

RESEARCH

Open Access

Effect of SGLT2 inhibitors on cardiac structure and function assessed by cardiac magnetic resonance: a systematic review and meta-analysis

Isabella Leo^{1,2,3*†}, Nadia Salerno^{1,3†}, Stefano Figliozzi^{4,5}, Angelica Cersosimo¹, Jessica Ielapi¹, Kamil Stankowski⁶, Giandomenico Bisaccia⁷, Santo Dellegrottaglie⁸, Giovanni Canino¹, Salvatore De Rosa^{3,9}, Sabato Sorrentino^{3,9}, Chiara Bucciarelli-Ducci^{2,10} and Daniele Torella^{1,3*†}

Abstract

Background and aim Sodium-glucose cotransporter-2 inhibitors (SGLT2i) improve outcomes in patients with heart failure (HF) but underlying mechanisms remain incompletely understood. Cardiac magnetic resonance (CMR) is key in evaluating cardiac structure and function, enabling accurate assessment of reverse remodeling. Aim of this systematic review and meta-analysis was to assess the effects of SGLT2i on cardiac remodeling evaluated by CMR changes.

Methods We conducted a systematic review and meta-analysis of studies assessing changes in CMR parameters in patients treated with SGLT2i (PROSPERO registration: CRD42024574302). Databases were searched through April 30, 2025. Random-effects models were used to pool mean changes in left and right ventricular volumes, mass, function, stroke volume, global longitudinal strain, left atrial volume, and tissue characterization indices. Meta-regression and sensitivity analyses were performed to evaluate potential sources of heterogeneity.

Results Twenty-three studies and 1008 patients were included. Treatment with SGLT2i was associated with significant reductions in left ventricular (LV) end-diastolic volume (-7.10 mL ; 95% CI: $-13.01 \text{ to } -1.19$, $p=0.023$), left ventricular mass (-4.24 g ; 95% CI: $-7.88 \text{ to } -0.60$, $p=0.027$) and epicardial adipose tissue (-4.94 ml ; 95% CI: $-9.06 \text{ to } -0.82$, $p=0.019$). A subgroup analysis in patients with reduced LV ejection fraction showed improvement in LV stroke volume. Meta-regression revealed no significant effect of age, male sex or diabetes prevalence on pooled estimates.

[†]Isabella Leo and Nadia Salerno have contributed equally to this work.

Isabella Leo and Daniele Torella share seniorship.

*Correspondence:

Isabella Leo
isabella.leo@unicz.it
Daniele Torella
dtorella@unicz.it

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

Conclusions SGLT2i are associated with reductions in LV volumes and mass in line with an overall favorable reverse remodeling effects as assessed by CMR.

Keywords Heart failure, Sodium-glucose transport protein 2, Cardiovascular magnetic resonance, Reverse cardiac remodeling

Introduction

Initially proposed as glucose-lowering drugs, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have shown robust beneficial effects on cardiovascular outcomes in patients with heart failure (HF) across different HF phenotypes and irrespective of glycemic control and diabetic status [1, 2]. For these reasons European guidelines recommend their use in both patients with HF with reduced ejection fraction and preserved ejection fraction to reduce the risk of cardiovascular death and HF hospitalization [1, 2]. Treatment with SGLT2i has been also associated with lower rates of further cardiovascular events in patients with diabetes and myocardial infarction, regardless of HF status [3]. Moreover, in patients with chronic kidney disease SGLT2i proved to slow disease progression and reduce the risk of death from renal or cardiovascular causes [4]. Despite the compelling evidence supporting their use, the precise mechanisms behind SGLT2i cardioprotective effects remain incompletely understood [5]. The occurrence and progression of HF is paralleled by changes in ventricular geometry, function and structure (i.e., cardiac remodeling) [6]. In this setting, cardiac magnetic resonance (CMR) is essential in being the gold standard modality for volumes, mass and function assessment but provides also unique insights on tissue characterization of cardiac chambers [7–9]. Aim of this systematic review and meta-analysis was to assess the effects of SGLT2i on cardiac remodeling evaluated by CMR changes.

Methods

This meta-analysis was performed according to the Preferred Reporting Items for Systematic.

Reviews and Meta-Analyses (PRISMA) guidelines [10] (Supplementary Table 1). The protocol has been published in the PROSPERO International prospective register of systematic reviews (CRD42024574302).

Search strategy

Two independent investigators (A.C. and J.I.) performed a comprehensive literature search in PubMed, Clinical-Trials.gov, Embase, and the Cochrane Library using the following search terms: “SGLT2i” OR “Sodium-Glucose Transport Protein 2 Inhibitors” OR “SGLT2 Inhibitors” AND “Cardiac MRI” OR “Cardiac Magnetic Resonance” OR “Cardiovascular Magnetic Resonance” OR “CMR” in various combination. Full-text manuscripts published

between January 1, 2000, through April 30, 2025 were screened for eligibility.

Study eligibility

Full-text manuscripts published in peer-reviewed journals assessing changes in CMR parameters in patients treated with SGLT2i were included. Non-English-language studies, editorials, letters, expert opinions, case reports or series, duplicated data and meta-analyses were excluded. No sample size restrictions were applied. Two authors (A.C. and J.I.) independently evaluated studies for eligibility, and discrepancies were resolved by a third reviewer (I.L.). Only studies that met all inclusion criteria were included in the final analysis (Table 1).

Data extraction

The following variables were collected: (i) first author, (ii) year of publication, (iii) study design, (iv) sample size, (v) main demographic, clinical and CMR baseline patient characteristics. In detail, CMR parameters included left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume indexed (LVEDVi), left ventricular end-systolic volume (LVESV), left ventricular end-systolic volume indexed (LVESVi), left ventricular mass (LVM) and indexed mass (LVMi), left atrial volume indexed (LAVi), left ventricular stroke volume (LVSV), right ventricular end-diastolic volume indexed (RVEDVi), right ventricular end-systolic volume indexed (RVESVi), epicardial adipose tissue (EAT), native T1 mapping and extracellular volume (ECV). All indexed values are meant indexed for body surface area. At least three studies reporting CMR outcome variables were required to be eligible for the analysis. The individual quality of each study was assessed using the Newcastle-Ottawa Scale (NOS), with studies categorized as poor, fair, or good quality based on criteria related to selection, comparability, and outcome [11] (Supplementary Table 2).

Statistical analysis

The primary endpoint was the mean difference (baseline vs. follow-up evaluation) of CMR parameters. A random-effects model (DerSimonian and Laird method) [12] was used to estimate pooled mean differences and corresponding 95% confidence intervals (CIs) of reported average measures of CMR parameters before and after treatment with SGLT2i, accounting for anticipated heterogeneity across studies.

