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ABSTRACT: Identification of anti-SARS-CoV-2 compounds through
traditional high-throughput screening (HTS) assays is limited by high
costs and low hit rates. To address these challenges, we developed
machine learning models to identify compounds acting via inhibition of
the entry of SARS-CoV-2 into human host cells or the SARS-CoV-2 3-
chymotrypsin-like (3CL) protease. The optimal classification models
achieved good performance with area under the receiver operating
characteristic curve (AUC-ROC) values of >0.78. Experimental validation
showed that the best performing models increased the assay hit rate by
2.1-fold for viral entry inhibitors and 10.4-fold for 3CL protease inhibitors
compared to those of the original drug repurposing screens. Twenty-two
compounds showed potent (<5 μM) antiviral activities in a SARS-CoV-2
live virus assay. In conclusion, machine learning models can be developed
and used as a complementary approach to HTS to expand compound
screening capacities and improve the speed and efficiency of anti-SARS-CoV-2 drug discovery.

■ INTRODUCTION
The current global pandemic of coronavirus disease 19
(COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a highly infectious enveloped
RNA virus.1,2 The transmission of SARS-CoV-2 occurs
primarily through inhalation of respiratory droplets of infected
individuals and/or contact with virally contaminated objects.3

The initial phase of SARS-CoV-2 infection is the entry of the
virus into the host cells through the interaction of the receptor-
binding domain (RBD) of the viral Spike glycoprotein with the
angiotensin converting enzyme 2 (ACE2) on the cell surface.4,5

Subsequently, SARS-CoV-2 initiates RNA replication and
eventually assembles new virions that are released to infect
other cells in the host.6 Each stage of the SARS-CoV-2 life cycle
(e.g., viral entry and viral replication) could be targeted for the
development of specific antiviral drug candidates for COVID-19
treatment.7,8

Drug repurposing has been widely used to identify new
clinical indications from existing drugs for the treatment of many
diseases, including viral infections. During the COVID-19
outbreak, several high-throughput drug repurposing assays were
developed and applied to identify potential inhibitors of SARS-
CoV-2 entry and replication at the National Center for
Advancing Translational Sciences (NCATS) of the National
Institutes of Health (NIH).9−11 For example, the pseudotyped
particle (PP) entry assay is a cell-based assay with a
luminescence readout, which can facilitate the identification of
viral cell entry inhibitors using pseudotyped viral particles
containing coronavirus Spike glycoprotein without the viral

genome.9 Another potential target for the development of
antiviral therapies is the SARS-CoV-2 3-chymotrypsin-like
(3CL) protease, which plays a vital role in viral replication by
cleaving the viral polyprotein to form the RNA replicase−
transcriptase complex.8 The 3CL protease assay is a
fluorescence-based biochemical assay that measures the
inhibitory effect of compounds on the activity of SARS-CoV-2
3CL protease.11 However, due to limitations in resources, it is
impractical to efficiently screen large chemical libraries using
these assays.12,13 In addition, there are millions of commercial
compounds that are not practical to include for high-throughput
screening (HTS) as they are not part of our internal compound
collections.
As an alternative to physical HTS, computational models such

as machine learning classifiers can make predictions on new
unseen data based on previous experiences and known data
properties, such that they have been widely used to virtually
screen millions of compounds for potential biological
activities.14−16 Among the machine learning models, quantita-
tive structure−activity relationship (QSAR) approaches enable
the prediction of biological activities for compounds of interest
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as a function of similarity in chemical structure (i.e., molecular
descriptors).17,18 Unlike QSAR, biological activity-based mod-
eling (BABM) approaches build on the hypothesis that
compounds showing similar biological activity patterns tend to
share similar biological targets or mechanisms of action.16,19 The
combined use of these two methods exhibits complementary
advantages, such that their application domains are not limited
to small molecules with well-defined structures (e.g., QSAR) or
substances with available biological profiles (e.g., BABM). The
PP entry and 3CL protease assays have been applied to screen
several thousands of known bioactive compounds, including the
NCATS Pharmaceutical Collection (NPC) of approved and
investigational drugs.9−11,20 The data generated from these
assays can be used to build computational models to predict new
PP entry or 3CL protease inhibitors.
Given the fast-growing number of COVID-19 patients and

the current lack of effective drug treatments, there is an urgent
need to accelerate efforts in exploring new potential drugs to
treat COVID-19. In this study, we applied machine learning
methods including both structure (QSAR)- and activity
(BABM)-based approaches to build models for prediction of
potential inhibitors of SARS-CoV-2 entry and 3CL protease.
The selected hits predicted by these models were first tested in
the SARS-CoV-2 entry assay or 3CL protease assay. The
antiviral activities of compounds were then confirmed in a cell-
based live SARS-CoV-2 cytopathic effect reduction (CPE)
assay.21,22

