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Abstract

Background: Transcriptional regulatory network (TRN) is used to study conditional regulatory relationships between
transcriptional factors and genes. However few studies have tried to integrate genomic variation information such as copy
number variation (CNV) with TRN to find causal disturbances in a network. Intrahepatic cholangiocarcinoma (ICC) is the
second most common hepatic carcinoma with high malignancy and poor prognosis. Research about ICC is relatively limited
comparing to hepatocellular carcinoma, and there are no approved gene therapeutic targets yet.

Method: We first constructed TRN of ICC (ICC-TRN) using forward-and-reverse combined engineering method, and then
integrated copy number variation information with ICC-TRN to select CNV-related modules and constructed CNV-ICC-TRN.
We also integrated CNV-ICC-TRN with KEGG signaling pathways to investigate how CNV genes disturb signaling pathways.
At last, unsupervised clustering method was applied to classify samples into distinct classes.

Result: We obtained CNV-ICC-TRN containing 33 modules which were enriched in ICC-related signaling pathways.
Integrated analysis of the regulatory network and signaling pathways illustrated that CNV might interrupt signaling through
locating on either genomic sites of nodes or regulators of nodes in a signaling pathway. In the end, expression profiles of
nodes in CNV-ICC-TRN were used to cluster the ICC patients into two robust groups with distinct biological function
features.

Conclusion: Our work represents a primary effort to construct TRN in ICC, also a primary effort to try to identify key
transcriptional modules based on their involvement of genetic variations shown by gene copy number variations (CNV). This
kind of approach may bring the traditional studies of TRN based only on expression data one step further to genetic
disturbance. Such kind of approach can easily be extended to other disease samples with appropriate data.

Citation: Li L, Lian B, Li C, Li W, Li J, et al. (2014) Integrative Analysis of Transcriptional Regulatory Network and Copy Number Variation in Intrahepatic
Cholangiocarcinoma. PLoS ONE 9(6): e98653. doi:10.1371/journal.pone.0098653

Editor: Frank Emmert-Streib, Queen’s University Belfast, United Kingdom

Received January 18, 2014; Accepted May 6, 2014; Published June 4, 2014

Copyright: � 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by Key Infectious Disease Project (2012ZX10002012-014), National Natural Science Foundation of China (31070752), National Hi-
Tech program 2012AA020201, and National Key Basic Research Program 2010CB912702, 2011CB910204. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xielu@scbit.org (LX); yxli@sibs.ac.cn (YL)

Introduction

Transcriptional regulatory network (TRN) is a directed graph

describing regulatory effect of transcriptional factors (TFs) on

genes’ expression by binding to target DNA. Over last decades,

several methods of studying regulatory relationship between TFs

and genes under a given set of conditions have been proposed and

widely used, like ChIP-chip, genome-wide RNA interference and

DNase I footprinting assay [1,2]. Most of these technologies based

on the molecular biology or biochemistry are experimental

techniques with limitation on mass samples. Therefore, computa-

tional biologists have resorted to a forward engineering strategy

which is based on searching of transcriptional factor binding sites

in the putative target sequences [3]. To reduce the false positive

rates of forward engineering method, Yu et al proposed a

combinatorial inferring method that integrates forward engineer-

ing with reverse engineering of which relationships between TFs

and targets are inferred based on expressional correlation [4].

Compared with other networks, TRN has advantages in

properties of reflecting regulatory relationship, dynamics and

scale-free topological structure. TRN depicts the transcriptional

regulation of TFs on target genes which is an important regulatory

mechanism of gene expression. Neph S et al studied TRN of 41

diverse cell and tissue types using DNase I footprinting technology

and found that human TF networks are highly cell selective [5].

TRN is a scale-free network, in which the number of nodes that

make a large number of connections with other nodes (referred to

as ‘‘hubs’’) is much lower than the number of nodes with few
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connections, whereby hubs play a central role in directing the

cellular response to a specific stimulus [1]. All these features make

TRN an irreplaceable tool in disease research. In 2012, Zeng et al

found hepatocellular carcinoma metastasis related TF-regulated

modules by comparing regulatory network between metastatic and

non-metastatic liver cancer [6].

With the development of high-throughput technology, espe-

cially the flourish of SNP microarray, combined analysis of

genome and transcriptome is becoming increasingly popular, and

has greatly promoted our understanding of complex diseases.

