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Background: Transthoracic Doppler-echocardiography (TTE) can estimate mean pulmonary arterial pressure
(MPAP) and pulmonary capillary wedge pressure (PCWP) reliably, and cardiac magnetic resonance (CMR) is
the best modality for non-invasive measurement of cardiac output (CO). We speculated that the combined use
of TTE and CMR could provide a feasiblemethod for non-invasivemeasurement of pulmonary vascular resistance
(PVR) in pulmonary arterial hypertension (PAH).
Methods and results: Right heart catheterization (RHC) was undertaken in 77 patients (17M/60F) with PAH, and
simultaneous TTE was carried out to evaluate MPAP, PCWP and CO.Within 2 days, CO wasmeasured again with
CMR in similar physiological status. Then, PVR was calculated with the integrated non-invasive method: TTE-
derived (MPAP–PCWP)/CMR-derived CO and the isolated TTEmethod: TTE-derived (MPAP–PCWP)/TTE-derived
CO, respectively. The PVR calculated with integrated non-invasive method correlated well with RHC-calculated

PVR (r = 0.931, 95% confidence interval 0.893 to 0.956). Between the integrated non-invasive PVR and RHC-
calculated PVR, the Bland–Altman analysis showed the satisfactory limits of agreement (mean value:−0.89 ±
2.59). In comparison, the limits of agreement were less satisfactory between TTE-calculated PVR and RHC-
calculated PVR (mean value:−1.80± 3.33). Furthermore, there were excellent intra- and inter-observer corre-
lations for the measurements of TTE and CMR (P b 0.001 for all).
Conclusions: The combined use of TTE and CMR provides a clinically reliable method to determine PVR non-
invasively. In comparison with RHC, the integrated method shows good accuracy and repeatability, which sug-
gests the potential for the evaluation and serial follow-up in patients with PAH.
Translational perspective: In PAH, the non-invasive measurement of PVR is very important in clinical practice. Up
to now, however, the widely accepted non-invasive method is still unavailable. Since TTE can estimate (MPAP–
PCWP) reliably and CMR is the best imagemodality for themeasurement of CO, the combined use of twomodal-
ities has the potential to determine PVR non-invasively. In this research, the integrated non-invasive method
showed good diagnostic accuracy and repeatability comparedwith RHC. Therefore, it might be a feasiblemethod
for non-invasive measurement of PVR in patients with PAH.
© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The measurement of pulmonary vascular resistance (PVR) is crucial
in the diagnosis and management of pulmonary arterial hypertension
wai Hospital, 167 Beilishi Road,
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(PAH). Right heart catheterization (RHC) is widely considered the
“gold standard” to determine PVR, however, it is limited by the associat-
ed disadvantages [1]. Therefore, it is necessary to develop a feasible
method for the non-invasive measurement of PVR. Recent reports
have investigated the applicability of transthoracic Doppler-
echocardiography (TTE) or cardiac magnetic resonance (CMR), and
some novelmethods have been proposed [2–13]. However, the intrinsic
limitations of each image modality compromised the accuracy and
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reproducibility in these methods. Up to now, with the isolated use of
TTE or CMR, there was no widely accepted method for non-invasive
evaluation of PVR.

Previous studies have demonstrated that TTE and CMR had comple-
mentary advantages. TTE had the potential to estimate mean pulmonary
arterial pressure (MPAP) and pulmonary capillary wedge pressure
(PCWP) reliably [14–23]. In the non-invasive measurement of cardiac
output (CO), however, CMR had more accuracy and reproducibility than
TTE [24–26]. Based on the formula (MPAP–PCWP)/CO, it became possible
to calculate PVR directly with TTE-derived (MPAP–PCWP) and CMR-
derived CO. Therefore, we hypothesized that the combined use of TTE
and CMR might have the potential to estimate PVR non-invasively. This
study was performed to determine whether the integrated modality
formed a reliable non-invasive method to measure PVR in PAH.

2. Methods

2.1. Study patients

From January 2009 to July 2014, a total of 77 patients (age 32.42 ±
11.01 years, 17M/60F) with PAH were enrolled. Among these patients,
there were 70 patients with idiopathic PAH and 7 patients with post-
operative persistent PAH after surgical closure of ventricular septal de-
fect (n = 4), patent ductus arteriosus (n = 2) and atrial septal defect
(n = 1). All patients were in sinus rhythm. Patients (n = 16) with un-
stable clinical condition, inadequate image quality, arrhythmia (such
as atrial fibrillation, frequent premature beats and so on), significantmi-
tral or aortic regurgitation, variations of heart rate and blood pressure
≥10% (between RHC/TTE and CMR), and contraindications of CMR ex-
amination were all excluded from the study. For the patients aged
≥45 years (n=11), coronary artery diseasewas excludedwith selective
coronary angiography (defined as ≥50% reduction in lumen diameter).
The study was approved by our hospital research ethics committee,
and informed consent was obtained from each patient.

