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Simple Summary: Cell biologists trust in standard media for analyzing cellular functions and for
the specification of target-oriented drug efficacies in cell culture settings. Here, we present a general
applicable workflow for the constant monitoring of bioenergetic states of cells grown in 2D cell
models to accompany tailored drug discovery efforts. Using in-depth high-resolution respirometry
analyses (HRR) of mitochondrial function, we unveiled that the human-plasma-like media (HPLM)
altered cellular energetic states. In a systematic HRR setup for drug profiling experiments, we
revealed an unexpected side effect of an FDA-approved cancer drug on mitochondrial function,
exclusively in HPLM. Thus, we believe that both the recordings of bioenergetic states and the use of
more physiological media would improve and reshape cell-based drug discovery ventures.

Abstract: Two-dimensional cell cultures are established models in research for studying and perturb-
ing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer
using standard cell culture media. Although they have been used for decades, their formulations do
not mimic the composition of the human cell environment. In this study, we analyzed the impact of a
newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioener-
getics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution
respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial
bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration.
Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial
dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-
dependent side effect of this drug highlights that the selection of the cell culture medium influences
the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physio-
logical composition for analyzing bioenergetic profiles and to take it into account for assigning drug
efficacies in the cell culture model of choice.

Keywords: cancer cells; kinase inhibitor; mitochondrial function; cell culture media; cell proliferation;
cell bioenergetics

1. Introduction

Diverse cell culture models are commonly used to study the etiology and progression
of a defined cancer cell population originating from patient specimens. Two-dimensional
cell cultures (2D) provide standardized models suitable for reproducible drug screening
and determination of drug efficacy by ensuring the accessibility of the experimental lead
molecule to the cell monolayer. However, the artificial set-up for culturing cells is limited
due to the lack of various physiological components, metabolites, and factors that are
trackable, e.g., in the human plasma or in the tumor microenvironment [1]. It is thus
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an acute challenge to develop and advance media formulations with a more human-like
(patho) physiological composition.

The selection of the growth medium influences the metabolism, and thus, cell growth
in culture. In addition, the nutrient composition of the culture medium affects distinct cell-
type-specific features of the cell [2]. This involves the exposure to diverse environmental
stimuli for redirecting signaling events and gene expression signatures. Classical cell culture
media should hold the promise to create the growth conditions for the in vitro cell lines.
However, usually, these formulations do not mimic the physiological conditions or the
composition of the tumor microenvironment. Among the most frequently used cell culture
media are Eagle’s Minimal Essential Medium (MEM), its Dulbecco’s modified version
(DMEM), and RPMI 1640 [3–5]. They were designed to support the continuous growth of
cancer cells. However, the composition and concentrations of several metabolites, including
glucose and amino acids, do not reflect the molecular composition of human plasma.
Recently, two new formulations of cell culture media have been developed; Human Plasma-
like Medium (HPLM, Thermofisher, Waltham, MA, USA) and the similar PlasmaxTM

(Ximbio, London, UK) were established as alternatives to classical cell culture media [6,7].
HPLM contains a cocktail of 31 physiological components that are absent in commonly used
cell culture media. Furthermore, HPLM contains physiologically relevant concentrations of
a collection of typical media components such as glucose, amino acids, and electrolytes [6].
Importantly, cells grown in HPLM compared to classical media formulations have different
cellular signatures that are related to adaptions of the metabolome, redox state, de-novo
pyrimidine synthesis pathway, and lipid peroxidation and ferroptosis [6–8]. HPLM induces
changes in the gene expression of human essential genes [9].

Mitochondrial metabolism is linked to different stages of carcinogenesis [10–12]. Mito-
chondria act as dynamic cell organelles by orchestrating the cellular energy transformation.
Besides being the bioenergetic powerhouse of the cell, mitochondria play a crucial role in
many central cellular processes such as biosynthesis, calcium and lipid homeostasis, cell
division, and apoptosis [13,14]. The metabolic reprogramming of cancer cells is sustained
by the accessibility of nutrients and secondary intracellular alterations and adaptions of
signaling events. Indeed, environmental conditions in cell culture models impact the
potencies and efficacies of intervention strategies [15–17]. This variability of ill-defined cell
culture conditions may contribute to discrepancies of in vivo and in vitro studies focusing
on mitochondrial bioenergetics and off-target drug effects [18–20].