Table 1 Patients' baseline characteristics

Study	Study Design	Total cohort	No SGLT2i group	Age (y)	Male n (%)	Hyper-tension n (%)	Diabetes n (%)	CAD n (%)	HF n (%)	HbA1c (%)	eGFR at baseline (mL/min/1.73m ²)	SGLT2i	Fol-low-up (days)
Bouchi et al. 2017	Single-arm pilot study	19	No	55±12 (74)	14 N/A	19 (100)	N/A	7.5±0.7	69.7±13.8	Luseogliflozin	84		
Brown et al. 2020	Single-centre, double-blind, placebo-controlled trial	66	Yes	67±7 (56.6)	38 (51)	66 (77.3) (100)	8 (12.1)	N/A	7.7±3.1	101.9±27.1	Dapagliflozin	365	
Carberry et al. 2025	Randomized, double-blind, placebo-controlled, multicentre trial	105	Yes	63±11 (82.7)	86 (35)	9 (33.7) (8.7)	105 (100)	N/A	78.8±20.2	Empagliflozin	168		
Cohen et al. 2019	Matched cohort study	25	Yes	63.3±7.6 (64)	16 N/A	25 (100)	6 (24)	N/A	8.1±0.8	N/A	Empagliflozin	180	
Connelly et al. 2023	Multicentre, double-blind, placebo-controlled, randomized investigator-initiated clinical trial	169	Yes	59.3±10.5 (83)	141 (82.8)	0 (0)	N/A*** (24.3)	41	5.7±0.5	80.5±16	Empagliflozin	180	
Dihoum et al. 2024	Sub-study of a prospective, double-blind, randomized, placebo-controlled study	60	Yes	65.2±6.9 (60)	36 (47)	60 (78.3) (100)	8 (13.3)	N/A	7.8±3.1	N/A	Dapagliflozin	365	
Fukuda et al. 2017	Single-arm pilot study	9	No	66±8 (67)	6 N/A	9 (100)	N/A	N/A	7.2±0.6	79.5±17.1	Ipragliflozin	84	
Gaborit et al. 2021	Randomized, parallel-group, double-blind, phase 3 trial	51	Yes	56.9±9.6 (39.2)	20 (32)	51 (62.7) (100)	16 (31.4)	N/A	8.1±1.1	N/A	Empagliflozin	84	
Hassan et al. 2024	Single-centre, prospective analytic study	23	No	42.1±3.8 (82.6)	19 (6)	6 (26.1) (21.7)	5 (21.7) (0)	23 (0)	N/A	118.01±39.3 (100)	Dapagliflozin (270–600)*	365	
Hsu et al. 2019	Prospective study	35	No	63.5±9.7 (48.6)	17 (29)	35 (82.9) (100)	17 (48.6)	N/A	7±1.1	82.3±19.4	Empagliflozin	180	
Hundertmark et al. (HF _{EF}) 2023	Prospective, randomized, double-blind, placebo-controlled trial	36	Yes	66±13.5 (63.9)	23 (8)	22 (22) (13.9)	5 (0)	36 (0)	N/A	71.2±24.6 (100)	Empagliflozin	84	
Hundertmark et al. (HF _{PEF}) 2023	Prospective, randomized, double-blind, placebo-controlled trial	36	Yes	68.3±11.5 (52.8)	19 (12)	33 (33) (11.1)	4 (0)	36 (0)	N/A	68.1±18.9 (100)	Empagliflozin	84	
Lee et al. 2021	Multicentre, randomized, double-blind, placebo-controlled trial	105	Yes	68.7±11.1 (73.3)	77 (74)	70.5 (82) (78.1)	74 (70.5)	105 (100)	7.2±1.5	67.3±22	Empagliflozin	252	
Mason et al. 2021	Sub-study of a double-blind randomized controlled trial	74	Yes	68 (91.9)	65 (91.9)	87.8 (100)	74 (100)	6 (8.1)	8±1	88.4±20	Empagliflozin	180	
Oldgren et al. 2021	Double-blind, randomized, parallel-group, exploratory, phase IV trial	49	Yes	64.4 (53)	26 (37.2)	76 (49) (100)	2 (4.1) (1)	0 (0)	6.7±0.6	N/A	Dapagliflozin	42	
Pourafkari et al. 2024	Sub-study of a double-blind, randomized controlled trial	90	Yes	64.5 (64)	83 (91)	90 (90) (100)	90 (100)	N/A	7.9	N/A	Empagliflozin	180	
Santos-Gallego et al. 2021	Double-blind, placebo-controlled, randomized trial	84	Yes	62±12.1 (64)	54 (62)	74 (74) (100)	42 (50) (100)	84 (8)	5.8±0.4	81.5±22	Empagliflozin	180	

Table 1 (continued)

Study	Study Design	Total cohort	No SGLT2i group	Age (y)	Male n (%)	Hyper-tension n (%)	Diabe-tes n (%)	CAD n (%)	HbA1c (%)	eGFR at baseline (mL/min/1.73m ²)	SGLT2i	Fol-low-up (days)
Requena-Ibáñez et al. 2021	Sub-study of a double-blind, placebo-controlled, randomized trial	84	Yes	62±12.1 (64)	54 (62)	62 (74)	0 (0)	42 (50)	84 (100)	5.8±0.4	81.5±22	Empagliflozin 180
Sarak et al. 2021	Post-hoc analysis of single centre, double-blind, randomized, placebo-controlled, investigator-initiated phase IV trial	90	Yes	64 (90)	81 (82)	91 (91)	90 (100)	90 (100)	12 (13)	7.9	N/A	Empagliflozin 180
Satoh et al. 2024	Single-centre prospective cohort study	10	No	67.8±10 (440)	4 (40)	N/A	N/A	N/A	N/A	N/A	52.0 (44.255.7)	Empagliflozin 180
Singh et al. 2020	Single-centre, placebo-controlled clinical trial	56	Yes	67.1 (66.1)	37 (36)	N/A (66.1)	56 (100)	N/A (100)	56 (100)	7.7	72	Dapagliflozin 365
Thirunavukarasu et al. 2021	Single centre, open-label cross-over trial	28	Yes	67±9 (75)	21 (21)	75 (75)	28 (100)	18 (64.3)	N/A (100)	7±1	75.5±30.4	Empagliflozin 84
Verma et al. 2019	Double-blind, placebo-controlled, randomized investigator-initiated clinical trial	97	Yes	62.9±9 (93)	90 (88)	90 (90.1)	97 (100)	97 (100)	6 (6.2)	N/A (100)	87.5	Empagliflozin 180
Wang et al. 2024	Double-blind, randomized trial	62	Yes	62±10 (83)	51 (38)	61.3 (62)	N/A*** (100)	0 (0)	7.9±0.9	N/A	Dapagliflozin 365	

Categorical variables are given as absolute numbers and percentage, n (%). Continuous variables are given as mean±standard deviation or * median (IQR, interquartile range). **The value is expressed as pmol/l. ***Myocardial Infarction 31 (18.3%), coronary artery bypass surgery 11 (6.5%), percutaneous coronary intervention 35 (20.7%), **** Myocardial Infarction 3 (4.8%), coronary artery bypass surgery 2 (3.2%), percutaneous coronary intervention 4 (6.5%)

CAD: coronary artery disease; eGFR: estimated glomerular filtration rate; Hb1Ac: glycated hemoglobin; HF: Heart Failure; SGLT2i: Sodium-Glucose Transport Protein 2 Inhibitors

