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Abstract

Reaching movements are known to have large condition-independent (CI) neural activity and cyclic neural dy-
namics. A new precision center-out task was performed by rhesus macaques to test the hypothesis that cy-
clic, CI neural activity in the primary motor cortex (M1) occurs not only during initial reaching movements but
also during subsequent corrective movements. Corrective movements were observed to be discrete with time
courses and bell-shaped speed profiles similar to the initial movements. CI cyclic neural trajectories were simi-
lar and repeated for initial and each additional corrective submovement. The phase of the cyclic CI neural ac-
tivity predicted the time of peak movement speed more accurately than regression of instantaneous firing rate,
even when the subject made multiple corrective movements. Rather than being controlled as continuations of
the initial reach, a discrete cycle of motor cortex activity encodes each corrective submovement.
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Significance Statement

During a precision center-out task, initial and subsequent corrective movements occur as discrete sub-
movements with bell-shaped speed profiles. A cycle of condition-independent (CI) activity in primary motor
cortex (M1) neuron populations corresponds to each submovement, such that the phase of this cyclic activ-
ity predicts the time of peak speeds, both initial and corrective. These submovements accompanied by cy-
clic neural activity offer important clues into how we successfully execute precise, corrective reaching
movements and may have implications for optimizing control of brain-computer interfaces (BCIs).

Introduction
Corrective movements based on sensorimotor feed-

back are critical for elegant motor control. While a single,
discrete movement like a pointing gesture may be mostly
ballistic, more precise aiming movements typically require
an error correction phase (Woodworth, 1899; Craik, 1947;
Abrams et al., 1990; Sainburg et al., 1999; Elliott et al.,
2010). In making an online correction, the brain must
respond to updated sensory information about the current
position relative to the desired target. Yet the way neurons in
motor areas of the brain encode and generate corrective
movements to achievemovement precision is relatively unex-
plored. When examining populations of neurons in primary
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motor cortex (M1) during instructed movements, predict-
able dynamics of neural spiking occur with a progression
from initiation to completion of a movement (Maynard
et al., 1999; Jackson et al., 2003; Truccolo et al., 2005;
Sarma et al., 2010). Yet behaving animals also respond to
updated sensorimotor information, as happens in tasks
that require precision. For corrective movements with
new sensory information, does the neural activity update
within a current active neural state as a continuation of
the initial reach or does it repeat and cycle again through
the same series of neural dimensions for each additional
submovement?
We investigated the neural dynamics underlying cor-

rective movements, focusing on two key features of neu-
ral activity in M1 that have been previously described
during reaching: (1) condition-independent (CI) neural
activity and (2) rotations in neural dynamics (See Fig. 1).
Although individual neurons in M1 encode a variety of
condition-dependent movement features (Evarts, 1968;
Thach, 1978; Georgopoulos et al., 1982; Kalaska et al.,
1989; Kakei et al., 1999), there is also a large CI compo-
nent in the firing rate of neurons in motor cortex
(Kaufman et al., 2016; Rouse and Schieber, 2018). CI
neural activity is the change in a neuron’s firing rate from
baseline over time that happens regardless of the in-
structed movement for any given trial within a given task.
CI activity presumably carries information on the timing of
movement as opposed to specific, condition-dependent
features. Techniques like demixed principal component
analysis can partition a neural population’s activity into CI
modulation and the more classically described condition-
dependent tuning to task conditions (Kobak et al., 2016). In
addition to being CI or condition-dependent, changes in fir-
ing rate in theory might be temporally synchronous across
a population. But in practice, M1 neurons have an asyn-
chronous range of onset latencies before movement, with
latencies for most corticomotoneuronal (CM) cells ranging
from 120 to 0ms (Cheney and Fetz, 1980), while other
motor cortex neurons can lead movement by up to 200ms
(Moran and Schwartz, 1999). Because the increases and
decreases in firing rates are not synchronous, the popu-
lation activity forms a more complex trajectory in neural
state space (Yu et al., 2007; Cunningham and Yu,
2014). These time-varying dynamics can either be de-
pendent on specific task conditions or independent of
task conditions. While the precise meaning of these features
of neural dynamics under different conditions remains de-
bated (Churchland et al., 2012; Hall et al., 2014; Michaels et
al., 2016; Lebedev et al., 2019), these shifts between differ-
ent combinations of active neurons leads to changing di-
mensions of the neural space.
We hypothesized that if M1 handles online corrections

as ongoing adjustments to a single reach, then one cycle
of the neural trajectory would include both the initial and
the corrective submovements. In contrast, if M1 handles
each correction as a distinct (albeit smaller) movement,
then each corrective submovement would correspond to
its own cycle repeating the series of neural dimensions
that are traversed. We used a precision center-out task
that required moving to small targets (either narrow or

shallow) to elicit visuomotor corrections. We examined
whether corrective movements in this task were simple
adjustments in the ongoing reach or discrete submove-
ments, behaviorally similar to initial movements. We
then ask whether CI activity, representing the time
course of movement regardless of its direction or ampli-
tude, is similar for both initial and corrective submove-
ments. Finally, we ask whether cyclic neural dynamics
improve our predictions of when initial and corrective
movements occur.

Materials and Methods
Nonhuman primates
Two male rhesus monkeys, P and Q (weight 11 and

10 kg, ages seven and six years old, respectively), were
subjects in the present study. All procedures for the
care and use of these nonhuman primates followed the
Guide for the Care and Use of Laboratory Animals and
were approved by the University Committee on Animal
Resources at the University of Rochester Medical Center,
Rochester, NY.