Copy number variation (CNV), an important kind of genomic

variation, has gained increasing attention in recent years mainly

due to SNP microarray technology which has made studying

whole genome fast and economical. The importance of CNVs to

occurrence and development of disease has been confirmed in

many studies [7].

Until now, most studies of CNVs are focused on CNVs’ impact

on expression of genes located in verified regions, like eQTL [8], a

linear-regression based method. Others may combine CNV with

network method, like co-expression network [9] to analyze CNVs’

impact on not just genes inside CNV regions but also outside CNV

regions that are co-expressed.

But there is little work about interpreting influence of genomic

variation on expression through its disturbance to TRN. Mutation

in TFs can cause huge cascade effects as a TF targets a large

amount of genes involving many biological processes [10]. For

example, TP53, a well-known tumor suppressor transcription

factor, its mutation has been reported associated with cell

migration and invasion [11,12]. In 2012, David et al detailed

three mutated transcriptional factors NKX2-5, GATA4, and

TBX5 and their affected pathways in congenital heart disease

[13]. Essaghir et al introduced an integrated approach to construct

minimal connected network to TFs in 305 different human cancer

cell lines and found several universal cancer biomarkers [14].

These researches suggest the importance and feasibility of

integrating TRN with CNVs.

Intrahepatic cholangiocarcinoma(ICC) is the second most

common primary hepatic cancer with the highest occurring rate

in Thailand and other eastern Asian areas due to chronic

inflammation of bile ducts [15]. In 2013, Sia et al performed

gene expression and copy number variation integrated analysis in

ICC samples and classified these samples into two groups:

proliferation and inflammation [16].

In this research, we analyzed Sia et al data in a new perspective.

We constructed CNV genes related TRN of ICC (CNV-ICC-

TRN), integrated it with signaling pathways to see how CNV

genes disturb signaling transduction, and used it to classify ICC

samples into two molecular subtypes with distinct functional

features. The work flow is shown in Figure 1.

Methods

Materials and preprocess
Paired gene-expression profiles and DNA copy number profiles

of 125 ICC samples were downloaded from NCBI Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), the acces-

sion number is GSE33327 [16]. The platforms of these two kinds of

datum are Illumina HumanCytoSnp-12 Beadchip version 1.0 and

Illumina HumanRef-8 WG-DASL v3.0 respectively.

We downloaded probe-level expression profiles which were

normalized by cubic spline algorithm, a non-linear normalization

method using array signal distribution analysis and cubic splines

[17], calculated gene-level expression profiles using R package

dplR [18].Then we filtered out genes within the 5% smallest

standard deviations among all samples, 17428 genes were retained

for further analysis.

For DNA copy number profile, we ran segmentation analysis

using Circular Binary Segmentation algorithm (CBS) [19].

Regions with amplifications or deletions were identified using

GISTIC2.0 (GISTIC2.0 module, GenePattern http://www.

broadinstitute.org/cancer/software/genepattern [20]). Copy

number analysis was based on Human Genome Hg18. Thresholds

used for defining copy number amplification and deletion are 0.3

and -0.3 respectively. Regions with q-value less than 0.25 were

considered significant. Other parameters were default.

CNV-ICC-TRN construction
Forward engineering prediction of TF-gene regulatory relation-

ship was based on the sequence complementarity between

regulators and their targets. Reverse engineering method uses

expression datasets to filter condition-specific sub-network from

reference network, of which connection between nodes was based

on expressional correlation.

Firstly, we used forward-and-reverse combined engineering (File

S1) method to construct ICC-specific TRN (ICC-TRN). Se-

quence-based TF-gene pairs were downloaded from our web

platform for building combinatorial Gene Regulation Networks

(cGRNB, http://www.scbit.org/cgrnb/), which defines TF-gene

pair as that TF’s binding site should be located between upstream

1 kb and downstream 0.5 kb of transcription start sites [21].

203633 TF-gene pairs were obtained with expression profiles.

Secondly, the Context Likelihood of Relatedness (CLR), a

mutual information based network inference method from R/

Bioconductor package minet [22], was applied to compute

expression correlation of these pairs. CLR computes the mutual

information (MI) for each pair of genes and derives a score related

to the empirical distribution of the MI values. Formally, the MI for

two genes X and Y is defined as:

MI(X ,Y )~
X

i,j

P(xi,yj)log
P(xi,yj)

P(xi)P(yj)

Where xi, yj represent particular expression levels of X and Y,

P(xi) and P(yj) are the probabilities that X = xi and Y = yj, and P(xi,

yj) is the joint distribution of X and Y (More description is provided

in File S1). CLR returns an adjacency matrix, values of which

represent edge weight. For each module, we supposed that

correlation between a sequence-based TF-gene pair was stronger

than a random one, so we selected significantly correlated pairs

with CLR values larger than 95% of 1000 randomly selected non-

sequence-based pairs. After this screening, 9196 pairs were

retained including 164 modules and 4898 genes.

