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Complex network analysis of phase 
dynamics underlying oil-water two-
phase flows
Zhong-Ke Gao, Shan-Shan Zhang, Qing Cai, Yu-Xuan Yang & Ning-De Jin

Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water 
flows is an important problem of significant challenge. We design a high-speed cycle motivation 
conductance sensor and carry out experiments for measuring the local flow information from different 
oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical 
features of three flow patterns from the perspective of energy and frequency. Then we infer complex 
networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the 
phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In 
particular, we employ spectral radius and weighted clustering coefficient entropy to characterize 
the derived unweighted and weighted networks and the results indicate that our approach yields 
quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water 
flows.

Liquid-liquid/gas-liquid flows are widely encountered in many industrial processes. The mixture flow of immis-
cible oil-water can be viewed as a complex system with typical features of instability, transient and randomness. 
The characterizations of low velocity oil-water flows are still quite limited compared to that of gas-liquid flows. In 
the recent years, the interest in vertical low velocity oil-water flows has greatly increased due to the development 
of China petroleum industry. The oil and water usually coexist during the oil-well production, and these two 
immiscible fluids can distribute themselves in various temporal-spatial configurations, known as flow patterns. 
Different flow patterns exhibit distinct local flow behaviors, how to measure the very local flow behavior and then 
reveal the underlying dynamics of high water cut and low velocity oil-water flows have represented a challenge of 
significant importance.

The exploration of two-phase flows, as a multidisciplinary subject, has attracted a great deal of attention on 
account of its significant importance. For example, the methods of symbolic dynamic filtering1, recurrence net-
work2, RQA and PCA analysis3, multiscale entropy4 and time-frequency annlysis5 have been developed to investi-
gate two-phase flow patterns from experimental measurements. Despite the existing results, significant challenges 
in the study of high water cut and low velocity oil-water flows still remain. So far there has been no satisfactory 
understanding of the phase dynamics related to the transitions of different patterns in such flows. In addition, the 
single-channel measurement enables to measure macroscopic flow behavior but loses the local and microcosmic 
flow information which is quite important for further characterizing the underlying flow mechanism. In this 
regard, designing a novel sensor to capture the very local flow behavior and then proposing an efficient method 
to fuse multi-channel measurements for uncovering phase dynamics represent important and urgent problems 
to be solved.

Recently, complex network has well established itself as a powerful theory for characterizing complex sys-
tems6–11. Complex network is made up of a collection of nodes and edges, where a node represents the system 
component and an edge is the interaction between components. Quite recently, complex network has been devel-
oped to analyze time series12–15, and many successful applications in different areas have enriched the study of 
complex network, e.g., human brain16,17, network topology inference18, climate system19, combustion noise20 and 
multiphase flows21–23, etc. Bridging complex network analysis and multivariate information fusion would be an 
appealing approach for multi-channel data analysis. We in this paper design a novel high-speed cycle motivation 
8-electrodes sensor to capture the very local flow information and this sensor enables to acquire 48 signals from 
different spatial positions at one time. We carry out vertical upward oil-water two-phase flow experiments and 
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obtain local flow information (multi-channel signals) from different flow conditions. We first use multivariate 
pseudo Wigner distribution to probe the transient flow behaviors of different flow patterns from the perspective 
of energy and frequency. Then, we infer unweighted and weighted complex networks from multivariate meas-
urements in terms of the phase lag index. We employ spectral radius and weighted clustering coefficient entropy 
to access to the networks derived from different flow conditions. The results demonstrate that our analysis allows 
characterizing the coupled phase dynamic behaviors associated with the evolution and transition of different 
oil-water flow patterns. These properties render our designed sensor and analytical framework particularly useful 
for uncovering the phase dynamics of high water cut and low velocity oil-water two-phase flow.