■ RESULTS

Construction and Evaluation of the Prediction
Models. A total of 8149 unique compounds were screened
against either the PP entry assay (2725 compounds) or the 3CL

protease assay (8044 compounds) (Figure 1A and Table S1).
These compounds fell into different activity categories (Figure
1A). For example, 570 compounds were active only in the PP
entry assay, 142 compounds were active only in the 3CL
protease assay, and 15 compounds were active against both PP
entry and 3CL protease. On the basis of these data, we built two
types of models, QSAR and BABM, for the prediction of PP
entry or 3CL protease inhibitors (Figure 1B−F). We tested
various parameter combinations on the training data sets to find
the optimal model for each assay target (Figure 1B−D). For
example, the combination of RF (machine learning algorithm),
Original (rebalancing strategy), and 157 ECFP4 features
(Fisher’s exact test with a P value of 0.02) produced the best
classification performance (AUC-ROC = 0.77 ± 0.02) for
predicting PP entry inhibitors, and the corresponding
parameters for the best performing 3CL protease model
(AUC-ROC = 0.90 ± 0.03) were SVM, ROSE, and 80 ECFP4
features (Fisher’s exact test with a P value of 0.05). The optimal
QSAR models also showed good prediction performance on the
external validation data set for PP entry (AUC-ROC= 0.78) and
3CL protease (AUC-ROC = 0.88) (Figure 1E). The feature sets
that produced the optimal QSAR models for the prediction of
PP entry or 3CL protease inhibitors are listed in Table S2, and
the AUC-ROC values obtained from all QSARmodels are listed
in Table S3. We observed large differences among the models
built with different methods and feature sets. The AUC-ROC
values for predicting PP entry inhibitors ranged from 0.64 to
0.78 with an average of 0.73, while the AUC-ROC values for
predicting 3CL protease inhibitors ranged from 0.64 to 0.90
with an average of 0.81. For the BABM models, the AUC-ROC
values on the test sets ranged from 0.84 to 0.88 for the PP entry
inhibitor models and from 0.85 to 0.89 for the 3CL protease

Figure 1. Construction and evaluation of the optimal machine learning classification models. (A) Activity distribution of compounds in the original
drug repurposing screens, including the PP entry assay and the 3CL protease assay. Optimal QSARmodels built on the training data set, including (B)
model performance, (C) the number of selected features, and (D) data rebalancing strategies and machine learning algorithms. (E) Example ROC
curves of the optimal QSARmodels on the external validation data set. (F) BABMmodel performancemeasured by AUC-ROC. Abbreviations: ROSE,
random oversampling examples; SVM, support vector machine; RF, random forest; QSAR, quantitative structure (ECFP4)−activity relationships;
SBM, structure (ToxPrint)-based model; BABM-M, activity-based model (MLS); BABM-S, activity-based model (Sytravon); CM-M, combined
model (SBM + BABM-M); CM-S, combined model (SBM + BABM-S).
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inhibitor models, with the combined model [CM-M, structure
(ToxPrint)-based model + BABM-M] yielding the best
performance (for PP entry, AUC-ROC = 0.88 ± 0.01; for
3CL protease, AUC-ROC = 0.89 ± 0.03) (Figure 1F).
Virtual Screening and Experimental Validation of

Model-Predicted Compounds. In an attempt to identify
novel inhibitors of SARS-CoV-2 entry and 3CL protease, the
optimal models were applied to virtually screen a large
compound collection of ∼360K compounds. For the QSAR
models, a total of 4868 compounds with the highest predicted
probabilities (>0.5) were collected, including 2743 predicted PP
entry inhibitors and 2125 predicted 3CL protease inhibitors.
The density distributions of the probabilities for both sets of
predictions exhibited a single peak at relatively small probability
values (peak value of <0.56) for most of the compounds (Tables
S4 and S5 and Figure 2A). For the BABMmodels, a total of 847