Finally, we performed filtration to extract CNV related ICC-

TRN (CNV-ICC-TRN). We set two criteria that modules left

should have clear biological function, and they must be regulated

by CNV-TFs or enriched by CNV-genes. We therefore performed

two kinds of enrichment analysis using Fisher’s exact test: one is

based on KEGG signaling pathway, another is based on CNV-

genes. For the first kind of test, base set was all 17428 genes with

expression; while for the second one, the base set was 4898 genes

in ICC-TRN. And the significance threshold was FDR,0.05.

Integrative analysis of CNV-ICC-TRN and KEGG signaling
pathway

We overlapped nodes containing CNV or regulated by CNV-

TF in CNV-ICC-TRN with KEGG signaling pathways, and

neighbors of overlapped nodes in signaling pathways were

Integrative Analysis of TRN and CNV in ICC
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embodied using R package KEGGgraph [23]. The integrative

network was constructed by combining edges of CNV-ICC-TRN

and edges of signaling pathways, both of which were connected

with overlapped nodes, shown through Cytoscape [24].

Unsupervised clustering and leave-one-out cross
validation

Expression profiles of genes in CNV-ICC-TRN were used to

perform unsupervised clustering using nonnegative matrix factor-

ization (NMF)-based consensus clustering method (NMFconsensus

module, GenePattern). NMF decomposes a nonnegative matrix V

into two nonnegative matrices W and H, V,WH. In the context of

p6n expression matrix V consisting p genes’ expression profiles in n

samples, W is a p6k metagenes matrix of which each column

represents a metagene, and H is a k6n expression matrix of which

each row is expression pattern of a metagene in n samples. The

rank k of the factorization represents the number of latent factors

in the decomposition (in our case, k is the number of clusters) [25].

Then three leave-one-out cross-validation (LOOCV) based

modules from GenePattern were used to evaluate the robustness of

the clustering result: KNNXValidation, WeightedVotingXValida-

tion, and CARTXValidation. In each round of cross-validation,

LOOCV takes a single observation from the original sample as the

validation data, and the remaining observations as the training

data (More details about NMF and LOOCV can be found in File

S1). All these analysis were performed using GenePattern, and

parameters were default. T-test was used to select differentially

expressed genes between two subgroups (significance threshold p-

value,0.001).

Result

Chromosome aberration: CNV
We first studied DNA copy number profiles of 125 ICC

samples, and found 42 regions with genomic variation including

12 amplified regions and 30 deleted regions. These CNV regions

covered 4221 genes among which 39 were TFs (CNV-TF) and

others were non-TF genes (CNV-gene). CNV regions containing

TFs are shown in Table 1 and all variation information are shown

in Table S1. Among these TF-containing regions, losses of 3p [26]

and 9p [26,27], have been reported with more than 20%

prevalence in chromosome aberration studies of ICC. Most TFs

are located in loss regions except RUNX1 who is the only TF

located in gain region. An interesting region 19p13.2, even though

mutated at low frequency, covered 15 TFs indicating its potential

role in ICC development as some studies have figured out the

importance of low frequency CNVs to cancer risk [28,29].

CNV -ICC-TRN
Network structure of CNV-ICC-TRN. We first constructed

TRN of ICC (ICC-TRN) using forward-and-reverse combined

engineering method, and then extracted modules from ICC-TRN

to form CNV-ICC-TRN according to the following selection

standards: 1) the selected modules should have biological

significance; 2) the selected modules are regulated by CNV-TF,

or enriched by CNV-genes. With such standards, we finally

obtained a CNV-ICC-TRN containing 33 regulatory modules,

each of them composed by one specific TF and all of its first-layer

targets (Details of CNV-ICC-TRN shown at Table S2). The size

and type of every regulatory module are shown in Figure 2. There

were three types of modules according module selecting criteria:

CNV-TF-only regulated modules, CNV-genes-only enriched

modules, and both CNV-TF regulated and CNV-genes enriched

modules. We could see that the top three largest modules are

CNV-gene-only enriched modules, and CNV-TF-only regulated

modules have relatively smaller sizes. Eight modules are both

CNV-TF regulated and CNV-gene enriched, and among these

eight CNV-TFs, YY1 [30], MZF1 [31], DAND5 [32], NFYB

[33], ESR1 [34] have been reported in liver cancer development

and metastasis.