Results
Experimental design and data acquisition. We carry out the oil-water two-phase flow experiment in a 
vertical upward 20 mm-inner-diameter plexiglass pipe at Tianjin University. The experiential media are tap-water 
and No. 3 white oil. Figure 1 shows our experimental flow loop facility which mainly consists of the following 
parts: a water tank, an oil tank, two peristaltic metering pumps, a mixing tank, a vertical testing pipe, and our 
designed HCMC sensor (High-speed Cycle Motivation Conductance sensor). The inlet mixture flow velocity 
and water cut can be accurately measured by the high precision peristaltic metering pumps. Experiments are 
conducted by fixing a water cut and then adjusting the mixture flow velocity increasingly. For each experimental 
run, oil and water are drawn out from their own tanks, respectively. Thereafter the two phases mix themselves at 
the mixer section before they are delivered together to the vertical testing pipe. At the testing part, for each flow 
condition, 48-channel signals are acquired from different spatial positions and then are stored by our designed 
data acquisition devices. The high-speed camera accompanying with the visual observation is employed to help 
identify flow patterns. Three oil-in-water flow patterns have been observed, i.e., oil-in-water slug flow, oil-in-wa-
ter bubble flow, oil-in-water VFD flow (very fine dispersed oil-in-water bubble flow). Specially, the installation 
positions of our designed sensor and high-speed camera are chosen elaborately, aiming to record fully developed 
flow structures. Finally, the mixture flow is discharged to the mixing tank where oil and water will separate from 
each other due to gravity difference.

Multivariate time-frequency representation of flow patterns. Based on the experimental 
multi-channel signals measured from high-speed cycle motivation 8-electrodes sensor, we using multivari-
ate pseudo Wigner distribution24 calculate the multivariate time-frequency representation for three typical 
oil-in-water flow patterns. Multivariate time-frequency representation allows us to access to the coupled transient 
features of multi-channel signals. The calculated results are shown in Figs 2–4. As can be seen, the distributions 
of energy and frequency for different flow patterns exhibit distinct features. Vertical oil-in-water slug flow occurs 
at low oil-water mixture flow velocity and high oil cut, where the oil phase exists in the form of slugs whose diam-
eters nearly equal to the pipe diameter. Its dominant characteristics lie in slowly quasi-periodic movements and 
obvious intermittent oscillations. Consequently, as shown in Fig. 2, the multivariate time-frequency representa-
tion of oil-in-water slug flow exhibits the features of low frequency band, i.e., 0–2 Hz, and high energy values with 
an intermittent distribution (in the range of 0–0.6). With an increase in mixture flow velocity, the oil slug gradu-
ally becomes unstable resulting from the increased turbulent energy, and then oil slugs are dispersed into small oil 
droplets, i.e., oil-in-water bubble flow occurs. Figure 3 shows the multivariate time-frequency representation of 
oil-in-water bubble flow. Notably, the energy distribution of oil-in-water bubble flow presents a relative dispersive 
feature with the upper energy value decreasing to 0.12, and meanwhile the frequency band increases to 0–4 Hz, 
suggesting the intermittent oscillation becomes unobvious and lots of oil droplets flow in a faster and stochastic 
way. With the further increase of mixture flow velocity, the oil droplets are eventually broken into much smaller 
oil droplets as the flow evolves into oil-in-water VFD flow. The energy of this flow pattern further decreases (with 
the upper energy value being 0.001), as shown in Fig. 4, and meanwhile the dispersive feature in the energy dis-
tribution becomes more obvious and the frequency band increases to 0–8 Hz. These features attribute to the fact 
that the local transient flow behavior becomes more stochastic induced by the increased turbulent energy. These 

Figure 1. Schematic of vertical upward oil-water two-phase flow loop facility. 
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interesting results render the multivariate pseudo Wigner distribution particularly useful for characterizing tran-
sient local flow behaviors underlying three vertical oil-water flow patterns.

Complex network analysis of phase dynamics underlying different flow patterns. Our method 
allows inferring phase-based two-phase flow networks from experimental multi-channel measurements. The 
derived complex network can be unweighted or weighted. We in this paper construct both unweighted and 
weighted networks to characterize the phase dynamics underlying different oil-water flow patterns. In order 
to quantitatively characterize the inherent phase dynamics, we employ spectral radius25 to analyze the derived 
unweighted networks and develop a unique weighted clustering coefficient entropy to assess the inferred weighted 
networks. The spectral radius ρ  (A) is defined as:

ρ λ= = ...A i n( ) max( ) 1 (1)i
i

where λ λ λ..., , n1 2  are the eigenvalues of the unweighted matrix A. We recently proposed a clustering coefficient 
entropy15, and here we develop it to analyze weighted network, named as weighted clustering coefficient entropy:
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Figure 2. The multivariate pseudo Wigner distribution of oil-in-water slug flow with the mixture flow 
velocity 0.0368 m/s and water cut 60%. 