compounds were collected, including 485 predicted PP entry
inhibitors and 364 predicted 3CL protease inhibitors (Tables S6
and S7). After combining these compounds and filtering by
structure (see Experimental Section for details), we selected a
total of 1972 predicted PP entry inhibitors and 1493 predicted
3CL protease inhibitors for experimental validation (Tables S4−
S7). For the QSAR models, when a default probability cutoff of
0.5 was used, the models increased the assay hit rate by 1.6-fold
(from 21.5% to 34.9%) for the PP entry inhibitors and 8.4-fold
(from 1.76% to 14.8%) for the 3CL protease inhibitors (Figure
2B). As the probability cutoff increased, the hit rates of the
QSAR model predictions gradually increased, as well (Figure
2C). When the probability cutoff was set to 0.9, the hit rates of
the QSARmodel predictions reached 66% for the PP entry assay
and 22% for the 3CL protease assay (Figure 2C). Moreover, the
BABMmodels increased the assay hit rate by 2.1-fold for the PP
entry (from 21.5% to 45.6%) and 10.4-fold for the 3CL protease
(from 1.76% to 18.4%) (Figure 2B).

Secondary Experimental Confirmation of Model-
Predicted PP Entry and 3CL Protease Inhibitors. To
further confirm the experimentally validated predictions, a total
of 672 compounds, including 446 PP entry inhibitors and 226
3CL protease inhibitors, were retested at 11 concentrations
(Tables S8 and S9). For the PP entry assay, 328 of the 446
compounds remained active, yielding a confirmation rate of
74%. Of the confirmed PP entry inhibitors, 149 were known
drugs or bioactive compounds while the other 179 inhibitors
were diverse compounds without any well-annotated biological
activity (Table S8). For the 3CL protease assay, 148 of the 226
compounds remained active, yielding an assay confirmation rate
of 65%. Of the confirmed 3CL protease inhibitors, 62 were
known drugs or bioactive compounds while the other 86
inhibitors were diverse compounds without any well-annotated
biological activity (Table S9). The most potent PP entry
inhibitor was NCGC00390584 (Exatecan; IC50 = 3.1 nM), and
the most potent 3CL protease inhibitor was NCGC00390337
(Z-DQMD-FMK; IC50 = 0.92 μM) (Tables S8 and S9). Several
representative compounds with potent inhibitory effect against
SARS-CoV-2 PP entry or 3CL protease are shown in Figures 3
and 4, such as NCGC00599688 (AQ-13; IC50 = 14.23 ± 11.66
μM) for the PP entry inhibitor and NCGC00371011
(Fluorobexarotene; IC50 = 28.95 ± 2.35 μM) for the 3CL
protease inhibitor.

Figure 2. Virtual screening of a large compound library based on the
optimal models. (A) Distributions of the predicted probabilities of
QSAR model-identified compounds. (B) Comparison of hit rates
between the original drug repurposing screens and model predictions.
(C) Hit rates of the QSAR model predictions based on different
prediction probability cutoffs. (D) Hit rates of the potential PP entry
inhibitors and 3CL protease inhibitors in the CPE assay.

Figure 3. Concentration−response curves of representative PP entry inhibitors in the anti-SARS-CoV-2 PP entry assay and the CPE assay.
Abbreviations: PP, PP entry assay; TOX, cytotoxicity assay; CPE, CPE assay; IC50, half-maximal inhibitory concentration; AC50, half-maximal activity
concentration. Results are presented as mean ± standard deviation (SD), and the error bars represent the SD of two independent experiments.
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Assessment of Compound Antiviral Activity in the
SARS-CoV-2 CPE Assay.A total of 578 PP entry inhibitors and
150 3CL protease inhibitors were further tested in a SARS-CoV-
2 live virus assay, the CPE assay. The results showed that 28.2%
of the PP entry inhibitors and 15.3% of the 3CL protease
inhibitors were active in the CPE assay (Tables S4−S7 and S10
and Figure 2D). For secondary confirmation, the 127
compounds that showed activity in the CPE assay were retested
at eight or more concentrations (instead of four or five
concentrations in the first screen) to further confirm their
activity and obtain more accurate potency measures. Of the 127
compounds, 122 remained active, yielding a confirmation rate of
96% for the SARS-CoV-2 CPE assay (Table S11 and Figure 5).
Of the 122 confirmed CPE actives, the potencies ranged from
0.20 μM (NCGC00345807, CAA-0225) to 22 μM
(NCGC00417833) with an average potency of 10.4 μM
(Table S11). Moreover, 22 compounds showed potencies of
<5 μM, accounting for 18% of the total CPE actives (Table S11).
In addition, 55 CPE actives were known drugs or bioactive
compounds, while the other 67 compounds were compounds
without any well-annotated biological activity (Table S11). Six

representative compounds with potent anti-SARS-CoV-2
activity (<5 μM) in the CPE assay are shown in Figure 5,
including NCGC00345807 (CAA-0225; AC50 = 0.20 ± 0.07
μM), NCGC00161621 (Cepharanthine; AC50 = 1.41 ± 0.39
μM), MLS000703078 (AC50 = 1.78 ± 0.00 μM),
NCGC00390625 (Maropitant; AC50 = 3.55 ± 1.12 μM),
NCGC00599688 (AQ-13; AC50 = 3.98 ± 0.00 μM), and
NCGC00017063 (Amodiaquine; AC50 = 4.14 ± 1.41 μM).