2.2. Study design

In this study, PAH was defined as MPAP N25 mm Hg and
PCWP ≤ 15mmHgat rest (RHC) [27]. During RHC, simultaneous TTE ex-
amination was performed in patients with PAH. The invasive hemody-
namic data, TTE-derived (MPAP–PCWP) and TTE-derived CO were
obtained at rest. Within 2 days after RHC/TTE, CMR was performed
without intervening therapy and the resting CO was calculated non-
invasively in similar physiological status (variations of heart rate and
blood pressure b10%). According to the formula TTE-derived (MPAP–
PCWP)/CMR-derived CO and TTE-derived (MPAP–PCWP)/TTE-derived
CO, the non-invasive PVR was calculated, respectively. Furthermore,
the results were compared with RHC-calculated PVR using the Bland–
Altman analysis. Individuals in whom RHC, TTE and CMR variables
were obtained were blinded to each other's calculations. Furthermore,
thirty-eight patients were randomly selected to validate the intra-
observer and inter-observer variability, respectively. For intra-
observer reproducibility, the examination was repeated twice by the
same observer in a consecutive manner. For inter-observer reproduc-
ibility, CMR was validated by two independent observers based on the
same imaging result (without any communication). And for TEE, two in-
dependent observers conducted the examination in turn also without
communication.

2.3. RHC

Our procedure for cardiac catheterization has been described previ-
ously [28]. In brief, all patients underwent routine RHC (Swan-Ganz, Ed-
wards Lifesciences) under local anesthesia. The complete hemodynamic
data and blood samples were obtained at rest. The measurements in-
cluded mean right atrial pressure, right ventricular pressure, systolic
pulmonary arterial pressure (SPAP), diastolic pulmonary arterial pres-
sure (DPAP), MPAP and PCWP. According to the oxymetric principle of
Fick, CO and PVR [PVR = (MPAP–PCWP) / CO] were calculated.

2.4. TTE

In patients undergoing RHC, simultaneous TTE (Philips IE33, instru-
ment equipped with a 3–5 MHz transducer) was performed. TTE-
derived MPAP was calculated as TTE-derived SPAP × 0.61 + 2 mm Hg,
according to Chemla et al. [16]. SPAPwas estimated by TTE from the sys-
tolic right ventricular-to-right atrial pressure gradient using the modi-
fied Bernoulli equation, and the assessment of right atrial pressure
was performed in accordance with previously described methods.
Furthermore, isovolumic relaxation time (IVRT) and color M-mode
Doppler flow propagation velocity (FPV) were measured. According to
the equation: 4.5 (103 / [2 · VRT] + FPV) − 9, PCWP was estimated
non-invasively [18]. Based on TTE-derived MPAP and PCWP, the trans-
pulmonary pressure gradient (MPAP–PCWP) was calculated non-
invasively. According to the recommendations in guideline, the mea-
surements of stroke volume (SV) and CO (SV × heart rate) were made
at the level of the left ventricular (LV) outflow tract [29].

2.5. CMR

All examinations were performed on a 1.5 Tesla MR scanner
(Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany)
at rest, and the protocol has been described previously [30–31]. In
brief, scout images acquired by using half-Fourier acquisition single-
shot turbo spin-echo (HASTE) sequence were used to analyze the mor-
phology and structure of the heart. Retrospective electrocardiographic-
gating cine images were acquired using a true fast imagingwith steady-
state precession (TrueFisp) sequence. For the volumetric and functional
measurements, contiguous short-axis images through the entire ventri-
cle (from base to apex, no gap) were obtained. The following parame-
ters were used: FOV, 250 mm × 188 mm; slice thickness, 8 mm;
matrix, 156 mm × 192 mm; TR, 2.8 ms; TE, 1.39 ms; flip angle, 70°;
number of signal averages, 2–4. LV end-diastolic and end-systolic vol-
umes, LV ejection fraction (LVEF), SV, and CO (SV× heart rate)were cal-
culated. In addition, right ventricular (RV) end-diastolic and end-
systolic volumes, RVEF were also calculated (the endocardial borders
of all short-axis images at end-diastole and end-systole were manually
traced with the inclusion of RV outflow to the pulmonary valve and
the trabeculae in the RV volume).