Figure 3. The multivariate pseudo Wigner distribution of oil-in-water bubble flow with the mixture flow 
velocity 0.2210 m/s and water cut 60%. 
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where N is the number of nodes and CW (v) is the weighted clustering coefficient26 of a node v:
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where wv,j is the weight between node v and j, i.e., the element of weighted matrix W. We using the above method 
construct unweighted and weighted networks from our multi-channel measurements for different flow condi-
tions, and then calculate the spectral radius and weighted clustering coefficient entropy. The results are shown in 
Figs 5–8, in which Kw denotes the fixed water cut and Vm represents mixture flow velocity. We can see that, the 
distributions of spectral radius and weighted clustering coefficient entropy present distinct features for three typ-
ical oil-in-water flow patterns. Vertical oil-in-water slug flow occurs at low water cut and oil-water mixture flow 
velocity, where small numbers of oil droplets simultaneously follow big cap shaped oil slugs. Its local flow behavior 
presents the features of intermittent oscillations and non-homogenous distribution. As can be seen from Fig. 5, the 
spectral radius and weighted clustering coefficient entropy gradually increase as the mixture flow velocity increas-
ing from 0.0184 m/s to 0.1105 m/s, and then they fall down when the flow velocity reaches to 0.1474 m/s. Actually, 
as the flow velocity increases from a very low value, numbers of small slugs and oil droplets interact with each other 
and more coalescences occur to form long slugs, and flow behavior exhibits a more obvious quasi-periodic feature. 
Consequently, the increase of network measures at low flow velocities reflects that the intermittent oscillations and 
coupled phase dynamic behaviors become more obvious. When the flow velocity reaches to a critical value, large 
slugs are broken into small oil slugs due to the large turbulence energy and the quasi-periodic movements of oil 
slugs become weak. Therefore, the two network measures will fall down as the flow velocity reaching to 0.1474 m/s. 
With the continuously increase of mixture flow velocity, oil-in-water bubble flow occurs, where oil phase that 
exists in the form of discrete droplets randomly flows in a water continuum. As can be seen from Figs 5 and 6, the 
spectral radius and weighted clustering coefficient entropy gradually decrease in the transition from oil-in-water 
slug flow to oil-in-water bubble flow, indicating the intermittent oscillations of oil slugs gradually disappear and 
the stochastic movements of oil droplets become dominant, and meanwhile the coupled phase dynamic behavior 
has been weakened. With a further increase in mixture flow velocity, the oil droplets are broken into even smaller 
oil droplets as the flow evolves from oil-in-water bubble flow to VFD flow. In this flow pattern, lots of smaller oil 
droplets uniformly dispersed in the water continuous phase and randomly flow from the bottom up. Consequently, 
as shown in the Figs 7 and 8, the spectral radius and weighted clustering coefficient entropy decrease to the low-
est values as the flow pattern evolves to oil-in-water VFD flow, suggesting the local flow behavior of VFD flow 
becomes more stochastic and correspondingly the coupled phase dynamic behavior gradually dies away. In addi-
tion, we interestingly find that for the oil-in-water bubble type flows at a high water cut, the spectral radius is sen-
sitive to the change of water cut. For example, the spectral radius will decrease as the water cut increase from 93% 
to 96%. These interesting findings demonstrate that our phase-based network analysis allows characterizing the 
evolution and transition of flow patterns arising from high water cut and low velocity oil-water flows.

