Leo et al. Cardiovascular Diabetology ~ (2025) 24:345 Cardiovascular Dia beto|ogy
https://doi.org/10.1186/512933-025-02904-4

Effect of SGLT2 inhibitors on cardiac structure @
and function assessed by cardiac magnetic
resonance: a systematic review and meta-

analysis

lsabella Leo'**"", Nadia Salerno'?", Stefano Figliozzi*®, Angelica Cersosimo', Jessica lelapi’, Kamil Stankowski®,
Giandomenico Bisaccia’, Santo Dellegrottaglie®, Giovanni Canino', Salvatore De Rosa®?, Sabato Sorrentino®?,
Chiara Bucciarelli-Ducci®'® and Daniele Torella'"

Abstract

Background and aim Sodium-glucose cotransporter-2 inhibitors (SGLT2i) improve outcomes in patients with heart
failure (HF) but underlying mechanisms remain incompletely understood. Cardiac magnetic resonance (CMR) is key in
evaluating cardiac structure and function, enabling accurate assessment of reverse remodeling. Aim of this systematic
review and meta-analysis was to assess the effects of SGLT2i on cardiac remodeling evaluated by CMR changes.

Methods We conducted a systematic review and meta-analysis of studies assessing changes in CMR parameters in
patients treated with SGLT2i (PROSPERQ registration: CRD42024574302). Databases were searched through April 30,
2025. Random-effects models were used to pool mean changes in left and right ventricular volumes, mass, function,
stroke volume, global longitudinal strain, left atrial volume, and tissue characterization indices. Meta-regression and
sensitivity analyses were performed to evaluate potential sources of heterogeneity.

Results Twenty-three studies and 1008 patients were included. Treatment with SGLT2i was associated with
significant reductions in left ventricular (LV) end-diastolic volume (=7.10 mL; 95% Cl: —13.01 to — 1.19, p=0.023), left
ventricular mass (—4.24 g; 95% Cl: —7.88 to —0.60, p=0.027) and epicardial adipose tissue (-4.94 ml; 95% Cl: -9.06,
-0.82, p=0.019). A subgroup analysis in patients with reduced LV ejection fraction showed improvement in LV stroke
volume. Meta-regression revealed no significant effect of age, male sex or diabetes prevalence on pooled estimates.
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Conclusions SGLT2i are associated with reductions in LV volumes and mass in line with an overall favorable reverse

remodeling effects as assessed by CMR.

Keywords Heart failure, Sodium-glucose transport protein 2, Cardiovascular magnetic resonance, Reverse cardiac

remodeling

Introduction

Initially proposed as glucose-lowering drugs, sodium-
glucose cotransporter-2 inhibitors (SGLT2i) have shown
robust beneficial effects on cardiovascular outcomes in
patients with heart failure (HF) across different HF phe-
notypes and irrespective of glycemic control and diabetic
status [1, 2]. For these reasons European guidelines rec-
ommend their use in both patients with HF with reduced
ejection fraction and preserved ejection fraction to
reduce the risk of cardiovascular death and HF hospital-
ization [1, 2]. Treatment with SGLT2i has been also asso-
ciated with lower rates of further cardiovascular events in
patients with diabetes and myocardial infarction, regard-
less of HF status [3]. Moreover, in patients with chronic
kidney disease SGLT2i proved to slow disease progres-
sion and reduce the risk of death from renal or cardio-
vascular causes [4]. Despite the compelling evidence
supporting their use, the precise mechanisms behind
SGLT2i cardioprotective effects remain incompletely
understood [5]. The occurrence and progression of HF is
paralleled by changes in ventricular geometry, function
and structure (i.e., cardiac remodeling) [6]. In this set-
ting, cardiac magnetic resonance (CMR) is essential in
being the gold standard modality for volumes, mass and
function assessment but provides also unique insights on
tissue characterization of cardiac chambers [7-9]. Aim
of this systematic review and meta-analysis was to assess
the effects of SGLT2i on cardiac remodeling evaluated by
CMR changes.