Table 2 Main CMR parameters in patients treated with SGLT2i at baseline

Study	LVEDV (ml)	LVEDVi (ml/m ²)	LVESV (ml)	LVESVi (ml/m ²)	LVEF (%)	LVM (g)	LVMi (g/m ²)	LAVi (ml/m ²)	LVSV (ml)	LVGS (%)	ECV (%)	T1 (ms)
Brown et al. 2020	127.6±22.5	N/A	37.2±9.9	N/A	71.3±5.4	126.5±20.5	60.9±7.8	N/A	90.5±16.4	N/A	N/A	N/A
Carberry et al. 2025	N/A	97.8±19.8	N/A	65.6±17	33.4±6	N/A	62.2±13.7	34.3±12.7	N/A	N/A	N/A	N/A
Cohen et al. 2019	155.2±8.7	N/A	N/A	N/A	63.4±1.7	93.1±4.9	N/A	N/A	N/A	N/A	N/A	989.8±25.3
Connely et al. 2023	145.8±39	74.2±20.2	60.2±28	30.7±15	59.9±10.7	124.4±35.6	63.2±17.9	N/A	N/A	N/A	N/A	N/A
Dihoum et al. 2024	124.1±20.2	N/A	35.6±9.4	N/A	71.7±5.4	124.7±21.5	73.9±9.9	N/A	N/A	-17.8±2.1	N/A	N/A
Gaborit et al. 2021	N/A	N/A	N/A	N/A	63.1±8.2	117	58 (51,66)	N/A	N/A	N/A	N/A	N/A
Hassan et al. 2024	N/A	178.3±11	N/A	140±44.3	23.8±9.2	N/A	N/A	N/A	41.2±3.9*	N/A	33.7±1.3	N/A
Hsu et al. 2019	94.4±28.2	53.5±16.2	24.5±19.6	13.8±11.9	77.2±12.1	N/A	95.1±28.3	N/A	N/A	N/A	27.4±4.1	N/A
Hundertmark et al. (HF _{eff}) 2023	242±78.5	N/A	N/A	N/A	36.8±9.2	146.6±8.3	75.4±4.7	N/A	85.3±6.3	-6.8±1.4	30.3±2.1	1190.1±112
Hundertmark et al. (HF _{peff}) 2023	174.2±18.6	N/A	N/A	N/A	52.6±2.2	127.7±14.5	62.2±5.9	N/A	88.8±7.4	-14.8±1	29.7±1	1177.9±113
Lee et al. 2021	224.8±72.2	114.7±37	157.5±68.1	80.8±37.2	31.7±9.9	121.2±36.5	61.2±16.1	40.5±13.3	N/A	-7±2.1	31.8±4.5	N/A
Mason et al. 2021	N/A	62.2±15.7	N/A	26.6±9.9	58.0±6.8	N/A	59.1±10.1	N/A	N/A	2.1	29.6±4.6	1246±42
Oldgren et al. 2021	N/A	83.1±16.7	N/A	32.8±8.2	60.7±3.8	N/A	44.8±8.6	33.1±13.6	50.3±9.7*	N/A	N/A	N/A
Requena-Báñez et al. 2021	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30.3±4.2	N/A
Pourafkari et al. 2024	N/A	62.9±15.4	N/A	26.7±9.9	58.4±7	N/A	59.2±10.7	26.4±8.4	N/A	N/A	N/A	N/A
Santos-Gallego et al. 2021	219.8±75.8	N/A	143.6±66.3	N/A	36.2±8.2	135.2±45.2	N/A	N/A	N/A	N/A	N/A	N/A
Satoh et al. 2024	N/A	70.1±15.3	N/A	29.5±7.5	N/A	N/A	N/A	N/A	N/A	-13.8±2.0	N/A	N/A
Singh et al. 2020	172.4±47.7	85.9±24.1	99.2±40.7	49.4±21.3	44.5±12.4	N/A	69.5±16.3	49±18.8	36.6±10.4	N/A	N/A	N/A
Thirunavukarasu et al. 2021	163±50	86±27	83±45	44±25	52±13	119±33	61±15	30±16	81	-10±3	25±3	1.285±104

Table 2 (continued)

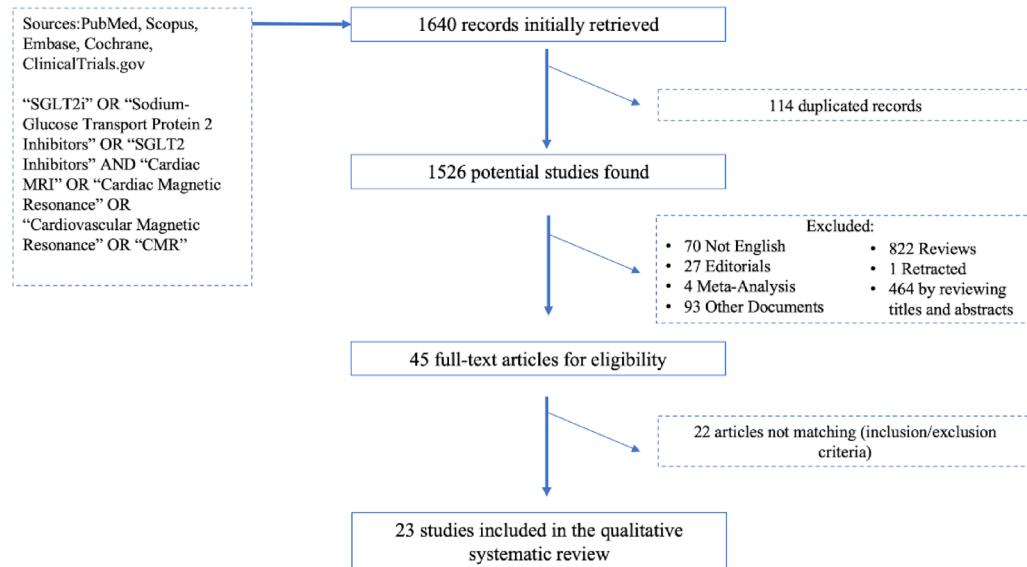
Study	LVEDV (ml)	LVEDVi (ml/m ²)	LVESV (ml)	LVEF (ml/m ²)	LVEF (%)	LVM (g)	LVMi (g/m ²)	LAVi (ml/m ²)	LVSV (ml)	LVGLS (%)	ECV (%)	T1 (ms)
Verma et al. 2019	124.1±33	63.3±15.5	53±20.8	27.1±10.5	58±7.5	1165±26.3	59.3±10.9	N/A	N/A	N/A	N/A	N/A
Wang et al. 2024	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-12.9±3.4	27.7±2.9	N/A

Categorical variables are given as absolute numbers and percentage, n (%). Continuous variables are given as mean±standard deviation or * median (IQR, interquartile range)
LVEDV: left ventricular end-diastolic volume; LVEDVi: left ventricular end-diastolic volume indexed; LVESV: left ventricular end-systolic volume; LVESV: left ventricular end-systolic volume indexed; LVEF: left ventricular ejection fraction; LVEF: left ventricular ejection fraction indexed; LVM: left ventricular mass; LVMi: left ventricular mass indexed; LAVi: left atrial volume; LVSV: left ventricular stroke volume; LVGLS: left ventricular longitudinal strain

For each study, the effect size was defined as the mean difference in the outcome of interest. The standard error (SE) of the mean difference was calculated from the reported change in standard deviation (SD) and sample size. When SDs were not directly reported, they were imputed based on available information according to Cochrane Handbook recommendations [13], using available confidence intervals, p-values from parametric tests of change, or from correlation coefficients. When correlation coefficients were not provided in the study, they were either extracted or imputed based on data from similar studies.

For studies that included a control group (patients not treated with SGLT2i), we extracted the mean difference in CMR parameters from baseline to follow-up separately for treated (a) and untreated (b) patients. The difference between these two changes (a minus b) was calculated to assess the treatment effect attributable to SGLT2i treatment. Measures of variability for these differences were derived accordingly.