2.6. Statistical analysis

Categorical variables were presented as counts with percentages
and compared by Chi-square test or Fisher's exact test. Continuous var-
iables were presented as mean± SD ormedianwith IQR and compared
by grouped t-test or Wilcoxon rank sum test. Pearson or spearman cor-
relation coefficients were calculated first and linear regression models
were constructed. Furthermore, Bland–Altman analysis was carried
out for agreement assessments, the lower and upper limits of agree-
mentwere estimated, as themean±2SDswith 95% confidence interval
(CI). Pearson's or Spearman's correlation and Bland–Altman analysis
were also used to assess the intra-observer and inter-observer repro-
ducibility. A two-sided P b 0.05 was considered statistically significant.
Statistical software used in this study was SPSS 16.0 and MedCalc 9.5.

3. Results

Clinical and demographic characteristics of the patients were listed
in Table 1. The TTE-derived (MPAP–PCWP) and RHC-derived (MPAP–
PCWP) were comparable (55.06 ± 17.67 mm Hg vs 58.45 ±
18.76 mm Hg, P = 0.25). The linear regression analysis revealed a
good correlation (r = 0.934, 95% CI: 0.897–0.957) for all patients



Table 1
Clinical and hemodynamic characteristics of patients with PAH (n = 77).

Sex, M/F 17/60
Age, years 32.42 ± 11.01
BSA, m2 1.48 ± 0.14
Diagnosis, n 77

Idiopathic PAH, n (%) 70 (90.9%)
Post-operative persistent PAH, n (%) 7 (9.1%)

RHC
SPAP, mm Hg 103.64 ± 31.38
DPAP, mm Hg 39.97 ± 16.31
MPAP, mm Hg 68.00 ± 19.28
PCWP, mm Hg 9.55 ± 1.96
MPAP–PCWP, mm Hg 58.45 ± 18.76
CO, L/min 4.83 ± 1.91
Heart rate, bpm 79.23 ± 10.05

Invasive PVR, Wood 13.86 ± 7.05
TTE

MPAP, mm Hg 64.56 ± 18.05
PCWP, mm Hg 9.49 ± 1.99
MPAP–PCWP, mm Hg 55.06 ± 17.67
CO, L/min 3.76 ± 1.45
TTE-calculated PVR, Wood 16.55 ± 8.27
Mild tricuspid regurgitation, n (%) 42(54.5%)
Moderate tricuspid regurgitation, n (%) 31(40.3%)
Severe tricuspid regurgitation, n (%) 4(5.2%)

CMR
LVEDV, ml 88.90 ± 50.78
LVESV, ml 40.65 ± 32.09
LVEF, % 55.92 ± 9.91
Heart rate, bpm 77.97 ± 11.64
CO, L/min 4.18 ± 1.72
RVEF, % 25.15 ± 9.6

Integrated non-invasive PVR, Wood 14.75 ± 6.83

Notes: BSA, body surface area; Invasive PVR, PVR calculated with RHC; Integrated non-in-
vasive PVR, PVR calculated with TTE-derived (MPAP–PCWP)/CMR-derived CO.

Fig. 1.A, Scatter diagram and regression line between integrated non-invasive PVR and in-
vasive PVR (r=0.931, 95% CI: 0.893–0.956) in all patients. B, Bland–Altmanplot of the dif-
ference between integrated non-invasive PVR and invasive PVR against the mean of the
non-invasive PVR and invasive PVR.
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(Supplemental Fig. 1). Using the Bland–Altman analysis (Supplemental
Fig. 2), TTE-derived (MPAP–PCWP) showed satisfactory limits of agree-
ment with RHC-derived (MPAP–PCWP). The mean value was 3.39 ±
6.73 (SD), and TTE-derived (MPAP–PCWP) and RHC-derived (MPAP–
PCWP) values were well within one standard deviation (17.67 and
18.76, respectively).

The CO from CMR and RHC were 4.18± 1.72 L/min and 4.83 ± 1.91
L/min, respectively. The linear regression analysis also showed a good
correlation (r = 0.805, 95% CI: 0.709–0.872) (Supplemental Fig. 3).
Using the Bland–Altman analysis (Supplemental Fig. 4), CMR-derived
CO demonstrated the good limits of agreement with RHC-derived CO.
The mean value was −0.65 ± 0.85 (SD), and CMR-derived CO and
RHC-derived CO values were well within one standard deviation (1.73
and 1.92, respectively).