Here, we set out to determine the precise impact of cell culture media compositions on
cell proliferation and mitochondrial function. To determine the mitochondrial bioenergetic
profiles of several standard cancer cell lines, we used high-resolution respirometry (HRR)
for the quantitative evaluation of cell respiration [21]. Furthermore, we evaluated whether
HPLM influences mitochondrial drug sensitivity in cells exposed to the tyrosine kinase
inhibitor sunitinib. The newly formulated HPLM had distinct effects on cell proliferation
and mitochondrial respiration under steady-state conditions and after exposure to sunitinib
when compared to classical cell culture media. Overall, this study highlights the necessity
to evaluate the choice of cell culture media for studying pharmacological targeting of key
events of metabolic and pathophysiological functions.

2. Materials and Methods
2.1. Cell Culture

The human cancer cell lines were purchased from ATCC (Manassas, VA, USA): SW620
(ATCC® CCL-227™, metastatic-derived colon cancer), the MCF7 (ATCC® HTB-22™, breast
cancer,) and A375 (ATCC® CRL-1619™, malignant melanoma). Cells were incubated
at 37 ◦C in a humidified incubator with 5% CO2 in air. For the SW620 and MCF7 cell
lines, we generated a RPMI formulation with physiological glucose concentration (5 mM)
supplemented with 10% dialyzed fetal bovine serum (FBS) (PAN BIOTECH, Aidenback,
Germany, P30-2102) to reduce the interference with serum metabolites. For the A375, we
generated a DMEM with 5 mM glucose supplemented with 10% dialyzed FBS. The new
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HPLM (Thermo Fisher Scientific, A4899101) was supplemented with 10% dialyzed FBS.
Cells were counted in a Cellometer® counter (Nexcellon Bioscience, Lawrence, MA, USA)
following the manufacturer’s instructions. Briefly, a 100 µL aliquot of the cells was diluted
in 0.1% trypan blue and measured in a Cellometer® chamber.

For the sunitinib treatments, SW620 cells were cultured either in RPMI or HPLM
supplemented with 10% dialyzed FBS. At the day of the experiment, cells were treated for
3 h with 10 µM sunitinib (MedChemExpress, Monmouth Junction, NJ, USA HY-10255A)
dissolved in DMSO. After the incubation period, the cells were washed with PBS, detached
with trypsin EDTA, counted, and subjected to respirometry.

2.2. Proliferation Assays

For the proliferation studies, cells were seeded in a 96-well plate format (Corning)
with a density of 10,000 cells/well. Cell growth was monitored during 100 h with scanning
points every 4 h in an Incucyte® S3 Live-Cell Analysis System (Essen Bioscience, Royston,
United Kingdom). Phase-area confluency was calculated using the Incucyte® analysis
software. Area-under-the curve (AUC) and marginal distribution (slope variation) were
performed using the software GraphPad Prims 6.

2.3. Sample Preparation and High-Resolution Respirometry

Prior to the respirometric measurements, SW620 and MCF7 cell populations were
grown for four days in RPMI+FBS and HPLM+FBS; A375 cells were grown in DMEM+FBS

and HPLM+FBS. Next, cells were trypsinized and resuspended in the corresponding cell
culture media at a cell concentration of approximately 1.0 × 106 x/mL for SW620 and A375
and 0.7 × 106 x/mL for MCF7. In case of cells exposed to sunitinib, 1.0 × 106 x/mL SW620
cells were suspended in the cell media containing the same concentration of solvent or
inhibitor used for the treatments. The elementary unit “x” represents the single individual
cell [21].