Experimental design
A precision center-out task was performed by the mon-

key, using an 18 cm handle attached to a commercial joy-
stick (M212 series joystick, PQ Controls Inc.) to control a
cursor on a 24” LCD display. The joystick handle moved
freely with minimal resistance as the spring mechanism
for providing centering, restorative force was removed.
The end of the joystick could move ;9.3 cm in both the
forward/backward and left/right directions. Motion of
the joystick was transduced linearly by two Hall effect
sensors sliding in both the backward/forward and left/
right directions. The cursor viewed by the monkey directly
represented the planar position of these two sensors
scaled to fit within a 1000 horizontal � 1000 vertical
pixel workspace in the center of the LCD display. The
limits of the cursor workspace were slightly within the
physical limits of the joystick, with 110 pixels corre-
sponded to ;1 cm of movement at the end of the joy-
stick. The cursor appeared on the display as a small
cross centered on a single pixel in the workspace.
Custom software for task control sampled the joystick
data, updated the scene, and stored the cursor position
(equivalent to joystick position) and trial event times at
100Hz.
The precision center-out task consisted of three sets of

eight peripheral targets located equidistance and equally
spaced in 45° intervals around a center, home target (see
Fig. 2). The center target had a radius of 75 pixels. Each
center-out target, defined in polar coordinates, was one
of three different sizes (1) large targets spanning 45° of
the workspace and covering 250–450 pixels from the cen-
ter, (2) shallow targets spanning 45° but covering a width
of only 325–375 pixels from the center, and (3) narrow tar-
gets spanning 15° covering 250–450 pixels from the cen-
ter. All 24 targets (three sizes � eight locations) were
presented pseudo-randomly in equal amounts throughout
a session.
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For each trial, following the subject acquiring the home
target and performing a required initial hold ranging from
300 to 500ms, the instruction occurred with the given
trial’s correct target changing from black to green.
Following this instruction, the monkey could move the
cursor immediately to contact the correct target. At
contact, the outline of all targets changed colors from
white to black providing visual feedback that the cursor
was within the target boundaries. After contacting the
desired target, the cursor was required to remain within
the target for a variable hold time of 500–600ms. If the
cursor left the target during this hold, the monkey was
allowed to enter the target again and complete a final
hold. Once a successful final hold of 500–600ms was
completed, the animal received a liquid reward. Both
the required initial and final hold times for each trial
were randomly sampled from a uniform distribution.

Neural recordings
Floating microelectrode arrays (MicroProbes for Life

Science) were implanted in the anterior lip and bank of the
central sulcus to record from M1 in each monkey, using
methods described in detail previously (Mollazadeh et al.,
2011; Rouse and Schieber, 2016). For monkey P, record-
ings were collected from six 16-channel arrays implanted
in M1. For monkey Q, two 32-channel arrays and one 16-
channel array in M1 were used. The location of the im-
planted arrays, spanning the forelimb representation in
M1, have been previously reported (Liu and Schieber,
2020, their Fig. 2) and spanned the forelimb area of M1.
Intracortical microstimulation on single electrodes with a
current up to a maximum of 100mA (12 biphasic pulses,
0.2-ms pulse width per phase, 3-ms interpulse interval)
with the animal lightly anesthetized with ketamine evoked
a variety of forelimb movements. Of the 96 electrodes for
monkey P, stimulation of 11 sites elicited proximal arm
movements, 6 sites elicited wrist movements, and 21
sites elicited movement of the digits. Of the 80 electrodes
for monkey Q, 34 sites were proximal, 9 sites were wrist,
and 25 were digits. During recording sessions, channels
with spiking activity were thresholded manually online,
and spike-waveform snippets and spike times were col-
lected with Plexon MAP (Plexon) and Cerebus (Blackrock
Microsystems, LLC.) data acquisition systems. The spike
snippets were sorted off-line with a custom, semi-auto-
mated algorithm. Chronic multielectrode arrays do not al-
ways yield well-isolated single-unit recordings. To define
likely single units, we used signal-to noise ratio (SNR) of
the sorted spike waveforms and the percent of true single
unit spikes estimated from a formula using the number of
interspike interval (ISI) violations ,1ms (Hill et al., 2011;
Rouse and Schieber, 2016). Using an SNR. 3 and 100%
true single unit spikes (no ISI violations) to define definite
single units and SNR.2.5 and .90% true single unit
spikes to define probable single units, 543 (monkey P) and
304 (monkey Q) of sorted spike waveforms were classified
as definite single units while 268 (P) and 208 (Q) additional
units were probable single units. Thus, 811/1293=63%
(monkey P) and 512/1185=43% (monkey Q) of all spiking
units were classified as likely single units. Because the

estimation of neural population states from multiunit ac-
tivity has previously been shown to be quite similar to
that from well isolated single units (Trautmann et al.,
2019) and because including multiunits would be unlikely
to provide results more significant than similar numbers
of single-units, we included both single- and multiunit re-
cordings in our analyses.

Behavior analyses
A peak finding algorithm to identify local maxima was

used for analysis of the timing of cursor speed peaks. Off-
line, cursor speed was calculated by filtering the cursor
position with a 10-Hz low-pass first-order Butterworth fil-
ter (bidirectionally for zero phase lag) and then calculating
the first derivative using the five-point central difference.
Local maxima of cursor speeds (identified with findpeaks
function in MATLAB (MathWorks) were identified as
peaks if they met the following criteria: (1) the peak speed
was .250 pixels/s and (2) the peak’s prominence, the
height difference between the peak and the larger of the
two adjacent troughs (minimum speed before encounter-
ing a larger peak), was at least 50% of the absolute height
of the peak. All such cursor speed peaks with their sur-
rounding 6200-ms time windows were considered sub-
movements within a trial. Initial peaks were identified as
the first submovement that ended at least 150 pixels from
the center (approximately halfway to the peripheral tar-
get). Any small movements before the initial speed peak,
506 (4.6% of trials) for P and 616 (7.0% of trials) for Q,
were discarded from further analysis. Speed peaks fol-
lowing the initial speed peak were defined as corrective
submovements. To focus analysis on submovements
made to successfully acquire the target, corrective sub-
movements were only included if some portion of the ac-
celeration phase, time from preceding speed trough to
speed peak, occurred outside the peripheral target.
The speed profiles for individual submovements were

analyzed between �200 and 200ms relative to peak
speed. As a measure of similarity between speed pro-
files, the Pearson’s correlation between these speed
profiles for pairs of submovements was calculated,
yielding a similarity score between �1 and 1. To mea-
sure how similar corrective submovements were to ini-
tial submovements, the correlation of each initial
submovement to a randomly selected corrective sub-
movement was calculated. As a ceiling comparison,
each initial submovement was also compared with an-
other randomly selected initial submovement. Thus, the
distribution of correlations for initial-corrective sub-
movement pairs was compared with the distribution of
initial-initial pairs.