CNV-ICC-TRN was composed of four kinds of nodes

according whether they were inside or outside CNV regions:

CNV-TF, CNV-gene, non-CNV-TF and non-CNV-gene, and

seven kinds of edges between these nodes: CNV-TF to CNV-TF,

Figure 1. Workflow of integrative analysis of TRN and CNV in ICC.
doi:10.1371/journal.pone.0098653.g001

Integrative Analysis of TRN and CNV in ICC
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CNV-TF to non-CNV-TF, non-CNV-TF to non-CNV-TF, CNV-

TF to CNV-gene, CNV-TF to non-CNV-gene, non-CNV-TF to

CNV-genes and non-CNV-TF to non-CNV-gene. The statistics

about nodes and edges are shown in Table 2. Nodes inside CNV

regions were about a quarter of all nodes, and edges connected

with these nodes accounted forty-seven percent of total edges, so

we might conclude that ICC-CNV-TRN is highly CNV-genes

intensive.

Biological functions tackled in modules of CNV-ICC-

TRN. To study biological functions of modules of CNV-ICC-

TRN involved in, we implemented enrichment analysis based on

KEGG signaling pathways, results are shown in Figure 3 and

Table S3. These modules were extensively enriched into five

categories: signal transduction, cell communication, immune

system, metabolism, and disease and cancer related pathways,

which coincide with ICC’s clinical and pathological features of

high degree malignancy, poor prognosis and inflammation [35].

Among all involved pathways, Wnt signaling pathway was

enriched by four modules of CNV-ICC-TRN, regulated by

AHR, TFAP2A, NFKB2 and PAX5. Wnt signaling activation was

associated with low differentiation and high proliferation in human

biliary tract cancer [36]. Vasopressin-regulated water reabsorption

was also enriched by four modules. There has been no research

relating this pathway to any cancers, but water balance is

very important to homeostasis, disorder of which could break

homeostasis that may ultimately contribute to cancer [37]. MAPK

signaling pathway was enriched by NFKB and PSG1 modules of

CNV-ICC-TRN. MAPK signaling has been reported involved in

biliary epithelial cell growth [38]. Similarly, JAK/STAT signaling

pathway enriched by TFAP2A was reported to be activated in

50% of ICC, and might affect more than 70% of the ICC

inflammation subclass [15]. Moreover, ERBB2 signaling pathway

enriched by SP1 and ELK1 has been implicated in the molecular

pathogenesis of intrahepatic cholangiocarcinoma by interacting

with other relevant signaling pathways, including linking to bile

acid, vascular endothelial growth factor signaling [39].

On the other hand, some modules were very active as they were

enriched to several signaling pathways, such as CNV-genes-only

enriched modules: AHR, E2F1, PTAZ1, SP1, CNV-TF-only

regulated modules: NFKB2, and both CNV-TF regulated and

CNV-gene enriched modules: YY1, DAND5 and MZF1.

Disturbance of genes in CNV regions to signaling
pathways

Modules’ biological function analysis showed that these modules

were enriched to some ICC related signaling pathways. So we

performed integrative analysis of CNV-ICC-TRN and KEGG

signaling pathways to study how CNV-genes in network disrupt

signaling pathways. Results shown in Figure 4A, reflected that

Table 1. CNV-regions containing TFs.

Cytoband q.value Amp/Del Frequence TFs

3p26.2 1.69E-02 Del 0.16 PPARG

6q21 7.38E-06 Del 0.168 ESR1,FOXO3,HSF2,MYB,POU3F2,TBP,DACH2

8p23.1 2.87E-02 Del 0.104 EGR3,NKX3-1

10q26.13 4.56E-02 Del 0.04 EGR2,NFKB3,DAX2,PLAU,HMX3

12q24.33 7.84E-02 Del 0.048 NFYB,HNF1A,ALX1

13q12.11 2.61E-01 Del 0.144 FOXO1,ZIC2,KLF12

19p13.2 1.48E-01 Del 0.016

BAX,CEBPA,FOSB,JUND,JUNB,POU2F2,PSG1,RFX1,TCF3,USF2,M2F1,
NFIC,RNASEH2A,DAND5,ZSCAN116q24.30.10881Del0.08FOXL114q32.322.82E-03Del0.176YY121q22.126.09E-03Amp0.04RUNX1