Studies without available control group data were included in the pre-versus-post treatment meta-analysis but excluded from between-group comparisons.


Heterogeneity was assessed using the Cochran Q test and quantified with the I^2 statistic, with I^2 values above 50% indicating substantial heterogeneity [14]. Publication bias was evaluated using visual inspection of funnel plots and Egger's regression test, with a p value <0.10 considered indicative of significant asymmetry.

Sensitivity analyses were performed by excluding one study at a time (leave-one-out analysis) to identify potential sources of heterogeneity and assess the robustness of the pooled effect estimates. A subgroup analysis was conducted stratifying studies by reduced LVEF ($<50\%$) at baseline. Effect of potential confounders on the pooled estimates for main CMR outcomes were assessed by meta-regression analysis. All statistical analyses were performed using JASP (University of Amsterdam, v. 0.19.3), and a two-tailed p-value <0.05 was considered statistically significant.

Results

Literature search

The study flow-chart is reported in Fig. 1. Initially, 1,640 articles were identified, with 114 duplicates removed. After screening the titles and abstracts of 464 articles, 45 were selected for full-text evaluation. Ultimately, 23 articles were deemed eligible for quantitative analysis of SGLT2i effects on CMR parameters [15–37]. Four studies [16, 17, 20, 26], were conducted to analyze different parameters (i.e. left ventricular, right ventricular and left atrial) on the same cohort of patients. Similarly, Dihoum et al. [21] performed a sub-analysis of the DAPA-LVH study including a previously unpublished assessment of

Fig. 1 Study screening flow diagram

Table 3 Other CMR parameters in patients treated with SGLT2i at baseline

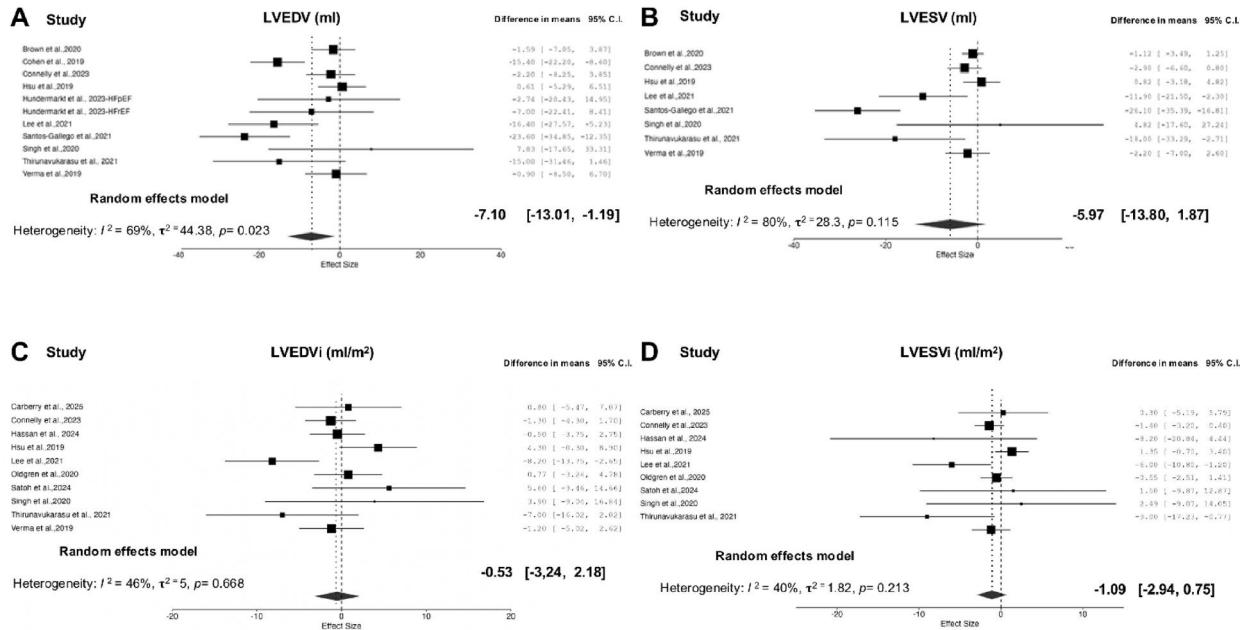
Study	RVEDVi (ml/m ²)	RVESVi (ml/m ²)	RVEF (%)	Epi- cardial fat (cm ³)
Bouchi et al. 2017	N/A	N/A	N/A	117 (96 – 136)
Fukuda et al. 2017	N/A	N/A	N/A	102 (79– 126)
Hassan et al. 2024	100 (78,111)	60 (31,79)	38.1 ± 4.1	N/A
Hsu et al. 2019	N/A	N/A	N/A	32.3 (5.7– 82.8)
Requena-Ibáñez et al. 2021	N/A	N/A	N/A	
Sarak et al. 2021	62 ± 13.2	28.9 ± 6.5	53.2 ± 4.9	N/A
Satoh et al. 2024	79 ± 16.9	36.4 ± 16.1	N/A	N/A
Thirunavukarasu et al. 2021	79 ± 19	38 ± 15	53 ± 9	N/A

Categorical variables are given as absolute numbers and percentage, n (%). Continuous variables are given as mean ± standard deviation or * median (IQR, interquartile range)

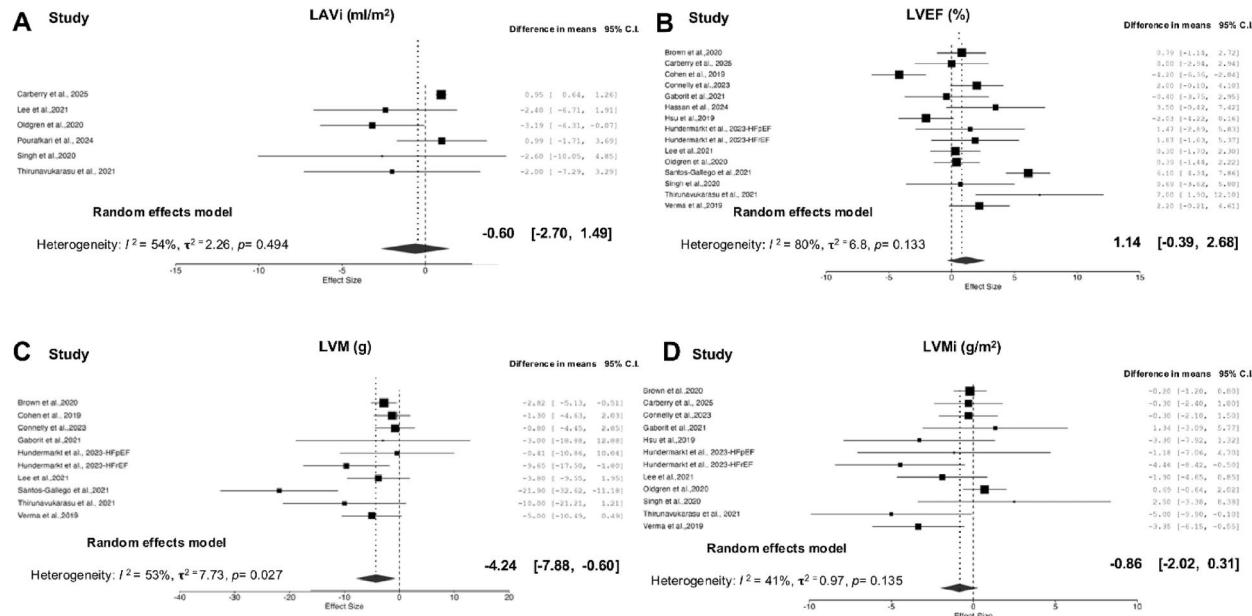
RVEDVi: right ventricular end-diastolic volume indexed; RVESVi: right ventricular end-systolic volume indexed; RVEF: right ventricular ejection fraction

Left Ventricular Global Longitudinal Strain (GLS), while Requena-Ibáñez et al. [18] performed a sub-analysis of the EMPA-TROPISM study on EAT and ECV values; these studies have been included in the analysis and the population overlap was taken into account when summarizing main results (Table 1).