Discussions
In summary, we design a high-speed cycle motivation conductance sensor to measure very local flow infor-
mation from different oil-water flow conditions. Based on the multi-channel measurements, we investigate the 

Figure 4. The multivariate pseudo Wigner distribution of oil-in-water VFD flow with the mixture flow 
velocity 0.2579 m/s and water cut 96%. 
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transient local flow behaviors underlying different flow patterns in terms of the multivariate pseudo Wigner 
distribution. Then we introduce a methodology for inferring phase-based two-phase flow complex networks 
from multi-channel signals. In particular, we derive unweighted and weighted networks from different flow con-
ditions and use spectral radius and weighted clustering coefficient entropy to characterize the inferred networks. 
Our results suggest that the clustering coefficient entropy and spectral radius allow faithfully representing and 
characterizing the change of phase dynamic states in the transitions of three oil-in-water flow patterns, which 
yields novel insights into the complicated coupled local flow behavior associated with flow velocity and water cut, 
especially for high water cut and low velocity vertical oil-water flows.

Methods
Multivariate pseudo Wigner distribution. For a multi-channel signal + tx ( )
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Figure 5. Distribution of the network measures with the change of mixture flow velocity for different flow 
conditions when Kw = 60%. (a) Spectral radius for unweighted networks; (b) Weighted clustering coefficient 
entropy for weighted networks.
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where a t( )n  and φ t( )n  denote the instantaneous amplitude and phase for each sub-signal = ....n N1, , . The 
Wigner distribution can be defined by:

∫ω τ τ τ=
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where + tx ( )H  is the Hermitian transpose of a vector + tx ( ). The central frequency of the Wigner distribution for a 
multi-channel signals + tx ( ) at time t is as follows:
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We using the inverse Wigner distribution rewrite the formula (8) in the form of

Figure 6. Distribution of the network measures with the change of mixture flow velocity for different flow 
conditions when Kw = 84%. (a) Spectral radius for unweighted networks; (b) Weighted clustering coefficient 
entropy for weighted networks.
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According to refs 24, 27, the joint instantaneous frequency of multi-channel signals can be calculated by:

Figure 7. Distribution of the network measures with the change of mixture flow velocity for different flow 
conditions when Kw = 93%. (a) Spectral radius for unweighted networks; (b) Weighted clustering coefficient 
entropy for weighted networks.
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where the symbol “I” represents the imaginary part of a complex signal and φ ′ t( )n  is the instantaneous frequency 
for each channel signal. In a similar way, the instantaneous bandwidth follows from
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Finally, we use a multivariate extension of the pseudo Wigner distribution28, where a window function is 
employed to evaluate formula (6), and therefore the multivariate pseudo Wigner distribution can be realized.

Figure 8. Distribution of the network measures with the change of mixture flow velocity for different flow 
conditions when Kw = 96%. (a) Spectral radius for unweighted networks; (b) Weighted clustering coefficient 
entropy for weighted networks.
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Inference of phase-based two-phase flow complex network. For a multi-channel signals 
= ...=x k N{ } , 1, 2, ,k i i

L
, 1 , containing N sub-signals of equal length L. We first use the phase lag index (PLI)16,17 to 

measure the phase correlation between the two sub-signals i and j as follows:

φ= ∆PLI i j sign tk( , ) [sin( ( ))] (14)

φ∆  is the phase difference at time-point k between two sub-signals i and j, sign stands for signum function, < >  
denotes the mean value and || represents the absolute value. Instantaneous phases can be determined by Hilbert 
transformation. PLI is in the range of 0~1. If there does not exist any coupling between two signals, the value of 
the PLI equals to 0; In contrast, PLI will be 1 if there exists a completely consistent phase-lag coupling between 
two signals. We can obtain a phase correlation measure matrix P in terms of the rule Pij =  PLI (i, j). We then con-
struct a phase-based complex network by regarding each sub-signal as a node and determining the edges in terms 
of the strength of phase correlation between each pairs of signals. The derived phase-based network can be in the 
form of unweighted or weighted. By choosing a threshold, we can obtain an unweighted network matrix A or a 
weighted network matrix W from the phase correlation measure matrix P, and the rules of which read
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In particular, we select the threshold in the following rule29,

σ= +r M n (17)

where M is the mean of all PLI values and σ is the corresponding standard deviation and n =  0.15. An unweighted 
or weighted edge between node i and j exists if ≥P rij ; on the contrary, node i and j are disconnected if <P rij . 
The above procedures allow us to infer phase-based two-phase flow networks from multi-channel signals.
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