■ DISCUSSION AND CONCLUSIONS

Identification of inhibitors of the entry of SARS-CoV-2 into host
cells and 3CL protease from compound screening can result in
lead compounds that may potentially be developed into anti-
COVID-19 therapeutics. In this study, we built machine learning
classification models based on the data generated from the high-
throughput anti-SARS-CoV-2 drug repurposing assays and
applied the optimal models to virtually screen a large collection
of diverse compounds. One hundred twenty-two compounds
were validated experimentally for their anti-SARS-CoV-2
activities in the live SARS-CoV-2 CPE assay.

Figure 4. Concentration−response curves of representative 3CL protease inhibitors in the anti-SARS-CoV-2 3CL protease assay and the CPE assay.
Abbreviations: 3CL, 3CL protease assay; RFU, relative fluorescence unit; TOX, cytotoxicity assay; CPE, CPE assay; IC50, half-maximal inhibitory
concentration; AC50, half-maximal activity concentration. Results are presented as mean± SD, and the error bars represent the SD of two independent
experiments.

Figure 5. Secondary experimental confirmation of the potential CPE actives and concentration−response curves of representative compounds. The
heat map shows the overall potencies of compounds confirmed in the CPE assay (inner ring) and the cytotoxicity counter screen (outer ring). The heat
map is colored by compound potency, such that darker shades of red indicate more potent compounds and lighter shades of blue indicate less potent
compounds. Gray indicates missing values. The outer yellow line represents known bioactive compounds, and the outer green line represents
compounds with no previously reported bioactivity. Concentration−response curves are shown for representative compounds with potent anti-SARS-
CoV-2 activity (<5 μM). Abbreviations: CPE, CPE assay; TOX, cytotoxicity assay; AC50, half-maximal activity concentration. Results are presented as
mean ± SD, and the error bars represent the SD of two independent experiments.
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The circular topological descriptor ECFP4, which has been
widely used in drug discovery,23 was used to build the QSAR
models in this study. Because the ECFP4 fingerprint has 1024
bits, feature selection was performed to avoid overfitting and
possibly improve the prediction performance (Figure 1C).
Because of the imbalanced nature of the original assay outcomes,
i.e., the large prevalence of inactive compounds compared to
active compounds in a data set, five rebalancing strategies were
applied prior to modeling. The best rebalancing strategy found
for the 3CL protease data set is consistent with previous research
findings that ROSE worked well in improving the predictive
power of the models.24 However, the original data without
applying any rebalancing achieved the best performance for the
PP entry data set (Figure 1D), indicating that a balanced data set
does not necessarily result in better performance. Consistent
with previous reports on constructing and optimizing
classification models,25−27 optimal model performance is often
the result of a combination of the best feature set, rebalancing
strategy, and machine learning algorithm (Figure 1B−D). The
optimal QSAR models achieved good performance on the
external validation data set with AUC-ROC values of 0.78 for
predicting PP entry inhibitors and 0.88 for 3CL protease
inhibitors (Figure 1E). Our QSAR model for predicting 3CL
protease inhibitors outperformed previously reported models
(AUC-ROC = 0.71), which were constructed on the same data
set as the one used in this study, but without applying any
rebalancing strategy.28 In addition, the BABM models
combining activity and structure data showed better perform-
ances (AUC-ROC > 0.84) than the QSAR models (Figure 1),
further confirming the value of biological activity profiles in
improving prediction performance.16 These findings are
consistent with other studies demonstrating that combining in
vitro bioactivity with chemical structure descriptors could
improve the predictive performance of machine learning
models.27,29 To further improve our model, 99 3CL protease
inhibitors with IC50 values of <50 μM were retrieved from the
literature (Table S12).30−37 For each compound in a compound
set, we identified its closest structural neighbor by calculating the
Tanimoto coefficient (TC). The TC between a compound and
its closest structural neighbor is defined as maxTC. The average
maxTC value (AmaxTC) of the 99 3CL protease inhibitors was
0.74, which was much larger than that of the 3CL protease
inhibitors in the original model training set (AmaxTC = 0.32)
and the AmaxTC between the literature 3CL inhibitor set and
the original model training set (AmaxTC = 0.28) (Figure S1).
These findings indicate that the newly added compounds are
structurally similar to each other but distinct from the original
model training set; thus, adding the literature compounds
increased the structural diversity of the training set. After adding
the 99 3CL protease inhibitors to the model training set, we
found that the RF model produced better performance (AUC-
ROC = 0.86± 0.04) based on the 3-fold cross-validation results.
Using the best threshold (0.07) defined by the Youden index,
the RF model was able to correctly identify 94 (95%) of the 99
literature 3CL protease inhibitors (Table S12). The addition of
the 3CL protease inhibitors from the literature helped to expand
the applicability domain of our model and further demonstrated
the reliability and robustness of our model.
The optimal models (including QSAR and BABM) can be