Study characteristics


A total of 1008 patients (74% males; mean age ± SD equal to 62 ± 11 years) undergoing baseline and follow-up CMR [median follow-up of 180 days [IQR: 96 days]] were included for quantitative analysis. Among them, 553 (55%) patients were treated with SGLT2i and 455 (45%) patients were not. Main CMR characteristics are summarized in Tables 2 and 3.

The smallest study had a population of 9 patients [27] and the largest 169 [30]. Fifteen studies [15–20, 22, 25, 26, 29–31, 33, 35, 37], included patients treated with empagliflozin, six studies with dapagliflozin [21, 23, 24, 32, 34, 36], one with ipragliflozin [27] and one with luseogliflozin [28]. Six studies [15, 19, 22, 24, 25, 32] included patients with reduced LVEF at baseline. Six studies [27, 28, 32, 33, 35, 36] did not report data for a control group and were therefore analyzed as single-arm cohorts.


Meta-analyses

Effects on left heart volumes, mass, and function

Treatment with SGLT2i was associated with a significant reduction in LVEDV (−7.10 mL [95% CI: −13.01, −1.19]; 10 studies, $I^2 = 69\%$, $p = 0.023$), whereas no significant changes were observed in LVESV (−5.97 mL [95% CI: −13.80, 1.87]; 8 studies, $I^2 = 80\%$, $p = 0.115$), LVEDVi (−0.53 mL/m² [95% CI: −3.24, 2.18]; 10 studies, $I^2 = 46\%$, $p = 0.668$), LVESVi (−1.09 mL/m² [95% CI: −2.94, 0.75]; 9 studies, $I^2 = 40\%$, $p = 0.213$), LVEF (1.14% [95% CI: −0.39, 2.68]; 14 studies, $I^2 = 80\%$, $p = 0.133$) (Figs. 2 and 3), and GLS (−0.16% [95% CI: −2.67, 2.35]; 5 studies, $I^2 = 83\%$, $p = 0.878$). A non-significant trend towards increase in LVSV was observed (1.41 ml [95% CI: −0.12, 2.94]; 4 studies, $I^2 = 0$, $p = 0.063$, Supplementary Fig. 1). A significant decrease in LVM was observed (−4.24 g [95%

Fig. 2 Effect of SGLT2i on cardiac imaging parameters measured by CMR. Forest plots: meta-analyses on LVEDV (A), LVESV (B), LVEDVi (C) and LVESVi (D). Effect sizes: differences in means between baseline and follow-up measurements. LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEDVi: left ventricular end-diastolic volume indexed; LVESVi: left ventricular end-systolic volume indexed

Fig. 3 Effect of SGLT2i on cardiac imaging parameters measured by CMR. Forest plots: meta-analyses on LAVi (A), LVEF (B), LVM (C) and LVMi (D). Effect sizes: differences in means between baseline and follow-up measurements. LAVi: left atrial volume indexed; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; LVMi: left ventricular mass indexed

CI: -7.88 , -0.60 ; 9 studies, $I^2 = 53\%$, $p = 0.027$), while LVMi showed no significant change (-0.86 g/m² [95% CI: -2.02 , 0.31]; 11 studies, $I^2 = 41\%$, $p = 0.135$). There was no significant change in LAVi values (-0.60 mL/m² [95% CI: -2.70 , 1.49]; 6 studies, $I^2 = 54\%$, $p = 0.494$) (Fig. 3).

Effects on right heart volumes and function

Both RVEDVi and RVESVi remained unchanged (-0.03 mL/m² [95% CI: -2.54 , 2.49]; 4 studies, $I^2 = 0\%$, $p = 0.975$; -0.31 mL/m² [95% CI: -1.61 , 0.99]; 4 studies, $I^2 = 0\%$, $p = 0.502$, respectively). No effect was also noted on RVEF (1.29% [95% CI: -1.33 , 3.92]; 3 studies, $I^2 = 40\%$, $p = 0.502$) (Supplementary Fig. 2).

Effects on tissue characterization

There were no differences in ECV (-0.27% [95% CI: -1.16 , 0.61]; 8 studies, $I^2 = 78\%$, $p = 0.547$), or T1 mapping (4.6 ms [95% CI: -14.97 , 24.17]; 4 studies, $I^2 = 74\%$, $p = 0.645$). (Supplementary Fig. 1).

Effect on epicardial adipose tissue

There was a significant reduction in EAT after SGLT2i (-4.94 mL [95% CI: -9.06 , -0.82]; 4 studies, $I^2 = 0\%$, $p = 0.019$). (Supplementary Fig. 2).

Effects in patients with heart failure

In patients with LVEF at baseline $<50\%$, LVSF increased significantly (1.83 mL [95% CI: 0.86 , 2.80]; 2 studies, $I^2 = 0\%$, $p = 0.027$). A non-significant trend towards increase in LVEF was also noted (2.61% [95% CI: -0.50 , 5.70]; 5 studies, $I^2 = 80\%$, $p = 0.08$). No significant differences were observed for the other parameters.

Effects in patients with diabetes

In patients with diabetes, there was a significant reduction in LVM (-4.61 g [95% CI: -8.59 , -0.63]; 3 studies, $I^2 = 0\%$, $p = 0.024$). EAT also decreased significantly (-5.14 mL [95% CI: -9.94 , 0.95]; 3 studies, $I^2 = 0\%$, $p = 0.036$). No significant differences were found for LVEDV, LVESV, LVMi, LVEF, or ECV.