Identifying CI, rotational neural activity
We focused our neural population analysis on the neural

dimensions that contained the most CI, rotational activity.
A schematic illustration of these two features: (1) CI ver-
sus condition-dependent, and (2) synchronous versus ro-
tational/asynchronous is shown in Figure 1. The CI
activity is the time-varying average of firing rate across all
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trials regardless of condition while the condition-depend-
ent is the specific tuning to task condition like target
direction. Synchronous, time-locked activity represents
changes in firing rate that happen simultaneously across
the neural population, while asynchronous activity of vary-
ing time course in different neurons can lead to patterns
of traveling waves or oscillations in the population with a
predictable progression in time.
Firing rates of the neural population can be visualized

as either: (1) a function of time (Fig. 1B) or (2) neural trajec-
tories in a Cartesian neural space where each neuron’s fir-
ing rate is plotted on an orthogonal dimension (Fig. 1C).
For a complex task with variable corrective submove-
ments such as our precision center-out task, the CI activ-
ity provides a useful analysis to identify the neural activity
underlying a submovement. Although a synchronous rise
and fall of firing rate across the neural population, a sin-
gle neural dimension, may provide some information,
using additional neural dimensions of the CI signal may
help improve our prediction of the timing and phase of
submovements. The simplest is to consider two-dimen-
sions of CI activity in which the rotational activity result-
ing from sequential firing rate changes across different
neurons produces a cycle in a neural plane. This ap-
proach has the potential to improve identification of
corrective submovements.

Dynamical systemsmodel
Traditionally, CI signals are identified by aligning neural

data to behavioral cues and time averaging with methods
like dPCA (Kaufman et al., 2016; Ames and Churchland,
2019). However, our precision center-out task consisted
of corrective movements that were highly variable in their
timing relative to any experimental controlled behavioral

event. We therefore employed dynamical system model-
ing to characterize repeated changes in firing rates
across our recorded neural population. To identify and
analyze potential repeatable temporal dynamics of the
neural population that correlated with movement, our
neural data were modeled as a linear, time-invariant
system using a system of coupled first-order ordinary
differential equation defined by a transform matrix. This
model was built using only the CI activity by averaging
the firing rates for individual spiking units across all tri-
als regardless of the movement condition (i.e., target
location).
The CI activity was then submitted to the jPCA algo-

rithm (Churchland et al., 2012) to identify the two-dimen-
sional neural plane with the most rotational/cyclic activity.
In this model, the changes in firing rate can grow/shrink
along a single dimension (synchronous) as well as rotate
across dimensions (asynchronous). The eigen decompo-
sition of the transform matrix yields eigenvalues with the
real part representing growing or shrinking away from the
origin while the imaginary part represents rotations. Note,
this utilization of the jPCA algorithm on only the CI activity
is different from the typical application of jPCA to data
containing the condition-dependent activity. Additionally,
we find the results of the dynamical system are more stable
when the firing rates are square-root transformed to equal-
ize variance between high and low firing rates (Kihlberg
et al., 1972; Snedecor and Cochran, 1980; Ashe and
Georgopoulos, 1994) and thus performed this transform
before submitting firing rates to jPCA.
We call the plane with the most rotation the CI plane

and define the two neural dimensions that define this
plane as CIx and CIy. To consistently define CIx and CIy
across recording sessions and monkeys, we defined
the 1CIx direction as the neural dimension that had the

A B C

Figure 1. Idealized representation of both the synchronous and rotational components of CI and condition-dependent changes in
neuronal firing rate. A, The firing rates for four neurons (blue, orange, yellow, and purple) are shown for reaches to four target direc-
tions (light to dark grayscale). The overall firing rates differ for both the four neurons and the four-target condition. By time averaging
across the four conditions, the CI firing rates and the residual condition-dependent firing rates are both identified. B, Next, averag-
ing across the population reveals that firing rates are (1) synchronous activity across all neurons at each time point and (2) the re-
maining, asynchronous/rotational firing rate changes specific for each neuron. C, The neural space visualizes the population activity
by showing each neuron’s firing rate as a point along an orthogonal dimension with time represented as a trajectory through this
space. In this representation, the difference between synchronous and rotational activity is better appreciated. Synchronous activity
is movement along a single neural dimension while rotational activity is movement between dimensions. Note, the dimensions de-
fined by individual neurons are shown projected in a 2D plane. Only the given component (synchronous/rotational and CI/condition-
dependent) are shown for these four example neurons for visualization purposes. In a much higher dimensional space when record-
ing from a large number of neurons, the possibility of finding dimensions with little overlap between components is much greater.
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maximum average firing rate. This was performed by cal-
culating the population averaged firing rate at all angles in
the plane and rotating the CIx and CIy axes so that 1CIx
aligned with the largest firing rate. Having identified this
jPC neural plane, our work introduces a new analytic vari-
able, CI phase (CIw ), which estimates the instantaneous
phase angle within this two-dimensional plane of the pro-
jected population firing rates. We calculate CIw using the
Hilbert transform applied to the two signals, CIx and CIy,
generating a complex, analytical representation of the
population signal. The angle of this complex signal is then
used to calculate the instantaneous phase.
Since our task consisted of highly variable trial lengths

and timing, the identification of CI activity by time averag-
ing based on behavioral events was challenging. To be
less constrained in identifying the plane with CI rotational
activity, we used an iterative approach alternating be-
tween identifying the CIw for each time point and then
averaging the CI neural activity for each CIw value. We
first time-averaged the activity aligned on speed peaks,
and then initially performed jPCA on the time-averaged
data. After identifying the rotational plane, we then binned
and averaged the firing rates based on its phase in the
plane (rather than time) and performed jPCA on this new
phase-averaged neural activity. This calculation of the
jPCA plane and phase averaging was repeated for three
iterations to ensure convergence. The MATLAB code
and additional documentation about the calculation of
CIw as described in the paper is freely available online
at https://github.com/arouseKUMC/CIphase. The code
is also available as Extended Data 1.
The calculation of the jPC plane and the CIw was per-

formed using fivefold cross-validation. Each recording
session was divided into five testing sets of trials each
containing 20% of the data. The jPC plane was calculated
by training on the other 80% of the data and then tested
on each test set. All presented results for CIw are using
the test data projected into the jPC dimensions identified
by the separate training set.

