novel possible directions
for experiments focusing on the timing and conditions
whereby cells enter the senescence or apoptosis program
and whether cerebrovascular endothelial integrity influences
the progression of AD and HD through the interaction of
FOXO1 and AGE-RAGE signaling pathways.

5. Conclusions

In summary, our findings support that the high expression
of FOXO1 is responsible for the pathogenesis of AD and
HD, possibly mediated by FOXO signaling pathway, cellular
senescence, and the AGE-RAGE signaling pathway in dia-
betic complications.
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