Sensitivity analysis

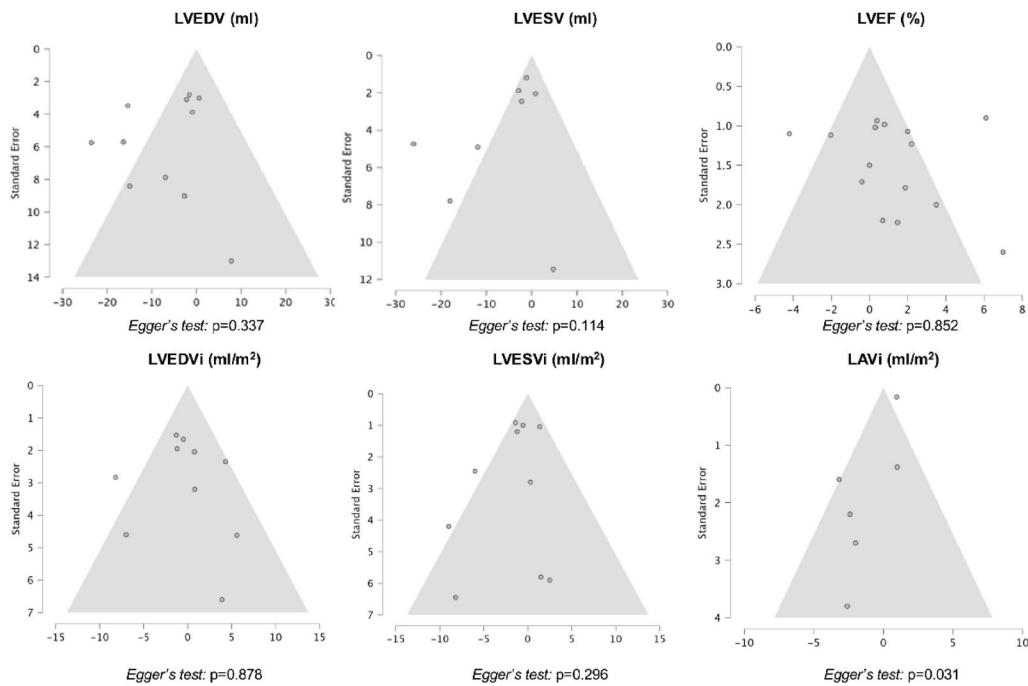
A sensitivity analysis including only studies with a control group ($n = 15$) was conducted, confirming both the decrease in LVEDV (-7.73 mL [95% CI: -14.68 , -0.78]; $I^2 = 70.4\%$, $p = 0.033$) and LVM (-3.96 g [95% CI: -7.84 , -0.08]; $I^2 = 55.4\%$, $p = 0.047$). Leave one-out analyses were performed to assess the robustness of the meta-analytic estimates across all imaging-derived parameters; for LVEDV, pooled effect estimates ranged from -5.38 to -8.23 mL , with all but one iteration (Cohen et al. [29], $p = 0.064$) maintaining statistical significance; heterogeneity varied between 59.5% and 75.5%, indicating moderate-to-high between-study variability. No single study exerted a disproportionate influence on the overall estimate. In contrast, LVESV analysis revealed greater sensitivity to individual studies, with a significant drop in heterogeneity when removing Santos-Gallego et al. [15] ($I^2 = 46.5\%$). For indexed LV volumes (LVEDVi and LVESVi), all iterations produced non-significant results. While effect sizes remained consistently small, heterogeneity decreased substantially when Lee et al. [25] (LVEDVi $I^2 = 10.0\%$) or Hsu et al. [33] (LVESVi $I^2 = 17.7\%$) were excluded. The analysis of LVM demonstrated consistent effect estimates across all exclusions (range: -2.73 to -5.02 g), with all the iterations but Hundermark et al. [19] ($p = 0.065$) retaining statistical significance. Heterogeneity varied modestly, with Santos-Gallego et al. [15]

being a key contributor ($I^2 = 0\%$ upon exclusion). For LVEF, removal of Cohen et al. [29] yielded a statistically significant result ($p = 0.029$), with heterogeneity remaining steadily high across all iterations. For LVSF, statistical significance was observed upon exclusion of Brown et al. [23] ($p = 0.014$, mean difference 1.88) and heterogeneity remained null across all exclusions. Both LVMi and LAVi analyses revealed non-significant effects with moderate, stable, heterogeneity for LVMi (I^2 range: 30.3–46.3%) and notable reduction in heterogeneity after the exclusion of Oldgren et al. [34] ($I^2 = 7.9\%$) or Carberry et al. [22] ($I^2 = 12.9\%$) for LAVi (Supplementary Table 3).

Meta-regression analyses

At meta-regression analyses, none of the predictors included in the model (i.e., age, male sex and diabetes) revealed a significant effect modification on LVEDV, LVESV, LVEDVi, LVESVi, LVEF, LAVi, LVM, LVMi (all p -values > 0.05). Meta-regression analyses were not performed on other CMR parameters due to the limited number of studies available.

Publication bias and grading of evidence


Funnel plots were visually inspected for asymmetry and assessed using Egger's regression test across all cardiac structural, functional, and tissue parameters. No substantial visual asymmetry was observed for most outcomes, except for ECV and LAVi. Egger's test results statistically confirmed possible publication bias for both parameters ($p = 0.04$ and 0.031 , respectively) (Fig. 4 and Supplementary Fig. 3).

According to the GRADE Working Group system [38], the level of certainty for the association between SGLT2i treatment and CMR outcomes was moderate for most outcomes but in 7, in which were adjudicated to be low (Supplementary Table 4).

Discussion

The present updated systematic review and meta-analysis demonstrated an association between SGLT2i treatment and decrease of LVEDV and LVM, providing evidence for favorable effects on cardiac remodeling. These results were confirmed in a sensitivity analysis including only studies with control group and were not affected by baseline patient characteristics including age, sex and diabetes. Patients with reduced LVEF also showed a significant, although modest, increase in LVSF after SGLT2i treatment.

Our data on favorable LV remodeling are in line with a previous meta-analysis including 9 randomized controlled trials (3 of which were CMR-based) demonstrating a significant reduction in LV volumes and indexed LV mass with significant increase in LVEF in the whole population [39]. However, the use of different imaging

Fig. 4 Evaluation for publication bias. Funnel plots with 95% confidence intervals for LVEDV, LVESV, LVEF on the top, LVEDVi, LVESVi, LAVi on the bottom. LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEDVi: left ventricular end-diastolic volume indexed; LVESVi: left ventricular end-systolic volume indexed; LVEF: left ventricular ejection fraction; LAVi: left atrial volume indexed

modalities to assess cardiac remodeling in that study may have introduced variability and potentially obscured subtle treatment effects. CMR is in fact considered the gold standard for quantifying ventricular volumes, mass, and tissue characterization, offering superior spatial resolution and interobserver consistency [40, 41]. In contrast, echocardiography is more widely available and used in clinical practice but is subject to greater operator dependence and geometric assumptions, that may be unneforgettable particularly in patients with abnormal ventricular shapes [42].

A recent meta-analysis [43] focusing only on CMR studies ($n=5,408$ patients) was able to confirm only LVM regression after SGLT2i administration, likely due to the limited number of studies available at the time of publication. Cardiac remodeling reflects complex molecular and structural changes, involving inflammation, fibrosis, and metabolic dysregulation [5]. Maladaptive remodeling is associated with worse clinical outcomes, and represents one of the main targets of HF therapy [44]. In this regard, SGLT2i have proven in several trials to reduce key cardiovascular endpoints as hospitalizations and HF-related mortality, irrespective of the glycemic status [45–49]. The exact mechanisms subtended to these beneficial effects are not yet fully understood, with different hypothesis generated so far [5].

By blocking glucose reabsorption in the proximal renal tubule, these agents promote glycosuria, reduce insulin levels, and increase glucagon secretion—facilitating

lipolysis and fat oxidation, with consequent reduction in visceral adiposity [50]. Moreover, their natriuretic effect determines unloading and suppresses the renin-angiotensin-aldosterone system, with favorable effect on blood pressure [51]. However, these metabolic and hemodynamic changes alone do not fully account for the observed CV benefits. Improvements in endothelial function and arterial stiffness, reduced oxidative stress [52], inflammation [53], vascular resistance [46], and a shift toward more efficient metabolic pathways [5] have been demonstrated in clinical and pre-clinical models and may all contribute to the positive observed effect [54, 55]. In this regard, preclinical studies have demonstrated that SGLT2i administrations prevent cardiac remodeling in mice fed with a high-fat, high sucrose diet, inducing the expression of oxidative phosphorylation and fatty acid metabolism genes [56, 57]. However, Hundertmark et al. [19] found no differences in cardiac energetics—measured by the MRS-derived phosphocreatine-to-ATP ratio—either at rest in patients with HFrEF and HFpEF, or in HFrEF patients during dobutamine stress. Moreover, Hsu et al. [33] failed to demonstrate significant changes in intracardiac triglycerid content. Our meta-analysis demonstrated a significant reduction in EAT; despite different techniques have been used to assess EAT in the studies included in the analysis (whole heart coronary angiography for the study conducted by Fukuda [27] and Bouchi [28] and cine images for the others), the

result is interesting given the established adverse prognostic role of EAT accumulation [58].