O2 consumption in living cells was measured using the O2k-FluoRespirometer (O2k,
Oroboros Instruments, Innsbruck, Austria), a modular system for HRR. Temperature was
kept constant at 37 ◦C ± 0.002 ◦C (electronic Peltier temperature control) under constant stir-
ring at 750 rpm, which ensured a homogenous O2 concentration in the experimental closed
chambers with experimental volumes of 2 mL. O2 concentration cO2 [µM] and O2 flow
per cell IO2 [amol × s−1 × x−1] [21] were monitored real-time using DatLab 7.4 software
(Oroboros Instruments, Innsbruck, Austria). Calibrations of the polarographic O2 sensors of
the O2k were performed daily using an O2 solubility factor relative to pure water of 0.89 as
in serum [22] and correcting the partial O2 pressure for barometric pressure monitored by
the O2k. Instrumental O2 background tests were performed at monthly intervals [23]. The
coupling control protocol for living cells (SUIT-003 D009) was applied; it allows the study of
the different coupling control states in living cells: ROUTINE, LEAK and electron-transfer
pathway capacity [21]. Cell addition into the O2k chambers was performed by complete
volume replacement of the sample. ROUTINE respiration R is a physiological coupling
state in which respiration is controlled by aerobic ATP demand and coupling efficiency.
This step was followed by the inhibition of the phosphorylation system with oligomycin
Omy, which induces LEAK respiration L. The inhibitory concentration of 10 nM was tested
for each cell line. Subsequently, the protonmotive force was dissipated by stepwise titration
(0.5 µM/step) of the uncoupler U carbonyl cyanide 3-chlorophenylhydrazone (CCCP)
until the maximum noncoupled respiration was obtained (ET capacity E). The addition of
0.5 µM rotenone (Rot) and 5 µM antimycin A (Ama) inhibited the ET pathway, allowing
the measurement of residual oxygen consumption Rox. Data analysis was performed using
DatLab 7.4. Respiratory rates were corrected for the instrumental O2 background flux,
dilution of the sample by titrations, and Rox.

To provide respiratory control fingerprints of coupling control, flux control ratios FCR,
coupling-control ratios, and flux control efficiencies were calculated. FCR provide normal-
izations of O2 flow in any respiratory state (i) of a SUIT protocol by an internal functional
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mitochondrial marker. FCR are independent of cell count, cell size, and mitochondrial
density [21],

FCR =
IO2(state i)

IO2(reference state)

ET capacity E was measured as the maximum respiration obtained in uncoupler
titrations and defined as the common reference state for flux control ratio calculations
(E/E = 1). Additionally, L/R coupling-control ratios, E-L net ET capacities, net R/E control
ratios, E-L coupling efficiencies, and R-L coupling efficiencies were calculated [21,24].

2.4. Statistical Analysis

Statistical significance levels p were assessed using the non-parametric unpaired Mann–
Whitney t-test. For multiple comparisons (respiratory control coupling states), a two-way
ANOVA with Bonferroni’s multiple comparison test was used. Statistical analyses were
performed using the software GraphPad Prims 6.

3. Results
3.1. HPLM Influences Steady State Cancer Cell Proliferation and Mitochondrial Function

To analyze the influence of more physiological cell culture media on key aspects of
cancer cell metabolism, we selected several hugely proliferative human cancer cell lines.
All of them are standard cell culture models, originating from different human tissues,
displaying different phenotypic features (different cell size and morphology) and a different
mutational burden.

To assess the impact of HPLM on key features of the SW620, MCF7, and A375 cancer
cell lines, we compared the proliferation profiles of cell populations cultured in classical
media and the new HPLM (denoted as RPMI+FBS, DMEM+FBS and HPLM+FBS). We used
dialyzed FBS to get a more defined environment of small molecules, since dialysis reduces
the concentration of low molecular weight components of the serum (e.g., metabolites,
nucleotides, amino acids). The differences of formulations between RPMI, DMEM, and
HPLM are summarized in Figure 1.
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modified as physiological concentration (low glucose, 5 mM). (b) The chart shows the relative con-
centrations of RPMI and DMEM media supplemented with 5 mM glucose compared with HPLM.
Components not present in RPMI and DMEM but present in HPLM are denoted as “absent”; compo-
nents not present in the HPLM but present in the other media are denoted as “present”.