used to rapidly screen large compound libraries to identify
potential anti-SARS-CoV-2 compounds and prioritize them for
experimental validation (Figure 2). Compared with the original
HTS assays, the optimal machine learning models increased the

assay hit rate by 2.1-fold for viral entry inhibitors and 10.4-fold
for 3CL protease inhibitors, resulting in a hit rate of 45.6% for
the PP entry assay and 18.4% for the 3CL protease assay from a
large diverse compound library (Figure 2B). The model hit rates
were calculated on the basis of the experimental validation
results. For experimental validation, the model-predicted active
compounds were tested in the same assay as the one used for the
original drug repurposing screen.9−11 The hit rate of the
experimental validation screen is termed the model hit rate,
which is equivalent to the positive predictive value [PPV = TP/
(TP + FP)] (Figure 2B,C). As the probability cutoff increased,
the model hit rates (i.e., PPVs) and specificities [TN/(TN +
FP)] of the PP entry and 3CL protease models increased, while
their sensitivities [TP/(TP + FN)] decreased. These hit rates
are significantly higher than that of a typical HTS of a diverse
compound library, which is <1.5%, demonstrating that our
models could significantly improve the efficiency of anti-
COVID-19 drug lead identification. Multitarget drugs, i.e.,
compounds that interact with multiple targets in the biological
network simultaneously, have been widely used in the field of
drug discovery, especially for the treatment of complex
diseases.38,39 COVID-19 has emerged as a complex disease
that presents variable clinical symptoms and disease progression
(e.g., asymptomatic, acute respiratory distress syndrome, and
multiorgan failure).40 In this study, the PP entry assay is a
phenotypic assay that contains multiple targets in the viral entry
process, while the 3CL protease assay is a single-target assay.
When evaluating the antiviral activities of the hits identified from
these two assays, we found that the hit rate of the PP entry
inhibitors (28.2%) was higher than that of the 3CL protease
inhibitors (15.3%) in the CPE assay (Figure 2D), further
confirming that multitarget compounds could be more effective
antivirals than single-target compounds.41 In addition, these
results also suggest that multitarget assays may be an important
direction in new assay development for more efficient anti-
SARS-CoV-2 drug discovery, whereas the single-target assays
are more suitable for investigating compound mechanisms of
action.42 Although the addition of DTT in the 3CL protease
assay could reverse the inhibitory effect of the compounds with
electrophilic warheads, this condition did not show any
significant impact on our results. For example, the IC50 of
NCGC00390337 (Z-DQMD-FMK, the most potent 3CL
protease inhibitor in our results) was 0.92 μM, which was not
significantly different from the finding of Sun et al. (IC50 = 0.94
μM).43 In this study, our models identified 122 compounds that
were active in the SARS-CoV-2 CPE assay (Table S11), and
these compounds could be further developed as potential anti-
COVID-19 treatments. For example, among the 22 potent
compounds with AC50 values of <5 μM, 10 were known drugs or
bioactive compounds, while the others were diverse compounds
without any well-annotated biological activities. For example,
four compounds (i.e., NCGC00345807, NCGC00161621,
NCGC00386665, and NCGC00017063) have been reported
to have anti-SARS-CoV-2 activities. Themost potent compound
is NCGC00345807 (CAA-0225, a cathepsin L-specific inhib-
itor; AC50 = 0.20 μM) (Figure 5 and Table S11), which was also
reported as a lead anti-SARS-CoV-2 compound in a previous
study.22 On the basis of our results, the anti-SARS-CoV-2
mechanism of CAA-0225 may be attributed partly to the
inhibition of the entry of SARS-CoV-2 into host cells (IC50 =
0.60 μM; efficacy = 89%) (Table S8). NCGC00161621
(Cepharanthine), an approved drug with anti-inflammatory
activities, has been reported to rescue the CPE of SARS-CoV-2
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to full efficacy probably due to the inhibition of Spike-mediated
cell entry or SARS-CoV-2 replication.9,44,45 Consistent with
these previous studies, we also found that Cepharanthine
showed potency against the SARS-CoV-2 CPE effect with an
AC50 of 1.41 μM, and its potential mechanism of action is to
inhibit the entry of the virus into host cells (IC50 = 6.88 μM;
efficacy = 102%) (Figure 5 and Tables S8 and S11).
NCGC00386665 (Bemcentinib), a selective small-molecule
inhibitor of AXL kinase, has been reported as a dual inhibitor of
SARS-CoV-2 papain-like protease and 3CL protease on the
basis of molecular docking. This compound was also reported to
potentially reduce viral infection and block the SARS-CoV-2
Spike protein according to a multicenter, seamless, phase 2
adaptive randomization platform study.46 Consistent with these
findings, in our study Bemcentinib showed potent activity
against the SARS-CoV-2 CPE with an AC50 of 3.36 μM,
potentially via inhibition of the entry of the virus into host cells
(IC50 = 19 μM; efficacy = 112%) (Tables S8 and S11).
NCGC00017063 (Amodiaquine), an antimalarial and anti-
inflammatory agent, was reported to show activity in the anti-
SARS-CoV-2 CPE assay.45,47,48 Consistent with the previous
report, Amodiaquine showed potent activity against the SARS-
CoV-2 CPE in our study with an AC50 of 3.98 μM, potentially by
inhibiting the entry of the virus into host cells (IC50 = 19 μM;
efficacy = 103%) (Figure 5 and Tables S8 and S11). In addition,
the other 18 potent compounds have no previous reports on
their antiviral activity; therefore, in-depth investigations are
needed to explore these compounds as potential drug candidates
for the treatment of COVID-19. Furthermore, 6 of the 22 potent
compounds (i.e., NCGC00599688, NCGC00590975,
NCGC00390625, NCGC00263128, NCGC00482724, and
NCGC00484976) have been reported to have biological
activities, but not antiviral activities. For example,
NCGC00599688 (AQ-13), an analogue of chloroquine (CQ),
is an investigational antimalarial drug.49 NCGC00590975
(JQEZ5) is a potent pharmacologic enhancer of zeste
homologue 2 (EZH2) inhibitor that exhibits significant in vivo
antitumor activity in EZH2 mutant cancer models.50