The heart rates were comparable between RHC/TTE and CMR
(79.23 ± 10.05 bmp vs 77.97 ± 11.64 bmp, P = 0.474), and variation
of heart rate was 1.26 ± 4.61. The integrated non-invasive PVR was
14.75 ± 6.83 Woods and invasive PVR was 13.86 ± 7.05 Woods. The
good correlation (r = 0.931, 95% CI: 0.893–0.956) was confirmed with
linear regression analysis (Fig. 1A). The Bland–Altman analysis showed
the satisfactory limits of agreement between integrated non-invasive
PVR and invasive PVR (Fig. 1B). The mean value was −0.89 ± 2.59
(SD), and integrated non-invasive PVR and invasive PVR values were
well within one standard deviation (6.84 and 7.06, respectively).
While between TTE-calculated PVR and invasive PVR, linear regression
analysis (Supplemental Fig. 5) showed the good correlation (r =
0.912, 95% CI: 0.865–0.943), and the Bland–Altman analysis (Supple-
mental Fig. 6) showed the less satisfactory limits of agreement (mean
value: −1.80 ± 3.33).

Furthermore, the difference between TTE-calculated PVR and inva-
sive PVRwas significantly larger than the difference between integrated
non-invasive PVR and invasive PVR (Fig. 2, t =−4.78, P b 0.001 by the
paired t-test analysis). The mean value of the difference between them
was −1.79 ± 3.33 (SD). Based on the formula ABS ((X PVR - invasive
PVR)/invasive PVR) for measuring the relative error, sd1 and sd2 were
produced by non-invasive PVR and TTE-calculated PVR, respectively.
And they all were divided into 4 categories by 0 to 0.1, 0.1 to 0.3, 0.3
to 0.5, and 0.5 to 1 (Table 2), respectively. Statistically significant differ-
ence was found between sd1 and sd2 for these categories by McNemar
test (χ2= − 19.371, P = 0.004).

For TTE-derived (MPAP–PCWP), the intra-observer and inter-
observer reproducibility was high, and the average differences were
−1.13 and −1.87, respectively. The Pearson correlation coefficient
was 0.977 and 0.955, respectively (P b 0.001 for both). For CMR-
derived CO, the intra-observer and inter-observer variability were
−0.076 and −0.186, respectively. The Pearson correlation coefficient
was 0.995 and 0.993, respectively (P b 0.001 for both). Both the intra-
observer (Supplemental Fig. 7) and inter-observer (Supplemental
Fig. 8) have the respectively satisfactory reproducibility for TTE-
derived (MPAP–PCWP) by using the Bland–Altman analysis, and the
intra-observer (Supplemental Fig. 9) and inter-observer (Supplemental
Fig. 10) for CMR-derived CO do the same as it.

4. Discussions

In this research, PVR was calculated directly with the combined use
of TTE-derived (MPAP–PCWP) and CMR-derived CO. In comparison to
RHC, PVR from this integrated non-invasive method showed the good
accuracy and reproducibility in patients with PAH. To our knowledge,
it is the first report to determine PVR with the combined use of TTE



Fig. 2. Scatter of the difference between integrated non-invasive PVR and invasive PVR and the difference between TTE–PVR and invasive PVR against the invasive PVR. The latter was
significantly larger than the former (t = −4.78, P b 0.001) by the paired t-test analysis.

25C. Yan et al. / IJC Heart & Vasculature 9 (2015) 22–27
and CMR, and our findings suggested that this integrated method was
clinically feasible for non-invasive calculation of PVR in PAH.

In patients with PAH, PVR is an important prognostic factor and is
frequently repeated for serial follow-up. Though RHC is the “gold stan-
dard” for the evaluation of PVR, its invasive nature makes it unsuitable
for frequent and repeated use [1,27]. In addition, the cost and ionizing
radiation also become the important disadvantages of RHC. Therefore,
it is urgent to develop the reliable and accurate methods for non-
invasive estimation of PVR. In preliminary studies, the significant rela-
tionships have been identified between some parameters of TTE/CMR
and PVR, and several composite numerical models have been
established to evaluate PVR non-invasively [2–13]. Limited by the in-
trinsic nature of each imagemodality, thesemethodswere usually indi-
rect, and the widely accepted method was still unavailable.