First, we tracked cell proliferation kinetics in terms of confluence as a function of
time and the proliferation rates as the area under the curve AUC. The linear regressions of
these data sets highlight differences of growth curves for two cell lines. The proliferation
rate in SW620 cells cultured in HPLM+FBS was decreased, starting at 40 h and causing a
difference of 29.5 h. This led to a strong delay of SW620 growth in HPLM+FBS (Figure 2a–c).
Differences in MCF7 proliferation were undetectable (Figure 2d–f). In contrast, the prolifer-
ation rates were augmented in the melanoma cell line A375 in the presence of HPLM+FBS

(Figure 2g–i). Taken together, HPLM supported the growth of all three cell lines. However,
HPLM+FBS surprisingly exerted opposite effects on cancer cell proliferation of SW620 and
A375 cell lines.
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larger extend ET capacity were increased in MCF7 cells grown in HPLM+FBS (Figure 3c,d). 
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and ET capacity—was increased in A375 melanoma cells cultured in HPLM+FBS compared 
to DMEM+FBS (Figure 3e,f). Results are summarized in Table S1a. 

Figure 2. HPLM and RPMI/DMEM effects on cell growth of SW620, MCF7, and A375 cells.
(a–c) Proliferation of SW620 cells grown in RPMI+FBS or HPLM+FBS. Growth curves are shown
in (a), AUC are plotted in (b), and slope variations are shown in (c). (d–f) Same analyses performed
for MCF7 cells grown in either RPMI or HPLM showing proliferation curves (g), AUC (h), and slope
variation (i). (g–i) Proliferation of the A375 cell line grown either in DMEM+FBS or HPLM+FBS. In
proliferation curves and AUC, values are represented as median ± IQR (50% range). Unpaired
non-parametric t-test analysis; N = 5.

To address whether HPLM+FBS affects mitochondrial respiratory control in these cell
lines, we measured cell respiration by HRR. Results on cell respiration of living cells are
shown in Figure 3. (1) HPLM+FBS exerted no detectable effects on the cell respiration of the
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SW620 cell line in the ROUTINE, LEAK, and ET states (Figure 3a,b). However, a higher
concentration of the uncoupler CCCP was needed to reach the maximum ET capacity in
cells grown in HPLM+FBS compared to RPMI+FBS ([U] = 7.0 ± 1.1 µM for RPMI+FBS versus
[U] = 9.5 ± 1.6 µM for HPLM+FBS; Figure 3a), which can be related to different uncoupler
kinetics in HPLM (i.e., mitochondrial membrane stability); (2) ROUTINE respiration and to
a larger extend ET capacity were increased in MCF7 cells grown in HPLM+FBS (Figure 3c,d).
(3) Respiration in all coupling control states—with major effects on ROUTINE respiration
and ET capacity—was increased in A375 melanoma cells cultured in HPLM+FBS compared
to DMEM+FBS (Figure 3e,f). Results are summarized in Table S1a.
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Figure 3. HPLM alters mitochondrial function in SW620, MCF7, and A375 cell populations when
compared to standard cell culture media. (a,c,e) Representative respiratory traces for coupling control
protocol SUIT-003-D009 in (a) SW620, (c) MCF7, and (e) A375 cells. Blue lines: O2 concentration
[µM]; dark orange lines: O2 flow per cell [amol × s−1 × x−1] in cells grown and measured in
(a,c) RPMI+FBS or (e) DMEM+FBS; light orange lines: O2 flow per cell [amol × s−1 × x−1] in cells
grown and measured in HPLM+FBS. “x” represents the unit cell. Sequential steps: cell addition,
oligomycin (Omy), uncoupler CCCP (U), rotenone (Rot) and antimycin A (Ama). Total ROUTINE
respiration (R’tot), LEAK respiration (L’tot), and ET capacity (E’tot) not baseline-corrected for residual
O2 consumption (Rox). (b,d,f) O2 flow (R, L, E) amol × s−1 × x−1 ] baseline-corrected for Rox in
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(b) SW620, (d) MCF7 and (f) A375 cell lines. (g–i) Flux control ratios FCR in SW620, MCF7, and A375
cells lines. Results are represented as median ± IQR (50% range). 2-way ANOVA with Bonferroni’s
multiple comparison test or non-parametric unpaired t-test analysis; N = 4–5.