Firing rate versus speedmodel
For comparison with our two-dimensional CI plane and

phase analysis, we wanted to examine how well a linear
predictor of speed using a single neural dimension could
perform. We therefore performed linear regression to

predict speed from the recorded neural firing rates. For
this estimate, we regressed the firing rates for all recorded
units to peak speed for all submovements. We used the
firing rates for each recorded unit averaged across a time
window from 300ms before to 100ms after each peak
speed. We chose this method to identify a neural dimen-
sion that correlated with speed without using separate
time lags for each individual neuron. For motor cortex, the
neural signal in this dimension would be expected to in-
crease and peak before each peak in movement speed.
We identify and report the time at which the peaks in this
neural signal occurred to quantify how accurately the tim-
ing of peaks in movement speed was predicted.

Statistics
Several statistical analyses (Table 1) were used to as-

sess how similar corrective submovements were to initial
submovements and whether there were repeated cycles of
neural activity and whether these cycles corresponded to
behavior. For correlations between submovement speed
profiles, movement times, and average spike times, non-
parametric tests were used. Since CIw values represent an
angle ranging from –p to p , circular distribution statistics,
mean, variance, correlation, and Rayleigh test for nonuni-
formity, were used. All circular statistics were calculated
with CircStat, a Circular Statistics Toolbox for MATLAB
(Berens, 2009).

Results
Motor behavior, initial and corrective submovements
Movement speed was analyzed throughout the center-

out task from instruction until successful completion of
the final target hold. The two monkeys successfully com-
pleted 10,963 (monkey P) and 8737 (monkey Q) trials
across 12 recording sessions each. In addition to the
peaks in speed with the initial reach after instruction, addi-
tional peaks in speed were observed and labeled as
corrective submovements. There were 6478 and 3912
corrective submovements identified for monkeys P and
Q, respectively. Across all trials, 68.3% (P) and 71.1% (Q)
were completed in a single initial movement, 17.5% (P)
and 20.3% (Q) of trials were completed with one addition-
al corrective submovement, and 14.2% (P) and 8.6% (Q)
of trials required two or more corrective submovements.

Table 1: Statistical tests and confidence intervals reported throughout this study referenced with letter superscripts

Data structure Type of test Confidence intervals
a Correlation between speed profiles from –200 to

200 ms relative to peak speed, nonparametric
Wilcoxon rank-sum test [25th, 75th] percentiles

b Initial vs corrective movement times, nonparametric Two-sided Wilcoxon rank-sum test Percentage of submovements within
100–350ms

c Initial vs corrective average spike times between
�200 and 100ms, nonparametric

Spearman’s rank correlation 95% confidence interval by boot-
strapping (1000 repetitions)

d Circular distribution of phase Rayleigh test Circular SD
e CIw-angle

Speed – linear random variable
Circular correlation between angle
and linear variable

Minimum and maximum across 12
recording sessions

f Ratio of SDs of times estimated with CIw and firing
rate model

F test 95% confidence interval
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The location of the identified speed peaks within example
trials and the speed profiles for monkey P are shown in
Figure 2A,B, respectively. The speed peaks tended to be
distinct with nearly zero velocity between most peaks. As
shown in Figure 2C, 99.0% (P) and 97.7% (Q) of the mini-
mum speed trough following the initial speed peak were
,20% of the peak. Similarly, 82.4% (P) and 85.8% (Q)
of the troughs were ,20% of the preceding peak be-
tween sequential corrective speed peaks. The mean
peak speeds for initial submovements were 1533 (P)
and 1182 (Q) pixels/s while corrective submovement
peak speeds were 460 (P) and 400 (Q) pixels/s. Thus,
the average peaks for corrective submovements were
30.0% and 33.8% of initial submovements, and a low-
speed trough almost always occurred between two
speed peaks making it reasonable to analyze submove-
ments defined by their peak speeds.
The speed profiles were time aligned to peak speed to

better examine the identified submovements (Fig. 3A).
Almost all submovements show a clear bell-shaped pro-
file for both the initial and corrective movements. The sim-
ilarity between initial and corrective speed profiles was
assessed by using the correlation between randomly se-
lected pairs of movements. For random pairs (regardless
of trial) of one initial and one corrective submovement, the
median correlation was 0.78 [0.58 0.89] (monkey P) and

0.83 [0.70, 0.90] (monkey Q). Thus, the shape of correc-
tive submovements was significantly correlated with the
shape of initial submovements (p, 0.001a). As a ceiling
comparison, the correlation between randomly selected
pairs of initial submovements was observed to be 0.93
[0.86 0.96] (P) and 0.91 [0.80, 0.96] (Q). Although the
shape of initial-corrective pairs was significantly less cor-
related than the initial-initial pairs, corrective submove-
ments still had a similarity measure that was a large
percentage, 84% (0.78/0.93) and 91% (0.82/0.91), of that
observed for initial-initial pairs.
The time duration and timing of submovements was

also examined. The onset and offset of submovements
were defined as the time points when speed was one-half
of the maximum speed both before and after the speed
peak. As shown in Figure 3B, the movement duration at
half maximum speed was similar and close to symmetric
for both initial and corrective submovements. The initial
submovements were slightly longer having a median time
of 220ms (P) and 270ms (Q) compared with corrective
submovements with medians of 180ms (P) and 220ms
(Q). This difference in median movement times was statisti-
cally significant (p, 0.001b) but the difference of 40 and
50ms was small, especially given the peak speed was only
one-third the magnitude for the smaller corrective move-
ments. Overall, all submovement durations, as measured by