Based on the complementary advantages of TTE and CMR, a new
method was proposed for the non-invasive measurement of PVR in
this study. Since PVR is directly related to trans-pulmonary pressure
gradient (MPAP–PCWP) and inversely related to CO, the non-invasive
PVR can be achieved by non-invasive estimation of (MPAP–PCWP)
and CO, respectively. It has been previously demonstrated that TTE esti-
matedMPAP and PCWP reliably, but its ability to calculate COwasnot as
accurate and reproductive as CMR [25–26]. In this study, our findings
also proved the flaw of 2D-TTE in the measurement of CO. On the con-
trary, CMR was the best non-invasive modality to measure CO but its
ability to determine MPAP/PCWP was limited [13,32]. Therefore, TTE
and CMR can complement each other, and the combined use of two
Table 2
Dividing the difference of integrated non-invasivemethod comparing to invasive method
and the difference of TTE method comparing to invasive method into four categories, re-
spectively (%).

Difference
comparing to RHC
(integrated
non-invasive)

Difference comparing to RHC (TTE only) Total

0% to 10% 10% to
30%

30% to
50%

50% to
100%

0% to 10% 8(10.39) 16(20.78) 3(3.90) 1(1.30) 28(36.36)
10% to 30% 5(6.49) 15(19.48) 12(15.58) 4(5.19) 36(46.75)
30% to 50% 0(0.00) 2(2.60) 3(3.90) 4(5.19) 9(11.69)
50% to 100% 0(0.00) 2(2.60) 1(1.30) 1(1.30) 4(5.19)
Total 13(16.88) 35(45.45) 19(24.68) 10(12.99) 77(100.00)
image modalities made it possible to determine PVR non-invasively. In
this study, our findings confirmed the potential of this integratedmeth-
od. Furthermore, the attempt was also made to estimate PVR directly
with the isolated use of 2D-TTE in this study. In comparison with RHC,
however, TTE-calculated PVR was less satisfactory, which disagreed
with recent research [33].

Compared with RHC, TTE can estimate trans-pulmonary pressure
gradient (MPAP–PCWP) reliably in this study. In the estimation of
MPAP, several studies have identified a strong relationship between
TTE and RHC [14–16]. The incremental value of TTE for non-invasive
measurement of MPAP has been proven in routine clinical practice
[34]. Several TTE methods have been proposed to estimate MPAP, and
the simple Chemla' formula (MPAP = 0.61 × SPAP + 2) was adopted
in this study [16]. Furthermore, it has previously been demonstrated
that PCWP can be estimated reliably with different TTE methods
[17–23]. In this study, PCWP was determined non-invasively based on
the combined use of pulsed and color M-mode Doppler echocardiogra-
phy [18]. Therefore, it became possible to estimate trans-pulmonary
pressure gradient (MPAP–PCWP) non-invasively with TTE, which was
confirmed in this study.

In this research, CO was measured non-invasively with volumetric
cine CMR and agreed closelywith that fromRHC in similar physiological
status. There were two methods available in CMR-calculated CO (volu-
metric cine and velocity-encoded cine), and they had excellent agree-
ment [26]. CMR can overcome the limitations of TTE and provides the
best non-invasive method formeasurements of SV and CO. Previous re-
ports have showed that CMR-derived CO had good accuracy and repro-
ducibility compared with RHC-derived CO [24–26]. In this study, our
findings also showed the reasonable agreement between CMR and
RHC, and further corroborated the previous studies.

5. Study limitations

In patients with PAH, both physiologic and imaging factors were
contributors to variations in the measurement of PVR. To minimize
these influences, the related factors were controlled strictly between
RHC/TTE and CMR. In addition, PAH was severe and PVR was high in
this study. Therefore, the patients were selected highly in this study.
Given the difficulty in the estimation of PAP, the normal controls were
absent in this research. CO was measured non-invasively with
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volumetric cine CMR in this study. Though there was excellent agree-
ment between volumetric and velocity-encoded cine CMR, the latter
was used more frequently and might permit inclusion of more patients.
In this research, 30% or greater difference was observed in more than
10% of cases, which addedmore insight to the influence if the integrated
methodwas used in clinical practice. Comparedwith the benefit of non-
invasive procedure, however, the diagnostic value of integratedmethod
might be acceptable. Furthermore, TTE-derived CO was based on con-
ventional 2D-TTE, not 3D-TTE, in this research. Recent reports suggested
that 3D-TTE might be more accurate than 2D-TTE in the measurement
of SV [35–36]. Therefore, further research was required to evaluate the
possibility of non-invasive PVR based on 3D-TTE.

6. Conclusions

In this study, our findings suggest that PVR can be calculated di-
rectly using TTE-derived (MPAP–PCWP) and CMR-derived CO. Fur-
thermore, the results from this integrated non-invasive method
showed good diagnostic accuracy and repeatability compared with
RHC. Therefore, the combined use of TTE and CMR can provide a clin-
ically feasible method for non-invasive measurement of PVR in pa-
tients with PAH.
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