To determine the coupling control in these cells, we calculated respiratory flux control
ratios (FCR), coupling-control ratios (L/E, R/E and L/R), net respiratory capacities (E-L
net ET capacity and net R/E ratio), and flux control efficiencies (E-L and R-L) (Figure 3g–i;
summarized in Table S1b). FCR are O2 flux ratios normalized for the flux in a reference
state, giving a fingerprint of mitochondrial coupling control independent of changes in
mitochondrial content, cell volume, and sample amount [21,23,25]. Coupling control ratios
are FCR at a constant mitochondrial pathway state. In the case of living cells, the coupling
control ratios R/E and L/E are FCR defined by the upper and lower limits 1.0 to 0.0, where
the reference state is the ET capacity with maximum respiratory rate. The ratio E/E is
the normalization of the E fluxes against the ET capacity reference state, which relies in
FCR of 1 [21]. In the SW620 cell line, the FCR for ROUTINE respiration (R/E, Figure 3g)
was slightly increased in HPLM+FBS. Furthermore, we observed in SW620 cells grown in
HPLM+FBS a significant reduction of the L/R coupling-control ratio and elevation of the net
R/E control ratio and R-L control efficiency (Table S1b) [26]. ATP demand and uncoupling
or dyscoupling are drivers of ROUTINE respiration in living cells. Consequently, higher
R/E may indicate an increase in uncoupling. However, no differences were observed
between both media in LEAK respiration (Figure 3b; Table S1a), L/E coupling-control ratio
(Figure 3g; Table S1b), and E-L coupling efficiency (Table S1b). Therefore, our findings might
reflect that the increase in R/E ratio and R-L control efficiency in cells grown in HPLM+FBS

could be related to a shift from glycolytic to oxidative phosphorylation increasing R in
HPLM+FBS compared to RPMI+FBS [21]. Additionally, no differences were observed between
both media (Figure S1a–d) when applying bioenergetic cluster analysis (BCA) [24,27],
indicating that the mitochondrial bioenergetic profiles are similar. Second, in MCF7 cells,
higher L/E FCR (Figure 3h; Table S1b) and lower E-L coupling efficiency (Table S1b) in
RPMI+FBS compared to HPLM+FBS indicate higher intrinsic uncoupling (physiological not-
fully coupled mitochondria) in cells grown in RPMI+FBS. BCA in MCF7 cells identified
two clusters in the scatter when LEAK respiration is expressed over ROUTINE respiration
(Figure 4a), and ROUTINE respiration (Figure 4b), LEAK respiration (Figure 4c), and
E-L coupling efficiency (Figure 4d) are expressed over ET capacity. BCA supports that
respiration in MCF7 cells is better coupled when cells are grown in HPLM+FBS, by showing
a drop in E-L coupling efficiency over ET capacity in the cluster RPMI+FBS compared
to HPLM+FBS (Figure 4d). This lower coupling control efficiency in RPMI+FBS might be
caused by an ET- and uncoupling-linked effect observed in RPMI+FBS (Figure 3d,h; Table
S1b) [24,27]. Finally, we applied the same analysis to data sets of A375 cells. The FCR
showed no difference between DMEM+FBS and HPLM+FBS (Figure 3i), indicating that the
changes in O2 fluxes might originate from an increase in mitochondrial content and/or
density. BCA analysis supports the same observation, with the generation of two isolinear
clusters with similar coupling efficiencies (Figure 4e–h). Interestingly, the A375 cell line
showed a reduction of Rox in cells grown in HPLM+FBS as compared with DMEM+FBS

(Figure S2; Table S1b).