Node: Amp is short for amplification, and Del is for Deletion. All chromosomal aberration regions are listed at Table S3.
doi:10.1371/journal.pone.0098653.t001

Figure 2. Overview of module subtype and size in CNV-ICC-TRN. In both A and B figures, blue color represents CNV-gene-only enriched
module, green color represents CNV-TF-only regulated module, red color represents both CNV-TF regulated and CNV-gene enriched module.
doi:10.1371/journal.pone.0098653.g002

Integrative Analysis of TRN and CNV in ICC
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some genes of signaling pathways had copy number variation, but

most were only regulated by CNV-TFs. From this we might

conclude that genomic variations could affect signaling pathways

in two ways: at some cases, variation happens on genes of signaling

pathways; at most cases, variation happens on regulators such as

TFs that can lead to abnormal expression of genes in signaling

pathways. We also found that CNV-TFs YY1, ZSCAN1, MZF1

and DAND5 regulated a large number of genes involved in a

variety of signaling pathways; and some non-disease signaling

pathways such as Wnt signaling pathway, MAPK signaling

pathway and TFG-beta signaling pathway had more than thirteen

percent of genes regulated by CNV-TFs or located in genomic

variation regions. This indicates that genomic variation of ICC in

these TFs regions can cause dysfunction of a variety of pathways,

and some pathways may be fundamentally deregulated.

Then we investigated three pathways in detail which are closely

related to the development of ICC: MAPK signaling pathway,

Wnt signaling pathway and TGF-b signaling pathway.

Integrative analysis of CNV-ICC-TRN and MAPK signaling
pathway

The MAPK cascade is a highly conserved module which

participates in various cellular functions, including cell prolifera-

tion, differentiation and migration, and it might be a personalized

therapy target in ICC [40]. Result of CNV-ICC-TRN and MAPK

signaling integration is shown in Figure 4B. CNV-genes MAP3K7

and MAP2K7 are two mitogen-activated protein kinase kinases,

Table 2. Overall statistics about the nodes and edges of CNV-ICC-TRN.

Category Sub Category Types Num.

Nodes TF CNV-TF 24

non-CNV-TF 54

gene CNV-gene 408

non-CNV-gene 1898

Edges TF-TF CNV-TF to CNV-TF 5

CNV-TF to non-CNV-TF 20

non-CNV-TF to non-CNV-TF 36

TF-gene CNV-TF to CNV-gene 177

CNV-TF to non-CNV-gene 868

non-CNV-TF to CNV-gene 350

non-CNV-TF to non-CNV-gene 1567

doi:10.1371/journal.pone.0098653.t002

Figure 3. Biological functions tackled in modules of CNV-ICC-TRN. X-axis represents signaling pathways and IDs, y-axis represents the
number of modules enriching to each pathway. Complete information is shown in Table S3.
doi:10.1371/journal.pone.0098653.g003

Integrative Analysis of TRN and CNV in ICC
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playing important roles in cell response to environmental stresses

and inflammation [41,42]. CNV-TF NFKB2 regulated two

MAPK upstream kinases MAP2K3 and MAP3K8. CNV-TFs

TBP and NFYB targeted HSPA2, HSPA8 and HSPA1A

respectively, three members of heat shock protein 70 which could

inhibit apoptosis in cancer cells through simultaneous and

independent mechanisms [43]. CNV-genes AKT1 and AKT2

could interplay with MAPK signaling pathway in regulating cell

apoptosis [44], and study has shown that there is a fine balance of

cross-talk between mitogenic RAS/MAPK and survival PI3K/

AKT pathways [45]. CNV-genes CACNA1 and CACNG7, two

calcium channel subunits, compound with RAS guanyl nucleotide

releasing proteins which are guanyl nucleotide exchange factors

that activate Ras and related GTPases such as RAP [46]. CNV-

genes FGFR2 could induce cholangiocarcinoma cell migration via

activation of the MEK1/2 pathway [47]. CNV-TF PSG1

regulated upstream activator PTPN7, downstream target ATF2

[48] of MAPK pathway.