A B C

Figure 2. The precision center-out task. A, Cursor paths for four example trials to each target for the three target sizes: regular
(top), narrow (middle), shallow (bottom). Initial submovements from 200ms before to 200ms after speed peaks are plotted in blue
with the point when peak speed occurred shown with a blue dot. Corrective movements are similarly identified in red with a red dot.
Gray lines connect the rest of a trial before, between, or after submovements with a speed peak. B, Cursor speed plotted versus
time for a subset of trials. Initial (blue) and corrective (red) submovement speed peaks are identified with squares. Gray squares
identify speed peaks that were thrown out because they (1) were small initial movements that did not move outside the center or (2)
occurred entirely within the peripheral target. C, top, Distribution of peak speeds for initial (blue) and corrective (red) submovements.
Bottom, Distribution of the trough-to-peak ratio for the troughs following an initial submovement before a corrective submovements
and following a corrective submovement before another corrective submovement. Data are shown for monkey P. Data for monkey
Q, which had similar results, is not shown.
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the full width at half maximum, occurred within a similar
range with 96.7/88.0% (P/Q) of all initial and 96.3/93.0% (P/
Q) corrective submovements between 100 and 350ms. The
time between speed peaks, either initial to first corrective
submovements or between subsequent corrective sub-
movements, is plotted in Figure 3C. The median time be-
tween peaks were 570ms for monkey P and 700ms for
monkey Q with the mode time between peaks being 450ms
(P) and 550ms (Q). Only 3.2% (P) and 0.1% (Q) of speed
peaks had a time between peaks ,200ms and 6.1% (P)
and 10.0% (Q) of speed peak pairs had times .1200ms.
These observations suggest the movement behavior could
be divided into submovements with similar bell-shaped ve-
locity profiles and similar time durations.

Consistent timing of neural firing rates for initial and
corrective submovements
Single target acquisition movements thus often con-

sisted of initial and corrective submovements with simi-
lar temporal characteristics. Did neural activity in M1
control such target-acquisition movements as a single

movement, or as a series of discrete submovements?
The neural firing rates across the recorded population
were time aligned to the submovement speed peaks to
examine the firing rates from 500ms before until 300ms
after the peak speed. The average firing rate (smoothed
with a Gaussian window, s = 30ms) for all analyzed units
aligned to the peak speed for initial and corrective sub-
movements are shown in Figure 4A. A clear peak occurs
before the peak speed for both initial and corrective
submovements in both monkeys. Monkey P’s peak fir-
ing rates occurred 170 and 120ms before initial and
corrective submovements, respectively, while monkey
Q’s occurred at 160 and 160ms before for both initial
and corrective submovements. Thus, firing rates in-
creased and peaked globally for corrective submove-
ments in addition to the initial reach.
If all neurons had the same time lag preceding the up-

coming peak in movement speed, there would be a
synchronized increase and decrease of all CI firing rates
simultaneously. However, when examining average firing
rates from 10 example neurons from one recording ses-
sion from monkey P, all aligned to peak speed, we see

A

B

C

Figure 3. Time course of submovements. A, The cursor speeds are plotted aligned to speed peaks for initial (blue) and corrective
(red) submovements. Note, the cursor speeds shown are before the bandpass filter used for identifying peaks displayed in Figure
1B. Thus, the maximum of each trace may not align exactly with the plotted peak speed. B, Histogram of the time at half-maximum
speed before and after peak speed for all initial (blue) and corrective (red) submovements. C, The time duration between speed
peaks including the times from initial submovement to first corrective submovement as well as between any consecutive pairs of
corrective submovements.
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heterogenous timing of firing rates relative to the peak
speed (Fig. 4B). This relationship tended to be conserved
across initial and corrective movements, with the purple
spiking units tending to fire earlier and the orange units
later for both initial and corrective submovements. This
suggests that the CI neural activity across the neurons
might form a repeatable temporal structure, a neural tra-
jectory, that is more than a simple simultaneous rise and
fall in firing rate across the population
To quantify the early versus late consistency of spiking

units, we calculated the average time of all spikes that oc-
curred within a window from –200 ms before to 100ms
after peak speed to determine if a unit tended to increase
its firing rate earlier (negative time) or later (positive time)
relative to peak speed. We then compared these average
spike times for initial versus corrective submovements for
each spiking unit. As shown in Figure 4C, earlier firing
units (more negative) for initial submovements tended to
fire earlier for corrective submovements, while units later
(more positive) for initial submovements also tended to
fire later for corrective submovements. This correlation
was significant for all spiking units with Spearman correla-
tions of r = 0.40 [0.35, 0.45] (P) and r = 0.58 [0.53, 0.62]
(Q), p, 0.001c. Using only single units, the Spearman

correlations were r = 0.37 [0.31, 0.44] (P) and r = 0.61
[0.54, 0.68] (Q), p, 0.001c. Thus, a significant portion of
the ordered timing of units was conserved relative to
peaks in movement speed for both initial and corrective
submovements.

Consistent neural dynamics for initial and corrective
submovements
We next wanted to examine whether these repeatable

neural patterns that occurred on average across all move-
ments could be used to identify submovements on indi-
vidual trials. Despite the smaller magnitude of the CI
neural activity during corrective movements, the repeated
oscillations in speed and repeated neural dynamics sug-
gested a portion of neural activity was repeatable and
common to initial and corrective submovements. To ex-
amine this, we built a simple linear dynamical system
model using the neural firing rates from the entire trial, in-
cluding both initial and corrective submovements, to
characterize common temporal dynamics that might be
present. The neural firing rates were again averaged
across all conditions, i.e., movement directions, and both
initial and corrective portions of the trials so the dynamical

A B C

Figure 4. Neural firing relative to initial and corrective submovements. A, The firing rate for all spiking units was averaged for all ini-
tial (blue) and corrective (red) submovements. The shaded region interval shows the 95% confidence interval of the calculated mean
for all spiking units. Circles indicate the time of peak firing rate for each condition. B, Average CI firing rates for 10 example spiking
units recorded simultaneously from monkey P time-aligned relative to peak speed for all initial (left) and corrective (right) submove-
ments. Firing rates are shown relative to the average firing rate within the given time window (initial or corrective) for each spiking
unit. The weighted timing of spikes (in ms) within the –200- to 100-ms window is given for each unit. Units are colored based on the
initial movement by whether their firing rates were greater early (purple) or late (orange). C, Weighted timing of spiking relative to
peak speed for each unit for initial (abscissa) and corrective (ordinate) submovements. More negative times represent spiking earlier
relative to the peak speed of each submovement. Single units are shown with filled circles, while all other spiking multiunits are
shown with open circles.
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system model would identify common CI activity. Using
the jPCA algorithm described previously (Churchland et
al., (2012), (1) the first six principal components of the
neural space and (2) the two dimension plane within the
space of those six principal components that captured
the most rotational neural activity were identified. We la-
beled the two neural dimensions of the plane with the
most rotational CI activity as CIx and CIy. To consistently
define CIx and CIy across recording sessions and mon-
keys, we aligned the 1CIx direction with the neural di-
mension that had the maximum average firing rate in the
plane. This was performed by calculating the average fir-
ing rate across all spiking units for neural activity based
on each time point’s angle in the CIx/CIy plane (binned in
100 angle intervals) and rotating the CIx and CIy axes so
that 1CIx aligned with the angle with largest firing rate.
This alignment results in the 1CIx dimension closely
aligning with the time course of the global average firing
rate across the population (shown in Fig. 4A), while CIy is
an orthogonal neural dimension that oscillates with a
phase lag of p /2 compared with CIx.
The average firing rates projected in our identified CI