Methods
This meta-analysis was performed according to the Pre-
ferred Reporting Items for Systematic.

Reviews and Meta-Analyses (PRISMA) guidelines [10]
(Supplementary Table 1). The protocol has been pub-
lished in the PROSPERO International prospective regis-
ter of systematic reviews (CRD42024574302).

Search strategy

Two independent investigators (A.C. and ].I.) performed
a comprehensive literature search in PubMed, Clinical-
Trials.gov, Embase, and the Cochrane Library using the
following search terms: “SGLT2i” OR “Sodium-Glucose
Transport Protein 2 Inhibitors” OR “SGLT2 Inhibitors”
AND “Cardiac MRI” OR “Cardiac Magnetic Resonance”
OR “Cardiovascular Magnetic Resonance” OR “CMR”
in various combination. Full-text manuscripts published

between January 1, 2000, through April 30, 2025 were
screened for eligibility.

Study eligibility

Full-text manuscripts published in peer-reviewed jour-
nals assessing changes in CMR parameters in patients
treated with SGLT2i were included. Non—English-lan-
guage studies, editorials, letters, expert opinions, case
reports or series, duplicated data and meta-analyses were
excluded. No sample size restrictions were applied. Two
authors (A.C. and J.I) independently evaluated studies
for eligibility, and discrepancies were resolved by a third
reviewer (I.L.). Only studies that met all inclusion criteria
were included in the final analysis (Table 1).

Data extraction

The following variables were collected: (i) first author, (i)
year of publication, (iii) study design, (iv) sample size, (v)
main demographic, clinical and CMR baseline patient
characteristics. In detail, CMR parameters included left
ventricular ejection fraction (LVEF), left ventricular end-
diastolic volume (LVEDYV), left ventricular end-diastolic
volume indexed (LVEDVi), left ventricular end-systolic
volume (LVESV), left ventricular end-systolic volume
indexed (LVESVi), left ventricular mass (LVM) and
indexed mass (LVMi), left atrial volume indexed (LAVi),
left ventricular stroke volume (LVSV), right ventricular
end-diastolic volume indexed (RVEDVi), right ventricu-
lar end-systolic volume indexed (RVESVi), epicardial
adipose tissue (EAT), native T1 mapping and extracellu-
lar volume (ECV). All indexed values are meant indexed
for body surface area. At least three studies reporting
CMR outcome variables were required to be eligible for
the analysis. The individual quality of each study was
assessed using the Newcastle-Ottawa Scale (NOS), with
studies categorized as poor, fair, or good quality based on
criteria related to selection, comparability, and outcome
[11] (Supplementary Table 2).

Statistical analysis

The primary endpoint was the mean difference (baseline
vs. follow-up evaluation) of CMR parameters. A random-
effects model (DerSimonian and Laird method) [12]
was used to estimate pooled mean differences and cor-
responding 95% confidence intervals (ClIs) of reported
average measures of CMR parameters before and after
treatment with SGLT2i, accounting for anticipated het-
erogeneity across studies.
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= 3
s v ¥ able confidence intervals, p-values from parametric tests
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1640 records initially retrieved

Embase, Cochrane, :
ClinicalTrials.gov '
“SGLT2i” OR “Sodium-

Glucose Transport Protein 2
Inhibitors™ OR “SGLT2
Inhibitors™ AND “Cardiac

MRI” OR “Cardiac Magnetic
Resonance” OR

“Cardiovascular Magnetic
Resonance” OR “CMR”

114 duplicated records

1526 potential studies found

Excluded:
i+ 70 Not English .
“~a | 27Editorials
|« 4 Meta-Analysis
* 93 Other Documents

822 Reviews

* 1 Retracted

* 464 by reviewing
titles and abstracts

45 full-text articles for eligibility

22 articles not matching (inclusion/exclusion
» criteria)

23 studies included in the qualitative
systematic review

Fig. 1 Study screening flow diagram

Table 3 Other CMR parameters in patients treated with SGLT2i

at baseline
Study RVEDVi  RVESVi RVEF Epi-
(ml/m?)  (ml/m?) (%) cardial

fat
(em?)