NCGC00390625 (Maropitant) is a selective neurokinin 1
receptor antagonist that is clinically used as a new antiemetic
drug for dogs.51 NCGC00263128 (PD 0220245) shows
inhibitory effects on both IL-8 receptor binding and IL-8-
mediated neutrophil chemotaxis.52 NCGC00482724 (Vacqui-
nol-1), a quinolone derivative, has been reported to display
potent antitumor effects by inducing rapid cell death in
glioblastomas.53 NCGC00484976 (Z36), a novel B-cell
lymphoma-extra large (Bcl-xL) protein inhibitor, could
efficiently induce autophagic cell death by blocking the
interaction between Bcl-xL/Bcl-2 and Beclin-1.54 The remaining
12 compounds have no reports on their biological activities.
Because the development of a new drug takes a long time, an in-
depth investigation is needed to explore these 22 compounds as
potential drug candidates for the treatment of COVID-19.
In summary, we applied machine learning classification

models, including QSAR and BABM models, to identify
inhibitors of the entry of SARS-CoV-2 into host cells and the
SARS-CoV-2 3CL protease from a large diverse compound
library. The optimal models significantly increased the hit rates
of the anti-SARS-CoV-2 HTS assays by several-fold. Twenty-
two compounds showed potent (<5 μM) anti-SARS-CoV-2
activities in a live virus assay; for 18 of them, anti-SARS-CoV-2
activities have not been reported previously. These compounds
have the potential to be developed as novel anti-COVID-19 drug

leads. Therefore, machine learning classification models can be
used as a complementary approach toHTS to improve the speed
and efficiency of anti-SARS-CoV-2 drug discovery.