plane for all initial and corrective submovements are
shown in Figure 5, where the neural data were again
aligned relative to peak speed for initial and corrective
submovements separately. The neural trajectory in the
two-dimensional CIx/CIy plane are shown in Figure 5A,
while the same CIx and CIy dimensions are plotted as a
function of time in Figure 5B. The initial and corrective
neural trajectories (Fig. 5A) are very similar in their shape

and direction of rotation within the plane, with the trajec-
tories for corrective submovements appearing as an addi-
tional cycle resembling a smaller, scaled version of the
larger trajectories for initial submovements moving from
the –CIy to 1CIx to 1CIy to –CIx dimensions. The time
courses of CIx (Fig. 5B, solid) and CIy (Fig. 5B, dashed)
were similar for initial (blue) and corrective (red) submove-
ments, although they differed in magnitude. The peak in
the CIx dimension (denoted with an X), defined as the di-
mension in the plane that best correlated with the global
average firing rate of the population, occurred ;150ms
before peak speed for initial and corrective submove-
ments, whereas the peak in the CIy dimension (also de-
noted with an X) occurred near the time of peak speed for
both submovement types.

Neural cycles improve predictions of behavioral
timing
Since the population firing rates in the CI plane ap-

peared to cycle across the two dimensions with similar
timing for initial and corrective submovements, despite
different magnitudes, we next chose to examine the in-
stantaneous phases of CIx and CIy activity to see whether
it was a statistically significant marker of the neural state
of motor cortex and its relationship with upcoming move-
ment. We used a Hilbert transform to create an analytic
representation of the CIx and CIy signals and then calcu-
lated the instantaneous phase by taking the angle be-
tween the real component and the Hilbert transformed

A

B

Figure 5. Cyclic neural dynamics related to initial and corrective submovements. A, The average population firing rates for initial
(blue) and corrective (red) submovements are projected in the CIx/CIy plane identified with jPCA. The trajectories start at the trian-
gles and end at the squares. Each filled circle is a 150-ms time step and the open corresponds to peak speed. B, Average CIx (solid
lines) and CIy (dashed lines) plotted as a function of time relative to average cursor speed (dotted lines).
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imaginary component. The average phase of CIx and CIy
for both initial and corrective submovements, time aligned
to peak speed, is shown in Figure 6A. The phase of CIx
(Fig. 6A, solid lines) and that of CIy (Fig. 6A, dashed lines)
each were similar for initial and corrective submovements,
with the zero phase of CIx occurring ;150ms before the
peak speed while CIy lagged CIx with an approximately
p /2 phase lag, with the zero crossing occurring around
peak speed. The slope of the phase for corrective move-
ments was slightly steeper indicating that neural activity
cycled slightly faster for corrective movements than initial.
Histograms of the phase of CIx and of CIy at peak speed
on individual trials are shown in Figure 6B. The distribu-
tions of phases of CIx and CIy were significantly nonuni-
form for both monkeys and the means and SDs are given

in Table 2. Thus, there was a clear relationship between
peak speed and the phase of CI activity that occurred
with almost all submovements, both initial and corrective,
and had similar timing.
Because the phase in the CI plane appeared to define

the neural dynamics and predict upcoming speed peaks,
we created a metric we call the CI phase (CIw ) by averag-
ing the phase of CIx and phase of CIy 1 p /2 to calculate
the current phase in the CI plane. We then examined the
continuous relationship between cursor speed and neural
CIw . In Figure 7A, we have plotted the cursor speed as a
function of CIw . While the CIw is an angle that ranges be-
tween 1/�p radians when calculated, for purposes of
display here we have incremented CIw in steps of 2p to
show how successive cycles of neural activity (abscissa)
were related to movement speed (ordinate) as individual
trials progressed through both initial and subsequent cor-
rective submovements. The individual trials for monkey P
in Figure 7A are the same as the trials shown in Figure 2B.
However, the speed traces have now been stretched or
condensed in time based on the current brain state meas-
ured with the CIw . This plot now shows that the speed of
movement varied with the cyclic neural activity with the
cursor speeds for most trials rising and falling in 2p cycles
of CIw . Both the speed averaged across all trials (white)
and the nonuniform occurrence of peak speeds in individ-
ual trials (black) demonstrate that movement speed was

Table 2: Means and SDs of the phase of CIx and CIy

CIx mean CIx SD CIy mean CIy SD
Monkey P

Initial 0.35 p 0.26 p �0.14 p 0.23 p
Corrective 0.43 p 0.33 p �0.15 p 0.36 p

Monkey Q
Initial 0.31 p 0.22 p �0.15 p 0.30 p
Corrective 0.45 p 0.31 p �0.05 p 0.37 p

All circular distributions of the phase of CIx and CIy were nonuniform (all
p,0.001d).

A B

Figure 6. Phase of CIx and CIy relative to peak cursor speed. A, Phase of CIx (solid lines) and CIy (dashed lines) time-aligned to
peak speed (time=0) and averaged for all initial (blue) and corrective (red) submovements. B, Histograms of the phase of CIx and
Ciy at the time of peak speed for initial (blue) and corrective (red) submovements. Means and SDs are given in Table 2.
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consistently correlated with the cycles of CI neural activ-
ity. The statistically significant circular correlation be-
tween speed and CIw was 0.44 [0.39, 0.53] and 0.42
[0.35, 0.50] (p, 0.001e for both animals) with the largest
speeds occurring at CIw = 0.32p and 0.31p (12kp ) for
monkeys P and Q, respectively.