Bouchi et al. N/A N/A N/A 117 (96

2017 —136)

Fukuda et al. N/A N/A N/A 102

2017 (79—
126)

Hassan et al. 100 60 (31,79  381+41 N/A

2024 (78,111)

Hsu et al. N/A N/A N/A 323

2019 (5.7
82.8)

Requena-lbdfez et al. N/A N/A N/A

2021

Sarak et al. 62+132 289+6.5 532+49 N/A

2021

Satoh et al. 79+£169 364+16.1 N/A N/A

2024

Thirunavukarasu et al. 79+19 38+15 53+9 N/A

2021

Categorial variables are given as absolute numbers and percentage, n (%).
Continuous variables are given as mean + standard deviation or * median (IQR,
interquartile range)

RVEDVi: right ventricular end-diastolic volume indexed; RVESVi: right ventricular
end-systolic volume indexed; RVEF: right ventricular ejection fraction

Left Ventricular Global Longitudinal Strain (GLS), while
Requena-Ibéiiez et al. [18] performed a sub-analysis of
the EMPA-TROPISM study on EAT and ECV values;
these studies have been included in the analysis and the
population overlap was taken into account when summa-
rizing main results (Table 1).

Study characteristics

A total of 1008 patients (74% males; mean age + SD equal
to 62+ 11 years) undergoing baseline and follow-up CMR
[median follow-up of 180 days [IQR: 96 days]) were
included for quantitative analysis. Among them, 553
(55%) patients were treated with SGLT2i and 455 (45%)
patients were not. Main CMR characteristics are summa-
rized in Tables 2 and 3.

The smallest study had a population of 9 patients [27]
and the largest 169 [30]. Fifteen studies [15-20, 22, 25,
26, 29-31, 33, 35, 37], included patients treated with
empaglifozin, six studies with dapaglifozin [21, 23, 24,
32, 34, 36], one with ipraglifozin [27] and one with luseo-
glifozin [28]. Six studies [15, 19, 22, 24, 25, 32] included
patients with reduced LVEF at baseline. Six studies [27,
28, 32, 33, 35, 36] did not report data for a control group
and were therefore analyzed as single-arm cohorts.

Meta-analyses

Effects on left heart volumes, mass, and function
Treatment with SGLT2i was associated with a signifi-
cant reduction in LVEDV (-7.10 mL [95% CI: -13.01,
-1.19]; 10 studies, I* = 69%, p =0.023), whereas no signif-
icant changes were observed in LVESV (-5.97 mL [95%
CIL: -13.80, 1.87]; 8 studies, I> = 80%, p=0.115), LVEDVi
(-0.53 mL/m* [95% CI: -3.24, 2.18]; 10 studies, 1> =
46%, p=0.668), LVESVi (-1.09 mL/m? [95% CI: -2.94,
0.75], 9 studies, I = 40%, p=0.213), LVEF (1.14% [95%
CL -0.39, 2.68]; 14 studies, I* = 80%, p=0.133) (Figs. 2
and 3), and GLS (-0.16% [95% CI: -2.67, 2.35]; 5 stud-
ies, I* = 83%, p=0.878). A non-significant trend towards
increase in LVSV was observed (1.41 ml [95% CI: -0.12,
2.94]; 4 studies, I°=0, p =0.063, Supplementary Fig. 1). A
significant decrease in LVM was observed (-4.24 g [95%
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CIL: -7.88, —0.60]; 9 studies, I* = 53%, p=0.027), while
LVMi showed no significant change (- 0.86 g/m” [95% CL:
-2.02, 0.31]; 11 studies, I> = 41%, p=0.135). There was no
significant change in LAVi values (- 0.60 mL/m? [95% CI:
-2.70, 1.49]; 6 studies, I* = 54%, p =0.494) (Fig. 3).