■ EXPERIMENTAL SECTION
HTS Assays. All assays were performed according to protocols

described previously.16 Briefly, the SARS-CoV-2 PP entry assay was
performed in a human ACE2 (HEK293-ACE2) cell line under biosafety
level 2 (BSL-2) containment. After incubation for 48 h for entry of PP
into cells and luciferase reporter expression, luciferase activity was
measured using Bright-Glo Luciferase Assay reagents (Promega). The
3CL protease assay was performed in black, medium-binding
microplates (Greiner Bio-One) with the enzyme (50 nM) in a reaction
buffer and a substrate. After incubation for 1 h for the enzyme reaction,
the fluorescence intensity was measured at excitation and emission
wavelengths of 340 and 460 nm, respectively. Compounds were tested
as five-point 1:5 titrations (experimental validation) or 11-point 1:3
titrations (experimental confirmation), starting from 57.5 μM, for both
the PP entry assay and the 3CL enzyme assay. The live SARS-CoV-2
CPE assay was performed at a contractor BSL-3 facility at the Southern
Research Institute (Birmingham, AL). In addition, the cytotoxicity of
these compounds was evaluated in a cell viability assay that measures
intracellular ATP content using a PHERAstar FSX plate reader (BMG
LABTECH). All compound libraries used in this study were assembled
within NCATS. The purity of lead compounds was determined to be
>95% by HPLC, and copies of the HPLC traces are provided in Figure
S2.

Data Collection for Modeling. NCATS in-house collections of
bioactive compounds, including approved and investigational drugs,
were screened against the PP entry assay and the 3CL protease assay in
quantitative HTS (qHTS) format.9,11 Detailed descriptions of these
high-throughput drug repurposing assays and all of the screening data
are publicly available through the NCATS/NIH open science data
portal (OpenData, https://opendata.ncats.nih.gov/covid19/). The
qHTS data were analyzed using custom software developed in house
at NCATS. Briefly, concentration−response curves were fit to a four-
parameter Hill equation yielding concentrations of half-maximal
activity (AC50) and maximal response (efficacy) values.55,56 Com-
pounds were further designated as class 1−4 on the basis of the shape of
the concentration−response curve.57 Compounds that exhibited
activation effects were assigned class 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3,
2.4, and 3 curves. Compounds that exhibited inhibitory effects were
assigned class −1.1, −1.2, −1.3, −1.4, −2.1, −2.2, −2.3, −2.4, and −3
curves. Compounds that showed no significant concentration response
were considered inactive and assigned class 4. For modeling purposes,
we assigned each compound one of three outcomes: active (1), inactive
(0) or inconclusive (exclude). For the PP entry assay, compounds that
showed inhibition with >50% efficacy and were inactive or at least 6-
fold less potent in the cell viability counter assay were considered active
(1); compounds with a positive curve class were considered inactive
(0), and all other compounds were considered inclusive and excluded
from modeling. For the 3CL protease assay, compounds that showed
inhibition with >50% efficacy were considered active (1), compounds
with a positive curve class were considered inactive (0), and all other
compounds were considered inclusive and excluded from modeling.
The activity assignments for all of the compounds included in
constructing the PP entry assay and 3CL protease assay models are
listed in Table S1, along with their corresponding structures.

QSAR Modeling. The two-dimensional structures of all com-
pounds encoded in SMILES strings were converted to the Extended
Connectivity Fingerprints radius 4 (ECFP4) using the Chemistry
Development Kit (CDK) package61 in the Konstanz InformationMiner
open-source software (KNIME, version 4.0.2, https://www.knime.org/
). ECFP4 encodes circular topological fragments into a fixed length
binary fingerprint (n = 1024) where the presence or absence of the
feature was recorded in a binary system as 1 or 0, respectively.

Five classification machine learning models were built and tested
using R version 3.4.2, including the “e1071” package for naiv̈e Bayes
(NB) and support vector machine (SVM) classifiers, the “Random
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Forest” package for the random forest (RF) classifier, the “nnet”
package for the neural networks (NNET) classifier, and the “xgboost”
package for the eXtreme gradient boosting (XGboost) classifier.58 The
NB classifier is implemented with a Laplace smoothing setup, while the
SVM classifier uses a Gaussian radial basis function kernel. In addition,
the other parameters of the SVM, RF, and NNET classifiers were set to
default values. The parameters of the XGboost classifier were set as
follows: maximum depth of a tree, 3; control the learning rate, 0.01; and
subsample ratio of columns when constructing each tree, 0.5.
To optimize model performance, feature selection prior to machine