Integrative analysis of CNV-ICC-TRN and Wnt signaling
pathway

Wnt signaling transmitting signals from outside through cell

surface receptors to the inside of the cell, is required for cell

differentiation and proliferation, and inhibition of which can

induce cell apoptosis and suppress cell proliferation in cholangio-

carcinoma cells [49]. Result of CNV-ICC-TRN and MAPK

signaling integration is shown in Figure 4C. CNV-gene FZD10, a

cell-surface receptor for Wnt proteins, was reported negatively

related with Wnt signal transduction in colorectal cancer [50].

CNV-gene RHOA, downstream target of Wnt signaling, is a

member of Rho family of small GTPases which were promising

cellular targets for novel anticancer drugs [51]. CNV-gene

TCF7L2 played a key role in Wnt signaling and was associated

Figure 4. Integrative analysis of CNV-ICC-TRN and KEGG signaling pathways. (A). Integrated network of CNV-ICC-TRN and KEGG signaling
pathways. Triangle represents TF, circle represents gene and rectangle represents signaling pathway; red color means gene inside CNV region, green
color means gene outside CNV region. (B) Integrative analysis in MAPK signaling pathway. (C) Integrative analysis in Wnt signaling pathway. (D)
Integrative analysis in TGF-b signaling pathway. In figure B, C, D, red edges are from CNV-ICC-TRN, and off-white edges are from signaling pathways.
doi:10.1371/journal.pone.0098653.g004

Integrative Analysis of TRN and CNV in ICC
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with susceptibility of hepatocellular carcinoma [52]. Two core

members of Wnt family WNT9B and WNT3 were targeted by two

CNV-TFs MZF1 and ZSCAN1 respectively.

Integrative analysis of CNV-ICC-TRN and TGF-b signaling
pathway

TGF-b signaling takes part in in many cellular processes such as

proliferation, apoptosis, differentiation and migration by activating

SMAD signaling. Munker et al reported that TGF-b1 could

contribute to ICC via SMAD dependent and independent

pathway [53]. Result of CNV-ICC-TRN and TGF-b signaling

integration is shown in Figure 4D. Three CNV-TFs ZSCAN1,

RFX1 and NFIC targeted two SMAD proteins SMAD3 and

SMAD7. Study of Huang et al showed that SMAD7 was highly

expressed in cholangiocarcinoma and might be a potential

prognostic indicator for clinical assessment [54]. ZSCAN1 also

targeted TGFBR1 which can activate SMAD proteins.

Clustering analysis reveals two ICC classes
The above biological function annotation showed that modules

of CNV-ICC-TRN participated in several different aspects of

biological processes. We then performed clustering analysis to

check whether they can classify ICC samples into subtypes with

distinct biological functions. The non-negative matrix factoriza-

tion–based unsupervised clustering [25] was used based on genes

of CNV-ICC-TRN, and results were confirmed by three LOOCV

methods. Finally, we classified all samples in two clusters which

were named cluster I (54 of 125; 43.2%) and cluster P (71 of 125;

56.8%) (Figure 5, Figure S1, Table S4 and Table S5). By using the

same classification method, our result coincided with Sia et al

result at the rate of 88.8% (111 of 125 matched), cluster I

corresponding to their inflammation class and cluster P corre-

sponding to their proliferation class. Signaling pathway enrich-

ment analysis of differentially expressed genes of CNV-ICC-TRN

between two clusters (Table S6) suggested that these two classes

had different malignancy features: highly expressed genes in

cluster I were enriched to cell adhesion related pathways, such as

focal adhesion and tight junction; highly expressed genes in cluster

P were enriched to oncogenic signaling pathways such as MAPK

signaling, Wnt signaling pathway (Table S7). These results

demonstrate the potential application of our network in classifica-

tion and prognosis analysis of ICC.

Discussion

Pathogenesis studies based on gene expression profiling have

evolved through several stages: single gene expression profiling;

network construction and functional annotation; causal hub

discovery and intervention design. Single gene expression profiling

is straightforward and simple, numerous gene list signatures have

been reported to either diagnose samples or predict outcome or

prognosis. However it is hard to explain the functional categories

of single genes. Network analysis allows structured grouping of

genes, and functional module discovery can often lead to next-step

research focus, which is a big progress compared to single gene

profiling. The most popularly studied networks are probably the

TRN and PPI (protein-protein interaction network). However

functional modules in a network may still be dispersed and

unconnected among each other, trying to find causal disturbances

in a network has been a major goal of many computational

biologists. For examples, our group have tried to develop

algorithms to identify primary and secondary regulatory effects

from a microRNA initiated TRN [4], have tried to identify

possible hepatitis B- or C- virus protein disturbances to PPI

network in hepatocellular cancer development and progression

[30,55], and we have even tried to validate causal TFs in

constructed TRN by knocking out gene expression data and post-

translational modification regulation data [56].