Effects on right heart volumes and function

Both RVEDVi and RVESVi remained unchanged (-0.03
mL/m? [95% CL: -2.54, 2.49]; 4 studies, I* = 0%, p=0.975;
-0.31 mL/m? [95% CL -1.61, 0.99]; 4 studies, I* = 0%,
p=0.502, respectively). No effect was also noted on
RVEF (1.29% [95% CI: -1.33,3.92]; 3 studies, I*=40%,
p=0.502) (Supplementary Fig. 2).
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Effects on tissue characterization

There were no differences in ECV (-0.27% [95% CI:
-1.16, 0.61]; 8 studies, I* = 78%, p=0.547), or T1 map-
ping (4.6 ms [95% CI: —-14.97, 24.17]; 4 studies, I* = 74%,
p=0.645). (Supplementary Fig. 1).

Effect on epicardial adipose tissue
There was a significant reduction in EAT after SGLT2i
(-4.94 mL [95% CL: -9.06, -0.82]; 4 studies, I* = 0%,
p=0.019). (Supplementary Fig. 2).

Effects in patients with heart failure

In patients with LVEF at baseline <50%, LVSV increased
significantly (1.83 mL [95% CIL: 0.86, 2.80]; 2 studies, I* =
0%, p=0.027). A non-significant trend towards increase
in LVEF was also noted (2.61% [95% CI: -0.50, 5.70]; 5
studies, I =80%, p=0.08). No significant differences were
observed for the other parameters.

Effects in patients with diabetes

In patients with diabetes, there was a significant reduc-
tion in LVM (-4.61 g [95% CI: - 8.59, - 0.63]; 3 studies, I*
= 0%, p=0.024). EAT also decreased significantly (-5.14
mL [95% CI: -9.94, 0.95]; 3 studies, I* = 0%, p=0.036).
No significant differences were found for LVEDV, LVESYV,
LVMj, LVEF, or ECV.

Sensitivity analysis

A sensitivity analysis including only studies with a con-
trol group (n=15) was conducted, confirming both the
decrease in LVEDV (-7.73 mL [95% CI: -14.68, —0.78];
I* = 70.4%, p=0.033) and LVM (-3.96 g [95% CI: -7.84,
-0.08]; I = 55.4%, p=0.047). Leave one-out analyses
were performed to assess the robustness of the meta-
analytic estimates across all imaging-derived parameters;
for LVEDV, pooled effect estimates ranged from -5.38
to —8.23 mL, with all but one iteration (Cohen et al.
[29], p=0.064) maintaining statistical significance; het-
erogeneity varied between 59.5% and 75.5%, indicating
moderate-to-high between-study variability. No single
study exerted a disproportionate influence on the over-
all estimate. In contrast, LVESV analysis revealed greater
sensitivity to individual studies, with a significant drop
in heterogeneity when removing Santos-Gallego et al.
[15] (I* = 46.5%). For indexed LV volumes (LVEDVi and
LVESVi), all iterations produced non-significant results.
While effect sizes remained consistently small, het-
erogeneity decreased substantially when Lee et al. [25]
(LVEDVi I? = 10.0%) or Hsu et al. [33] (LVESVi I = 17.7%)
were excluded. The analysis of LVM demonstrated con-
sistent effect estimates across all exclusions (range: —2.73
to —5.02 g), with all the iterations but Hundermarkt et al.
[19] (p=0.065) retaining statistical significance. Hetero-
geneity varied modestly, with Santos-Gallego et al. [15]
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being a key contributor (I* = 0% upon exclusion). For
LVEF, removal of Cohen et al. [29] yielded a statistically
significant result (p=0.029), with heterogeneity remanin-
ing steadily high across all iterations. For LVSYV, statistical
significance was observed upon exclusion of Brown et al.
[23] (p=0.014, mean difference 1.88) and heterogeneity
remained null across all exclusions. Both LVMi and LAVi
analyses revealed non-significant effects with moderate,
stable, heterogeneity for LVMi (I range: 30.3-46.3%) and
notable reduction in heterogeneity after the exclusion of
Oldgren et al. [34] (I* = 7.9%) or Carberry et al. [22] (I =
12.9%) for LAVi (Supplementary Table 3).