We also found no impact of SGLT2i treatment on tissue characterization indices such as T1 mapping and ECV in the whole population; this result should be interpreted carefully given the limited number of studies included in the analysis for these parameters, with possible publication bias for ECV [17–19, 25, 32, 33, 35, 36]. Therefore, the reduction in LVM observed following SGLT2i treatment appears to result primarily from LV unloading rather than from a decrease in extracellular volume. However, pre-clinical studies in animal models demonstrated reduced intramyocardial fibrosis after empagliflozin with lower collagen deposition and decreased extracellular volume [5, 55]. Moreover, in some studies a significant reduction in LVM was observed even in the absence of LV unloading [26].

Remarkably, the demonstrated effect on LV volumes may have a significant impact on clinical outcomes; in a pooled analysis, a 10 mL decrease in end-diastolic volume was associated with a 5% relative reduction in the odds of mortality [41]. However, the relationship between changes in LVEDV and symptomatic or functional improvement remains uncertain and heterogeneous across studies. Santos-Gallego et al., [15] demonstrated a reduction in LVEDV after empagliflozin associated with significant improvements in peak oxygen consumption, 6-minute walking test performance, and Kansas City Cardiomyopathy Questionnaire scores. Similarly, Lee et al. [25] demonstrated a significant reduction in LVEDV; however, they found no corresponding improvement in either Kansas City Cardiomyopathy Questionnaire scores or 6-minute walking test performance.

Our study also found no evidence of significant changes in RV volumes and function. This is in line with the results of the post-hoc analysis of the EMPA-HEART CardioLink-6 that failed to demonstrate any impact of empagliflozin treatment on RV parameters (including RV mass) on 90 patients with diabetes and coronary artery disease [16].

Limitations

This study has several limitations. First, the number of included studies for some parameters—particularly right ventricular volumes, strain, and tissue characterization markers—was limited, reducing the statistical power of the analysis. Heterogeneity was also moderate to high for several outcomes, potentially reflecting differences in patient populations, imaging protocols, follow-up durations, and background therapies; the significant heterogeneity in the study populations, which included patients with varying baseline characteristics, may also affect the comparability of results across studies and limits the generalizability of our findings to specific clinical

subgroups. Although sensitivity analyses were performed for selected sub-populations, residual confounding cannot be excluded. Therefore, while the observed reductions in LVEDV and LVM are of interest, they should be interpreted with caution and considered hypothesis-generating rather than conclusive evidence of a class effect. Finally, some of the included studies had relatively small sample sizes and were not blinded or randomized, increasing the risk of bias. Prospective studies with standardized CMR endpoints and longer follow-up will certainly provide more information, particularly regarding effects on tissue-level changes.

Conclusions

This meta-analysis demonstrated an association between SGLT2i treatment and reductions in both LVEDV and LVM. However, these effects were not confirmed in the sub-group analysis limited to patients with heart failure, while a significant reduction in LVM was observed among patients with diabetes. The heterogeneity of the study populations included in the meta-analysis limits the generalizability of the results; the results should be thus considered hypothesis-generating. Nonetheless, they support the mechanistic hypothesis that reverse left ventricular remodeling may contribute to the cardiovascular benefits observed with SGLT2i therapy.

Supplementary Information

The online version contains supplementary material available at <https://doi.org/10.1186/s12933-025-02904-4>.

- Supplementary Material 1
- Supplementary Material 2
- Supplementary Material 3
- Supplementary Material 4
- Supplementary Material 5
- Supplementary Material 6
- Supplementary Material 7
- Supplementary Material 8
- Supplementary Material 9

Author contributions

I.L.: conceptualization, statistical analysis, drafting of the main manuscript. N.S.: conceptualization, drafting main manuscript. A.C. and J.I.: systematic review, data extraction, figure preparation. S.F., K.S., S.D.R., S.D., G.C., critical revision of the manuscript. C.B.D. and D.T.: Senior review, and critical revision of the manuscript. All authors contributed to manuscript review and approved the final version.

Funding

This work was supported by grants from the Italian Ministry of University and Research (PNRR—National Center for Gene Therapy and Drugs based on RNA Technology No. CN00000041) and from the Italian Ministry of Health (POS 'Cal-Hub-Ria' No. T4-AN-09; PNRRMAD-2022-12376814).

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Declarations**Competing interests**

The authors declare no competing interests.

Author details

¹Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy

²CMR department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS foundation Trust, London, UK

³Research Center for Cardiovascular Science, Magna Graecia University, Catanzaro, Italy

⁴IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy

⁵Department of Biomedical Sciences, Humanitas university, Pieve Emanuele, 20072 Milan, Italy

⁶Department of Peri-operative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy

⁷Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy

⁸Advanced Cardiovascular Imaging Unit, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Naples, Italy