However, genetic variation was rarely considered in either our

efforts or others’ when trying to identify causal disturbances in a

transcriptional regulation network. This probably was due to a

lack of genomic sequencing and transcriptomic profiling on the

same set of samples. Gene expression data alone largely prevail

and bioinformatics PPI background networks are easily available

too, these may have brought about some research biases in this

field. However it should be readily conceived that if some

functional modules in a TRN are already genetically modified,

then they very likely may become the weakest points in a network

that can divert the network function to adverse pathologic

directions. Based on this rationale, and with the quickly increasing

new generation genome sequencing data of disease samples,

recently people start to investigate the genetic variation dis-

turbance to gene expression networks. Xu et al. constructed CNV

genes’ co-expression network of breast cancer to study genomic

variations’ effect through co-expressed genes’ function [9]. Zaman

Figure 5. ICC subclasses. Based on expression profiles of genes in
CNV-ICC-TRN, the non-negative matrix factorization–based algorithm
divided ICC samples to two classes cluster I (right branch) and cluster P
(left branch). This figure is heat map of differentially expressed genes
between two classes.
doi:10.1371/journal.pone.0098653.g005
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et al predicted breast cancer subtype-specific drug targets through

signaling network assessment of mutations and copy number

variations [57].

ICC is the secondly occurring liver cancer which involves a

large human population, and yet it was much understudied

comparing to hepatocellular carcinoma. Sia et al work represents

the first comprehensive multi-level profiling of ICC samples,

including RNA and SNP microarray data. Our work, based on

their data, represents a primary effort to construct TRN in ICC,

using our earlier developed forward-and-reverse combined en-

gineering algorithms. Furthermore, we made another primary

effort to try to identify key transcriptional modules based on their

involvement of genetic variations shown by gene copy number

variations. This kind of approach may bring the generally

constructed TRN one step further to genetic disturbance, which

may help greatly in discovering possible intervention targets for

ICC. Such kind of approach can easily be extended to other

disease samples with appropriate data.

On the other hand, we put forward a new method of

interpreting impact of genomic variations on signaling pathways.

Integrative analysis of regulatory modules and KEGG signaling

pathway illustrated that the disturbance of genomic variation on

signaling pathway can happen on components of pathway which

was the focus of previous studies, such as variation of MAP3K7,

MAP2K7 and FGFR2 in MAPK signaling, and FZD10 in Wnt

signaling; but may also happen more effectively on regulators,

such as variation of ZSCAN1, RFX1 which regulate SMAD

proteins, the key joints of TGF-b signaling. Previous studies mostly

focused on mutations in genes of signaling pathway, our studies

extended to mutations in genes outside signaling pathway by

integrating regulatory network. This approach broadens the way

of exploring the potential impact of gene mutations.

At last, using the expression profiles of genes in CNV-ICC-

TRN, we classified 125 ICC samples into two robust molecular

clusters with distinct biological function features. This result at one

hand helps to get insight into ICC molecular classification which is

still ambiguous, on the other hand proves the application value of

our innovation.

There are limitations to this early work of integrating genetic

variation and TRN. We did not analyze single nucleotide

polymorphisms (SNP) which may affect genes more specifically.

We could not obtain clinic information to validate our subtype

classification of patient samples. With the development of

technology, more and more genetic variation information, such

as SNP, chromosomal translocations, CNV, and so on, could be

used to investigate their disturbance to TRN. On the other hand,

more annotation to TRN construction itself, such as referencing

protein-protein interaction relationship, kinase-substrate relation-

ship, other post-translational modification relationship, should be

carried out. Progresses in both these two directions will help in

finding causal network modules and modulators. With the

increment of drug-target database volume, or increase of novel

drug development strategy, such kind of bioinformatics analyses

which integrate genetic variation with network construction will

bring experimental data closer to possible clinical intervention.
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37. Rodrı́guez-Molinero A, López-Diéguez M, Banegas JR (2007) Tissue home-
ostasis and cancer. Medical hypotheses 68: 1333–1341.