Meta-regression analyses

At meta-regression analyses, none of the predictors
included in the model (i.e., age, male sex and diabetes)
revealed a significant effect modification on LVEDYV,
LVESV, LVEDVi, LVESVi, LVEF, LAVi, LVM, LVMi (all
p-values >0.05). Meta-regression analyses were not per-
formed on other CMR parameters due to the limited
number of studies available.

Publication bias and grading of evidence

Funnel plots were visually inspected for asymmetry and
assessed using Egger’s regression test across all cardiac
structural, functional, and tissue parameters. No substan-
tial visual asymmetry was observed for most outcomes,
except for ECV and LAVi. Egger’s test results statistically
confirmed possible publication bias for both parameters
(p=0.04 and 0.031, respectively) (Fig. 4 and Supplemen-
tary Fig. 3).

According to the GRADE Working Group system [38],
the level of certainty for the association between SGLT2i
treatment and CMR outcomes was moderate for most
outcomes but in 7, in which were adjudicated to be low
(Supplementary Table 4).

Discussion
The present updated systematic review and meta-analysis
demonstrated an association between SGLT2i treatment
and decrease of LVEDV and LVM, providing evidence
for favorable effects on cardiac remodeling. These results
were confirmed in a sensitivity analysis including only
studies with control group and were not affected by
baseline patient characteristics including age, sex and
diabetes. Patients with reduced LVEF also showed a sig-
nificant, although modest, increase in LVSV after SGLT2i
treatment.

Our data on favorable LV remodeling are in line with
a previous meta-analysis including 9 randomized con-
trolled trials (3 of which were CMR-based) demonstrat-
ing a significant reduction in LV volumes and indexed
LV mass with significant increase in LVEF in the whole
population [39]. However, the use of different imaging
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modalities to assess cardiac remodeling in that study
may have introduced variability and potentially obscured
subtle treatment effects. CMR is in fact considered
the gold standard for quantifying ventricular volumes,
mass, and tissue characterization, offering superior spa-
tial resolution and interobserver consistency [40, 41]. In
contrast, echocardiography is more widely available and
used in clinical practice but is subject to greater opera-
tor dependence and geometric assumptions, that may be
unneglectable particularly in patients with abnormal ven-
tricular shapes [42].

A recent meta-analysis [43] focusing only on CMR
studies (n =5, 408 patients) was able to confirm only LVM
regression after SGLT2i administration, likely due to the
limited number of studies available at the time of publica-
tion. Cardiac remodeling reflects complex molecular and
structural changes, involving inflammation, fibrosis, and
metabolic dysregulation [5]. Maladaptive remodeling is
associated with worse clinical outcomes, and represents
one of the main targets of HF therapy [44]. In this regard,
SGLT?2i have proven in several trials to reduce key car-
diovascular endpoints as hospitalizations and HF-related
mortality, irrespective of the glycemic status [45-49]. The
exact mechanisms subtended to these beneficial effects
are not yet fully understood, with different hypothesis
generated so far [5].

By blocking glucose reabsorption in the proximal renal
tubule, these agents promote glycosuria, reduce insu-
lin levels, and increase glucagon secretion—facilitating

lipolysis and fat oxidation, with consequent reduction
in visceral adiposity [50]. Moreover, their natriuretic
effect determines unloading and suppresses the renin-
angiotensin-aldosterone system, with favorable effect
on blood pressure [51]. However, these metabolic and
hemodynamic changes alone do not fully account for
the observed CV benefits. Improvements in endothelial
function and arterial stiffness, reduced oxidative stress
[52], inflammation [53], vascular resistance [46], and a
shift toward more efficient metabolic pathways [5] have
been demonstrated in clinical and pre-clinical models
and may all contribute to the positive observed effect [54,
55]. In this regard, preclinical studies have demonstrated
that SGLT2i administrations prevent cardiac remodeling
in mice fed with a high-fat, high sucrose diet, inducing
the expression of oxidative phosphorylation and fatty
acid metabolism genes [56, 57]. However, Hundertmark
et al. [19] found no differences in cardiac energetics—
measured by the MRS-derived phosphocreatine-to-ATP
ratio—either at rest in patients with HFrEF and HFpEF,
or in HFrEF patients during dobutamine stress. More-
over, Hsu et al. [33] failed to demonstrate significant
changes in intracardiac triglycerid content. Our meta-
analysis demonstrated a significant reduction in EAT;
despite different techniques have been used to assess
EAT in the studies included in the analysis (whole heart
coronary angiography for the study conducted by Fukuda
[27] and Bouchi [28] and cine images for the others), the
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result is interesting given the established adverse prog-
nostic role of EAT accumulation [58].