3.2. HPLM Modifies Mitochondrial Drug Sensitivity in Cancer Cells

After the characterization of mitochondria in steady-state conditions, we asked whether
HPLM influences drug sensitivity in cancer cells. For this purpose, we cultivated the SW620
cells either in RPMI+FBS or HPLM+FBS and then exposed them to the receptor tyrosine ki-
nase inhibitor sunitinib (Suten, SU11248), which is currently used as a cancer therapy
against renal cell carcinoma and gastrointestinal stromal tumor [28,29]. Following treat-
ments with sunitinib, we performed respirometric measurements. First, lower uncoupler
concentrations were needed to reach ET capacity E in cells grown in HPLM+FBS and treated
with sunitinib (HPLM DMSO: [U] = 11.2 ± 4.5 µM versus HPLM sunitinib: 9.4 ± 5.0 µM)
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in contrast to cells grown in RPMI+FBS (RPMI DMSO: [U] = 5.8 ± 1.5 µM vs RPMI suni-
tinib: 5.9 ± 1.8 µM, Figure 5a,b). Second, in contrast to cells grown in RPMI+FBS, SW620
cells exposed to sunitinib and grown in HPLM+FBS showed a decrease in the ET capacity
(Figure 5c,d; Table S2a).
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Figure 4. Bioenergetic cluster analyses in different respiratory coupling states of the SW620, MCF7,
and A375 cell lines. BCA plots of steady state conditions (a–h). Plots of L over R, R over E, and L over E.
(a–c) MCF7 showing two heterolinear bioenergetic clusters in RPMI+FBS (c1) and HPLM+FBS (c2). This
indicates changes in mitochondrial quality between both media. (e–g) A375 showing two isolinear
bioenergetic clusters in DMEM+FBS (c1) and HPLM+FBS (c2). Proportionality with zero intercept
indicates changes of mitochondrial density in the cells grown in the two media. (d,h) Coupling
efficiencies (E-L)/E over ET capacities in, MCF7 (d) and A375 (h). The lower (E-L)/E values in MCF7
cells in RPMI+FBS at lower ET values indicate a drop in mitochondrial quality with RPMI+FBS. In
A375, the (E-L)/E values remain constant over ET in both media indicating that mitochondrial quality
is preserved.

Third, R/E and L/E ratios were elevated in cells grown in HPLM+FBS and exposed to
sunitinib as compared with DMSO (Figure 5f; Table S2b). This effect was not observed in
RPMI (Figure 5e). Taken together, these results suggest that sunitinib exerts an inhibitory
effect on the electron transfer system and additionally a partial dyscoupling effect (extrinsic
experimentally-induced dyscoupling, i.e., pharmacological, pathological [30]), as indicated
by the increase of L and L/E. Although dyscoupling reduces the efficiency of ATP pro-
duction, this is in part compensated for by an increase in ROUTINE respiration. These
conclusions are corroborated by the drop in E-L net ET capacity and E-L coupling efficiency
in cells exposed to sunitinib, whereas the net R/E control ratio was constant (Table S2b).
The slight decrease in the R-L control efficiency (R-L)/R (Table S2b) reflects a drop in the
fraction of ROUTINE respiration coupled to phosphorylation, indicating that mitochondrial
dyscoupling by sunitinib when cells are grown in HPLM+FBS was not fully compensated
for by an increase of ROUTINE respiration [24,27,31]. Bioenergetic cluster analysis (BCA)
extends these observations (Figure 6a–d), showing two heterolinear clusters when LEAK
respiration was expressed over ET with a cluster of cells grown in HPLM+FBS treated with
sunitinib with higher L (Figure 6c). Furthermore, two clusters were detected with a drop in
the coupling efficiency in cells grown in HPLM+FBS and treated with sunitinib (Figure 6d).
These differences were not observed in cells grown in RPMI+FBS (Figure S1e,h). We did
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not observe any effect of sunitinib treatment neither in cell viability nor apoptosis in our
experimental conditions (Figure S3).
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Figure 5. Differential effects of sunitinib on cell respiration of SW620 cells grown in RPMI or HPLM.
(a,b) Representative respiratory traces for coupling control protocol SUIT-003-D009 in SW620 cells
grown in (a) RPMI+FBS and (b) HPLM+FBS, and exposed to 10 µM sunitinib for 3 h. Blue lines: O2