learningmodeling was performed using four different methods: Fisher’s
exact test with a P value, area under the receiver operating characteristic
curve (AUC-ROC) value, Gini score from the RF algorithm, and Gain
score from the XGboost algorithm. For the Fisher’s exact test method,
features were selected at five different P value cutoffs, which were in the
range of 0.01−0.05 with an interval of 0.01. For the AUC-ROCmethod,
features were selected at four different cutoffs, which were in the range
of 0.52−0.58 with an interval of 0.02 using “pROC” packages.59 For the
RF and XGboost methods, features were selected using the “Random
Forest” and “xgboost”58 packages, respectively. Features ranked with
Gini or Gain scores were picked at 10 intervals from the top 10 to top
50. Different feature sets generated in the feature selection process were
used to build machine learning models, and their performances were
evaluated.
To evaluate model performance, the data set was randomly divided

into two parts: 70% for training and cross-validation and 30% for
external validation. The training data set was used to tune the model
parameters to yield the maximummodel performance, and the external
validation data set was used to evaluate the model’s capacity to
extrapolate to new data. Each model was evaluated by an internal 3-fold
cross validation on the training data set. To ensure the robustness of our
results, the cross-validation process was repeated 20 times with different
random data partitions. Because the class distributions of the assay
outcomes were imbalanced, the training data set was rebalanced using
four different subsampling methods, including up sampling, down
sampling, random oversampling examples (ROSE), and synthetic
minority oversampling technique (SMOTE) via the “ROSE” and
“DMwR” packages in R.60,61 Model performance was evaluated by the
AUC-ROC value, which ranged from 0.5 (a random classifier) to 1 (a
perfect classifier). The combinations of feature sets, rebalancing
strategies, and machine learning algorithms yielded models with
different performances, and the model with the optimal performance
(i.e., maximumAUC-ROC value) was used for further virtual screening.
BABM Modeling. Two types of bioactivity-based models (BABM-

M and BABM-S) and two types of structure−activity combined modes
(CM-M and CM-S) were built using compound activity profiles from
two sets of qHTS assays (MLS, 225 readouts; Sytravon, 130
readouts).16 The activity-based models were trained and tested using
the activity profiles from the NCATS Pharmaceutical Collection
(NPC)20 and the Library of Pharmacologically Active Compounds
(LOPAC). The ChemoTyper was used to generate structure
fingerprints for all compounds for the structure−activity combined
models. In the combined models, the structure fingerprint and the
activity profile were concatenated to form a new fingerprint for each
compound. For modeling purposes, each compound was represented as
a bit vector of 1s and 0s. In a structure fingerprint, the bit value was set
to 1 if the compound contains a particular structural feature and 0 if the
compound does not have that feature. For activity profile data, each
assay readout was treated as a feature and the feature value was set to 1
for “active” compounds and 0 for inactive compounds. The detailed
modeling process was described previously.16 Briefly, the weighted
feature significance (WFS) method previously developed at NCATS
was used to build the models. For each model, compounds were
randomly divided into two groups of approximately equal sizes (i.e., one
used for training and the other for testing). To evaluate the robustness
of the models, the randomization was performed 10 times, generating
10 different training and test sets. The performance of the BABM
models was evaluated by calculating the AUC-ROC value. The random
data split and model training and testing were repeated 10 times, and
the average AUC-ROC values were calculated for each model.

Virtual Screening of Large Compound Libraries. The optimal
models were applied to predict the activity of the NCATS in-house
collection of ∼360K compounds against viral entry, as well as 3CL
protease. For the QSAR models, each compound was assigned a
predicted probability to a specific outcome based on the optimal model,
and compounds with the highest probabilities (>0.5) were collected.
To identify novel, structurally diverse compounds, the collected
compounds were subjected to a k-means clustering analysis using the
Hartigan−Wong algorithm implemented in R, resulting in 100 clusters
based on ECFP4 fingerprints. The compounds with top probabilities in
each cluster were selected for experimental validation. For BABM
models, WFS score cutoff values for model-predicted actives were
determined using the ROC curves where both sensitivity and specificity
were optimized. Only compounds that scored higher than the cutoff
values were considered candidates for follow-up selection. For
experimental validation, the selection was driven mostly by availability
of assay resources and physical samples. The top-ranked compounds
that met the WFS score cutoff from a model with physical samples
available for cherry picking were selected to fit into one or two 1536-
well plates for testing.

Statistical Analysis. Example curve plots were fitted using a four-
parameter logistic regression with the percent assay activity as the
response and log 10 compound concentration as the independent
variable using the “drc” statistical package in R. Plots were generated
using the “ggplot2” package in R. Representative chemical structures
were drawn using ChemDraw Professional (version 17.1).
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