We also found no impact of SGLT2i treatment on tissue
characterization indices such as T1 mapping and ECV in
the whole population; this result should be interpret care-
fully given the limited number of studies included in the
analysis for these parameters, with possible publication
bias for ECV [17-19, 25, 32, 33, 35, 36]. Therefore, the
reduction in LVM observed following SGLT2i treatment
appears to result primarily from LV unloading rather
than from a decrease in extracellular volume. However,
pre-clinical studies in animal models demonstrated
reduced intramyocardial fibrosis after empaglifozin with
lower collagen deposition and decreased extracellular
volume [5, 55]. Moreover, in some studies a significant
reduction in LVM was observed even in the absence of
LV unloading [26].

Remarkably, the demonstrated effect on LV volumes
may have a significant impact on clinical outcomes; in a
pooled analysis, a 10 mL decrease in end-diastolic vol-
ume was associated with a 5% relative reduction in the
odds of mortality [41]. However, the relationship between
changes in LVEDV and symptomatic or functional
improvement remains uncertain and heterogeneous
across studies. Santos-Gallego et al., [15] demonstrated a
reduction in LVEDV after empagliflozin associated with
significant improvements in peak oxygen consumption,
6-minute walking test performance, and Kansas City
Cardiomyopathy Questionnaire scores. Similarly, Lee et
al. [25] demonstrated a significant reduction in LVEDYV;
however, they found no corresponding improvement in
either Kansas City Cardiomyopathy Questionnaire scores
or 6-minute walking test performance.

Our study also found no evidence of significant
changes in RV volumes and function. This is in line with
the results of the post-hoc analysis of the EMPA-HEART
CardioLink-6 that failed to demonstrate any impact of
empaglifozin treatment on RV parameters (including RV
mass) on 90 patients with diabetes and coronary artery
disease [16].

Limitations

This study has several limitations. First, the number
of included studies for some parameters—particularly
right ventricular volumes, strain, and tissue character-
ization markers—was limited, reducing the statistical
power of the analysis. Heterogeneity was also moderate
to high for several outcomes, potentially reflecting differ-
ences in patient populations, imaging protocols, follow-
up durations, and background therapies; the significant
heterogeneity in the study populations, which included
patients with varying baseline characteristics, may also
affect the comparability of results across studies and lim-
its the generalizability of our findings to specific clinical
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subgroups. Although sensitivity analyses were performed
for selected sub-populations, residual confounding can-
not be excluded. Therefore, while the observed reduc-
tions in LVEDV and LVM are of interest, they should
be interpreted with caution and considered hypothesis-
generating rather than conclusive evidence of a class
effect. Finally, some of the included studies had relatively
small sample sizes and were not blinded or randomized,
increasing the risk of bias. Prospective studies with stan-
dardized CMR endpoints and longer follow-up will cer-
tainly provide more information, particularly regarding
effects on tissue-level changes.

Conclusions

This meta-analysis demonstrated an association between
SGLT2i treatment and reductionsin both LVEDV and
LVM. However, these effectswere not confirmed in the
sub-group analysis limited to patients with heart fail-
ure, while a significant reduction in LVM was observed
among patients with diabetes. The heterogeneity of the
study populations included in the meta-analysis limits
the generalizability of the results; the results should be
thus considered hypothesis-generating. Nonetheless,
they support the mechanistic hypothesis that reverse left
ventricular remodeling may contribute to the cardiovas-
cular benefits observed with SGLT2i therapy.
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