⁹Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy

¹⁰School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London, UK

Received: 31 May 2025 / Accepted: 12 August 2025

Published online: 21 August 2025

References

- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur Heart J*. 2021;42(36):3599–726.
- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur Heart J*. 2023;44(37):3627–39.
- Rosén HC, Mohammad MA, Jernberg T, James S, Oldgren J, Erlinge D. SGLT2 inhibitors for patients with type 2 diabetes mellitus after myocardial infarction: a nationwide observation registry study from SWEDEHEART. *Lancet Reg Health*. 2024;45: 101032.
- Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. *N Engl J Med*. 2020;383(15):1436–46.
- Cersosimo A, Salerno N, Sabatino J, Scatteia A, Bisaccia G, De Rosa S, et al. Underlying mechanisms and cardioprotective effects of SGLT2i and GLP-1Ra: insights from cardiovascular magnetic resonance. *Cardiovasc Diabetol*. 2024;23(1):94.
- Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL. Imaging, biomarker, and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. *JACC: Heart Failure*. 2019;7(9):782–94.
- Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, et al. SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. *J Cardiovasc Magn Reson*. 2020;22(1):76.
- Berlot B, Buccarelli-Ducci C, Palazzuoli A, Marino P. Myocardial phenotypes and dysfunction in HFpEF and HFrEF assessed by echocardiography and cardiac magnetic resonance. *Heart Fail Rev*. 2020;25(1):75–84.
- Leo I, Nakou E, De Marvao A, Wong J, Buccarelli-Ducci C. Imaging in women with heart failure: sex-specific characteristics and current challenges. *Card Fail Rev*. 2022;8: e29.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021 Mar 29;372:n71..
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol*. 2010;25(9):603–5.
- Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. *Res Synth Methods*. 2016;7(1):55–79.
- Higgins JPT, Li T, Deeks JJ, Chapter 6: Choosing effect measures and computing estimates of effect [last updated August 2023]. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. *Cochrane Handbook for Systematic Reviews of Interventions* version 6.5. Cochrane, 2024. <http://training.cochrane.org/handbook>
- Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002;21(11):1539–58.
- Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, Garcia-Ropero A, Mancini D, Pinney S, et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. *J Am Coll Cardiol*. 2021;77(3):243–55.
- Sarak B, Verma S, David Mazer C, Teoh H, Quan A, Gilbert RE, et al. Impact of empagliflozin on right ventricular parameters and function among patients with type 2 diabetes. *Cardiovasc Diabetol*. 2021;20(1):200.
- Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. *JACC Cardiovasc Imaging*. 2021;14(6):1164–73.
- Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Vargas-Delgado AP, Mancini D, Sartori S, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF. *JACC: Heart Failure*. 2021;9(8):578–89.
- Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin: the randomized, controlled EMPA-VISION trial. *Circulation*. 2023;147(22):1654–69.
- Pourafkari M, Connelly KA, Verma S, Mazer CD, Teoh H, Quan A, et al. Empagliflozin and left atrial function in patients with type 2 diabetes mellitus and coronary artery disease: insight from the EMPA-HEART cardiolink-6 randomized clinical trial. *Cardiovasc Diabetol*. 2024;23(1): 319.
- Dihoum A, Brown AJ, McCrimmon RJ, Lang CC, Mordi IR. Dapagliflozin, inflammation and left ventricular remodelling in patients with type 2 diabetes and left ventricular hypertrophy. *BMC Cardiovasc Disord*. 2024;24(1):356.
- Carberry J, Petrie MC, Lee MMY, Stanley B, Brooksbank KJM, Campbell RT, et al. Empagliflozin to prevent worsening of left ventricular volumes and systolic function after myocardial infarction (EMPRESS - MI). *Eur J Heart Fail*. 2025;27(3):566–76.
- Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of Dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. *Eur Heart J*. 2020;41(36):3421–32.
- Singh JSS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial. *Diabetes Care*. 2020;43(6):1356–9.
- Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT, et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). *Circulation*. 2021;143(6):516–25.
- Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART cardiolink-6 randomized clinical trial. *Circulation*. 2019;140(21):1693–702.
- Fukuda T, Bouchi R, Terashima M, Sasahara Y, Asakawa M, Takeuchi T, et al. Ipragliflozin reduces epicardial fat accumulation in non-obese type 2 diabetic patients with visceral obesity: a pilot study. *Diabetes Ther*. 2017;8(4):851–61.
- Bouchi R, Terashima M, Sasahara Y, Asakawa M, Fukuda T, Takeuchi T, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. *Cardiovasc Diabetol*. 2017;16(1):32.
- Cohen ND, Gutman SJ, Briganti EM, Taylor AJ. Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: a cardiac magnetic resonance study. *Intern Med J*. 2019;49(8):1006–10.
- Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T, et al. Empagliflozin and left ventricular remodeling in people without diabetes: primary results of the EMPA-HEART 2 cardiolink-7 randomized clinical trial. *Circulation*. 2023;147(4):284–95.

31. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. *Cardiovasc Diabetol.* 2021;20(1):57.
32. Hassan A, Samaan K, Asfour A, Baghdady Y, Samaan AA. Ventricular remodeling and hemodynamic changes in heart failure patients with non-ischemic dilated cardiomyopathy following dapagliflozin initiation. *Egypt Heart J.* 2024;76(1):76.
33. Hsu JC, Wang CY, Su MYM, Lin LY, Yang WS. Effect of empagliflozin on cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes mellitus. *Sci Rep.* 2019;9(1):15348.
34. Oldgren J, Laurila S, Åkerblom A, Latva-Rasku A, Rebelos E, Isackson H, et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: a randomized, placebo-controlled, exploratory study. *Diabetes Obes Metab.* 2021;23(7):1505–17.
35. Thirunavukarasu S, Jex N, Chowdhary A, Hassan IU, Straw S, Craven TP, et al. Empagliflozin treatment is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes. *Diabetes.* 2021;70(12):2810–22.
36. Wang DD, Naumova AV, Isquith D, Sapp J, Huynh KA, Tucker I, et al. Dapagliflozin reduces systemic inflammation in patients with type 2 diabetes without known heart failure. *Cardiovasc Diabetol.* 2024;23(1):197.
37. Satoh T, Yaoita N, Higuchi S, Nochioka K, Yamamoto S, Sato H, et al. Impact of sodium-glucose co-transporter-2 inhibitors on exercise-induced pulmonary hypertension. *Pulm Circ.* 2024;14(4): e70026.
38. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ.* 2008;336(7650):924–6.
39. Carluccio E, Biagioli P, Reboldi G, Mengoni A, Lauciello R, Zuchi C, et al. Left ventricular remodeling response to SGLT2 inhibitors in heart failure: an updated meta-analysis of randomized controlled studies. *Cardiovasc Diabetol.* 2023;22(1):235.
40. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. *J Cardiovasc Magn Reson.* 2020;22(1):17.
41. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction. *J Am Coll Cardiol.* 2010;56(5):392–406.
42. Bellenger N. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? *Eur Heart J.* 2000;21(16):1387–96.
43. Dhingra NK, Mistry N, Puar P, Verma R, Anker S, Mazer CD, et al. SGLT2 inhibitors and cardiac remodelling: a systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. *ESC Heart Fail.* 2021;8(6):4693–700.
44. Boulet J, Mehra MR. Left ventricular reverse remodeling in heart failure: remission to recovery. *Struct Heart.* 2021;5(5):466–81.
45. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. *N Engl J Med.* 2021;385(16):1451–61.
46. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. *N Engl J Med.* 2020;383(15):1413–24.
47. Mc Causland FR, Claggett BL, Vaduganathan M, Desai AS, Jhund P, De Boer RA, et al. Dapagliflozin and kidney outcomes in patients with heart failure with mildly reduced or preserved ejection fraction: a prespecified analysis of the DELIVER randomized clinical trial. *JAMA Cardiol.* 2023;8(1):56.
48. Solomon SD, McMurray JJV, Claggett B, De Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. *N Engl J Med.* 2022;387(12):1089–98.
49. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. *N Engl J Med.* 2019;381(21):1995–2008.
50. Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. *Cardiovasc Diabetol.* 2022;21(1):83.
51. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. *Int J Mol Sci.* 2019;20(3): 629.
52. Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, et al. Sglt2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. *Geroscience.* 2022;44(3):1657–75.
53. Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. *EBioMedicine.* 2017;20:137–49.
54. Salerno N, Ielapi J, Cersosimo A, Leo I, Di Costanzo A, Armentaro G, et al. Early hemodynamic impact of SGLT2 inhibitors in overweight cardiometabolic heart failure: beyond fluid offloading to vascular adaptation – a preliminary report. *Cardiovasc Diabetol.* 2025;24(1):141.
55. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. *J Am Coll Cardiol.* 2019;73(15):1931–44.
56. Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR, et al. Effects of sodium-glucose linked transporter 2 inhibition with Ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. *J Am Heart Assoc.* 2021;10(13): e019995.
57. Croteau D, Baka T, Young S, He H, Chambers JM, Qin F, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. *Biomed Pharmacother.* 2023;160: 114310.
58. Wang W, Gao Y, Wang J, Ji C, Gu H, Yuan X, et al. Prognostic value of epicardial adipose tissue in heart failure with mid-range and preserved ejection fraction: a multicenter study. *J Am Heart Assoc.* 2024. <https://doi.org/10.1161/JAH.124.036789>.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.