38. Tan FLS, Ooi A, Huang D, Wong JC, Qian CN, et al. (2010) p38delta/
MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in

cell motility and invasion. International Journal of Cancer 126: 2353–2361.

39. Sirica AE (2008) Role of ErbB family receptor tyrosine kinases in intrahepatic
cholangiocarcinoma. World journal of gastroenterology: WJG 14: 7033.

40. Geynisman DM, Catenacci DV (2012) Toward personalized treatment of
advanced biliary tract cancers. Discovery medicine 14: 41–57.

41. Hodgson P, Aich P, Manuja A, Hokamp K, Roche F, et al. (2005) Effect of stress
on viral–bacterial synergy in bovine respiratory disease: novel mechanisms to

regulate inflammation. Comparative and functional genomics 6: 244–250.

42. Sakurai H (2012) Targeting of TAK1 in inflammatory disorders and cancer.
Trends in pharmacological sciences 33: 522–530.

43. Dudeja V, Mujumdar N, Phillips P, Chugh R, Borja–Cacho D, et al. (2009)
Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous

and independent mechanisms. Gastroenterology 136: 1772–1782.

44. Rane MJ, Song Y, Jin S, Barati MT, Wu R, et al. (2010) Interplay between Akt
and p38 MAPK pathways in the regulation of renal tubular cell apoptosis

associated with diabetic nephropathy. American Journal of Physiology-Renal
Physiology 298: F49-F61.

45. Aksamitiene E, Kiyatkin AB, Kholodenko BN (2012) Cross-talk between
mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance.

46. Stone JC (2011) Regulation and function of the RasGRP family of Ras activators

in blood cells. Genes & cancer 2: 320–334.
47. Narong S, Leelawat K (2011) Basic fibroblast growth factor induces

cholangiocarcinoma cell migration via activation of the MEK1/2 pathway.
Oncol Lett 2: 821–825.

48. Gozdecka M, Breitwieser W (2012) The roles of ATF2 (activating transcription

factor 2) in tumorigenesis. Biochemical Society Transactions 40: 230–234.
49. Zhang K-S, Zhou Q, Wang Y-F, Liang L-J (2013) Inhibition of Wnt signaling

induces cell apoptosis and suppresses cell proliferation in cholangiocarcinoma
cells. Oncology reports 30: 1430–1438.

50. Nagayama S, Yamada E, Kohno Y, Aoyama T, Fukukawa C, et al. (2009)
Inverse correlation of the up-regulation of FZD10 expression and the activation

of b-catenin in synchronous colorectal tumors. Cancer Science 100: 405–412.

51. Fritz G, Kaina B (2006) Rho GTPases: promising cellular targets for novel
anticancer drugs. Current cancer drug targets 6: 1–14.

52. Ling Q, Dong F, Geng L, Liu Z, Xie H, et al. (2013) Impacts of TCF7L2 gene
polymorphisms on the susceptibility of hepatogenous diabetes and hepatocellular

carcinoma in cirrhotic patients. Gene 522: 214–218.

53. Munker S, Liu Y, Meyer C, Dooley S, Li J, et al. (2012) TGF-b1 contributes to
intrahepatic cholangiocarcinoma via Smad dependent and independent path-

ways. Zeitschrift für Gastroenterologie 50 - P5_40.
54. Huang Q, Liu L, Liu C-H, Shao F, Xie F, et al. (2012) Expression of Smad7 in

cholangiocarcinoma: prognostic significance and implications for tumor

metastasis. Asian Pac J Cancer Prev 13: 5161–5165.
55. Yuan W, Huang T, Yu J, Zeng L, Lian B, et al. (2014) Comparative analysis of

viral protein interaction networks in Hepatitis B Virus and Hepatitis C Virus
infected HCC. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics

1844: 271–279.
56. Liu Q, Tan Y, Huang T, Ding G, Tu Z, et al. (2010) TF-centered downstream

gene set enrichment analysis: Inference of causal regulators by integrating TF-

DNA interactions and protein post-translational modifications information.
BMC bioinformatics 11: S5.

57. Zaman N, Li L, Jaramillo ML, Sun Z, Tibiche C, et al. (2013) Signaling network
assessment of mutations and copy number variations predict breast cancer

subtype-specific drug targets. Cell reports 5: 216–223.

Integrative Analysis of TRN and CNV in ICC

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e98653