Finally, we examined the predictive power of CIw for es-
timating when the peak speed occurred. Figure 7B illus-
trates the distribution of the time at which CIw = 0 relative
to the time of peak speed for initial submovements (top)
and corrective submovements (bottom). These distribu-
tions consistently peaked 100–150ms before the speed

A B C

Figure 7. Relationship between CIw and cursor speed. A, Cursor speed is plotted as a function of CIw for 200 trials with at least
one corrective submovement. The average speed of all trials as a function of CIw is shown in white, illustrating the oscillation in cur-
sor speed depending on the phase of neural activity. The circular correlations between CIw and cursor speed for all corrective trials
were 0.44 [0.39, 0.53] and 0.43 [0.36, 0.50] for monkeys P and Q, respectively, p,0.001e in both cases. Note, the unwrapped CIw
is not always a monotonically increasing value as occasionally the neural activity could reverse and move clockwise rather than
counter-clockwise in the neural plane shown in Figure 6B. B, C, Identifying the times of peak speeds with a dynamical systems
model (B) or with an instantaneous firing rates (C). The time point when CIw = 0 (B) or peak firing rate (C) was used as a prediction
of the upcoming submovement. Each histogram shows only those submovements for which the neural data aligned with the move-
ment data, i.e., CIw = 0 (B) or maximum firing rate (C) occurred within the time range examined (�300–100ms relative to submove-
ment peak speed). The percentage of total aligned trials is shown for each distribution as well as the SD (s ) for the aligned trials. In
all cases, the dynamical systems model predictions were more precise, with a narrower SD (statistics in Table 3) and fewer un-
aligned trials.

Table 3: Comparison of predication accuracy as measured with SD in predictions using the dynamical system CIu model
versus an instantaneous firing rate model

s1, CIw
(ms)

s2, firing
rate (ms)

F stat,
s1

2

s2
2

95%
confidence
interval Data comparison

Statistical
test

Initial All submovements with a pre-
diction between
�300 and 100 ms, assum-
ing normal distribution

F testf, all p, 0.001
Monkey P 66.1 84.4 0.61 [0.59, 0.64]
Monkey Q 75.1 91.1 0.69 [0.65, 0.71]

Corrective
Monkey P 88.0 104.2 0.71 [0.68, 0.75]
Monkey Q 87.0 98.7 0.78 [0.73, 0.83]
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peak for both initial and corrective submovements.
Corrective movements had CIw = 0 at times slightly closer
to peak speed indicating that the time delay to peak
speed was slightly less for corrective movements. A rela-
tively consistent relationship between neural activity in
the CIx/CIy plane and peak speed was present for both
initial and corrective submovements across all trials re-
gardless of target size or reach direction.
To examine whether incorporating neural dynamics sig-

nificantly improved prediction, we compared our CIw pre-
dictions with these population dynamics to predictions
using a standard approach of using the instantaneous fir-
ing rate of all units to predict peak speeds. For predictions
with the instantaneous firing rates, we built a linear regres-
sion model to estimate speed with a weighted sum of the
instantaneous firing rate (a single neural dimension) of all
spiking units (see Materials and Methods). Using this
model, we estimated the time when the peak in firing rate
in the neural dimension occurred that predicted the up-
coming speed peak. Figure 7C shows the temporal distri-
butions of these peak firing rates relative to peak speed
for both initial and corrective submovements. Like the dis-
tributions using the dynamical model above (Fig. 7B),
the firing rate model peaked 150–100ms before peak
speed. The peaks were broader by 10–20ms, however,
as characterized by the greater SDs (s ) given for each
distribution. The SDs were significantly different in all
cases, initial and corrective for both monkeys (Table 2).
Furthermore, although�84% of submovements were
included in each of these distributions (percentages
given in Fig. 7), a small fraction of submovements could
not be aligned, lacking a CIw = 0 in the dynamical sys-
tems model and/or a peak in the firing rate model within
the �300- to 100-ms time window examined. The per-
centage of these unaligned trials was consistently
smaller for the dynamical systems model. Compared
with using only the instantaneous/synchronous firing
rates in a single neural dimension, using the cyclic/
asynchronous dynamics of the neural population signif-
icantly improved the accuracy and consistency with
which the time of peak speed could be predicted.

Discussion
Our precision center-out task used small targets to elicit

one or more corrective submovements in many trials. We
found a temporal relationship for both initial and correc-
tive reaching movements with cyclic, CI neural activity.
Rather than a single cycle of neural activity in M1 occur-
ring during each trial, the speed profiles of initial and cor-
rective submovements each aligned with a cycle of neural
activity, providing a useful neural marker encoding the se-
ries of submovements.
In our precision center-out task, the monkeys’ move-

ments showed consistent bell-shaped speed profiles.
These speed profiles were evident for both the larger ini-
tial movement from the center toward the peripheral tar-
get as well as for each subsequent corrective movement.
A large majority of both initial and corrective submove-
ments had durations of 100–350ms, with a low-speed
trough separating almost all submovements. Discrete

submovements defined by multiple speed peaks have
previously been described in behavioral studies of reach-
ing (Pratt et al., 1994; Lee et al., 1997; Hatsopoulos et al.,
2007; Polyakov et al., 2009), turning a knob (Novak et al.,
2000), isometric contractions (Massey et al., 1992; Hall et
al., 2014), and object manipulation for tactile discrimina-
tion (Pruszynski et al., 2018). The experimental results
and analysis presented here provide new evidence of a
relationship between CI neural dynamics and such behav-
iorally observed submovements.

CI phase predictive of cursor speed
Churchland et al. (2012) originally described a single

cycle of condition-dependent rotational dynamics in the
activity of neurons in the primary motor and premotor cor-
tex during both straight reaches and curved reaches
around obstacles. More recently, Zimnik and Churchland
(2021) demonstrated two repeated cycles of neural activ-
ity, each shortened in time, when a pair of movements
were simultaneously instructed to be performed in rapid
succession. Here, by focusing on the shifting dimensions
of CI neural activity with time, we identified that cycles of
neural activity appear not only for initially planned reaches
but also for the highly variable, corrective submovements
that are made online with visual feedback. Our results
highlight that the various time lags between individual
cortical neurons’ firing and the upcoming reaching move-
ments are conserved, whether large and instructed or
small and made online with feedback.

Similar but smaller cyclic, CI activity for corrective
movements
Although the orientation and direction of rotation

through the identified CI neural dimensions was similar for
initial and corrective submovements, the magnitude of
the CI neural activity that occurred for corrective sub-
movements was approximately one-third to one-half the
magnitude of that for the initial submovements (both in
average firing rate, Fig. 4A, and within our identified rota-
tional CI plane, Fig. 5). On average, the encoding of move-
ment speed is clearly present in M1 (Moran and Schwartz,
1999; Paninski et al., 2004), and the smaller change in av-
erage firing rate observed here during corrective move-
ments reflected the lower movement speed for the
corrective compared with the initial submovements, sug-
gesting speed tuning in the magnitude of the CI activity.
This does not imply, however, that each individual trial
and each individual neuron have proportionally smaller
changes of firing rate during smaller amplitude move-
ments. Examination of small, instructed movements has
shown that a fraction of M1 neurons have similar firing
rates for small, precise and for larger wrist movements
while others are selective for only larger movements
(Fromm and Evarts, 1981). We too observed similar large
changes in firing rate on individual corrective submove-
ments for certain neurons (data not shown). Only when
averaging firing rates, time aligned to the peak movement
speed or the decoded CI phase, were the population dif-
ferences in firing rate modulation between initial and
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corrective movements readily apparent. Precisely identi-
fying encoded speed on a trial-by-trial basis with the neu-
ral activity remains challenging as there are often large
changes of firing rates for individual neurons that are vari-
able and idiosyncratic during any particular corrective
submovement.
Our results highlight that CI neural signals can evolve in

time along with the neural dynamics that are related to
task conditions. Adding CI activity to condition-depend-
ent activity has been suggested to make brain dynamics
more robust to noise by increasing the differences in neu-
ral signals even when the muscle activation pattern at cer-
tain time points are very similar (Russo et al., 2018). In the
context of precise, corrective movements, we speculate
cyclic brain dynamics can be used to organize neural ac-
tivity that creates distinct submovements with time-vary-
ing neural and musculoskeletal dynamics that are more
reliable for motor control. Previous reports of neural activ-
ity defining submovements linked together have used the
term movement fragments (Hatsopoulos et al., 2007). In
the context of precise movements, we hypothesize that
organizing movement into submovements or movement
fragments might allow the control of particular submove-
ments to have different encoding features, neural proc-
essing, or control policies, for instance, allowing the large
initial movements to be larger amplitude and less precise
while the corrective submovements are smaller and more
precise. Further studies will be needed to understand the
condition-dependent differences that accompany the CI
neural features presented here.
Although various time lags in different neurons seem

likely to be present across many tasks, cyclic, CI neural
dynamics may not be similar for all upper extremity move-
ments. For instance, whereas during combined reach-
and-grasp movements cyclic CI activity occurs along with
more complex condition-dependent dynamics (Rouse
and Schieber, 2018), during separate reaching move-
ments and grasping movements condition-dependent ac-
tivity was cyclic during reaching, but was more complex
during grasping (Suresh et al., 2020). The neural signals in
a given hemisphere for cyclic movements of the contra-
and ipsilateral arms have also have been reported to be in
orthogonal subspaces (Ames and Churchland, 2019).
Cyclic neural activity may not be due only to intrinsic neu-
ral dynamics in M1, but also the result of sensorimotor
feedback control and/or a cognitive strategy. With suffi-
cient time delay between each submovement, the neural
activity could fit both descriptions. Observations of addi-
tional submovements defined by second or third speed
peaks do not necessarily require a feedback controller
with discrete updates. A single, continuous optimal feed-
back controller with appropriate delays and signal de-
pendent noise can generate additional submovements
with multiple, sequential speed peaks (Li et al., 2018).
Results by Susilaradeya et al. (2019) argue that extrinsic
effects of a task interact with the intrinsic dynamics of the
brain in a manner consistent with an optimal feedback
controller, possibly providing a framework for assessing
these effects across a variety of tasks including our preci-
sion center-out task. Further work examining neural

activity in various tasks and/or additional sensorimotor
brain areas will be needed to advance our understanding
of the neural dynamics of the sensory processing, cogni-
tive planning, and motor execution for precise, corrective
movements.
The cyclic dynamics of corrective movements have impor-

tant implications for brain-computer interfaces (BCIs). To
date, most BCI decoders are time-invariant, not recognizing
when submovements occur. Decoders are typically first
constructed from observed or imagined movements
that assume single, straight-line movements. When algo-
rithms for updating BCI decoders consider the change in
movement direction for corrective movements, it typi-
cally has been assumed the intended path is updated
continuously (Gilja et al., 2012; Shanechi et al., 2016).
Experiments have suggested that BCI control can be im-
proved with two states: active control and rest (Kim et
al., 2011; Williams et al., 2013, 2016; Sachs et al., 2016).
Our results suggest that computing the phase of cyclic,
CI neural activity with CIw (Fig. 7B) can provide better
prediction of the timing of corrective submovements
than using the instantaneous firing rates alone (Fig. 7C).
This may lead to BCIs that allow the subject to better sig-
nal when they intend to make a corrective movement.
With additional information about the typical neural dy-
namics and kinematics of submovements, BCI decoders
may better estimate natural kinematics from noisy neural
signals. Taking into account the cyclic dynamics of the
CI neural activity may also lead to better descriptions of
the condition-dependent activity that encodes task fea-
tures. For example, direction encoding has been shown to
shift progressively during a single movement (Sergio and
Kalaska, 1998; Churchland and Shenoy, 2007; Suminski et
al., 2015; Suway et al., 2017). Accounting for the phase of a
movement with its cyclic, CI activity (i.e., CIw ) could enable
decoders of movement direction that shift progressive dur-
ing a single movement. Such improvements could lead to a
more robust description of the neural encoding of precise
and corrective movements.
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