concentration [µM]; light orange lines: O2 flow per cell amol × s−1 × x−1 ] in DMSO control; and
dark orange lines: O2 flow per cell [amol × s−1 × x−1] in sunitinib-treated cells. “x” represents the
unit cell. (c,d) O2 flow (R, L, E) [amol × s−1 × x−1] baseline-corrected for Rox in (c) RPMI+FBS and
(d) HPLM+FBS. (e,f) Flux control ratios FCR in SW620 cells grown in (e) RPMI+FBS and (f) HPLM+FBS

and exposed to sunitinib (chemical structure depicted). Median ± IQR (50% range). 2-way ANOVA
with Bonferroni´s multiple comparison test; N = 5–6.
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Figure 6. Bioenergetic cluster analyses in different respiratory coupling states of the sunitinib-exposed
SW620 cells. Plots of L over R, R over E, and L over E. (a–c) SW620 cells grown in HPLM+FBS and
exposed to either DMSO or 10 µM sunitinib for 3 h. In this case, two heterolinear clusters (c1, DMSO
and c2, sunitinib) were detected when L is plotted over E, one with higher L when E is decreasing (c2)
indicating dyscoupling induced by sunitinib. (c) Coupling efficiencies (E-L)/E over ET capacities in
SW620 cells grown HPLM+FBS (d), and exposed to either DMSO or 10 µM sunitinib for 3 h. The two
clusters, one with lower (E-L)/E values in cells grown in HPLM+FBS and exposed to sunitinib (c2)
indicates a drop in mitochondrial quality with the sunitinib treatment. Sunitinib chemical structure is
depicted for drug-exposed SW620 cells (a–d).

Finally, we present evidence that the cancer drug sunitinib causes mitochondrial
dysfunction only in SW620 cells grown in HPLM, whereas this effect was masked in cells
grown in a classical culture medium. In conclusion, drug efficacies and off-target effects
are cell type-specific and dependent on the culture media composition, and mitochondria
can be used as an indicator for drug off-target effects.

4. Discussion

Cancer drug discovery in the preclinical phase starts in many cases with cell culture
models. In the first-stage of cell-based drug evaluations, cell culture experiments are initi-
ated to determine lead molecule potencies, efficacies, and the toxicity profile [32–37]. One
major drawback of drug discovery is the subsequent translation to animal models, which
depend on the reliability of these preclinical evaluations. The lack of reproducibility and the
discrepancies between in vivo and in vitro models call for better defined cell culture condi-
tions, especially for analyzing cancer pathophysiology. Recent studies demonstrate that the
culture medium formulation significantly affects the results obtained in commonly used
cell biology assays (i.e., colony formation, uridine metabolism, transcriptomics) [6–8,38].

The correlation of cancer cell proliferation and mitochondrial function goes back to
the work of Otto Warburg. The ‘Warburg effect’ describes that high glycolytic fluxes are
accompanied with defects of mitochondria in cancer cells [39]. The explanation evolved
over decades, highlighting that some cancer cell types boost the function of the energetic
organelle to promote cell proliferation [40]. In some cases, elevated OXPHOS levels may
not be required to fulfill high proliferation rates. Cancer cells showing elevated glycolytic
fluxes might have high proliferation rates showing low levels of aerobic cell respiration
(i.e., liver and kidney cancer) [41–43]. In other cases, elevated OXPHOS levels can be
supported by changes in mitochondrial dynamics during cell proliferation (e.g., fission,
fusion, biogenesis). One example is that mitochondrial fusion supports enhanced levels of
OXPHOS in transformed and non-transformed mouse fibroblasts [44].

In our study we evaluated more physiological cell culture conditions, deciphering
the impact of the newly formulated HPLM on proliferation and cell respiration and in
three standard human cancer cell lines. Moreover, we tested whether the effect of the
FDA-approved multikinase inhibitor sunitinib on mitochondrial function is influenced
by growth conditions in HPLM. First, HPLM supported the cell growth of all cancer cell
lines tested. Second, HPLM exerts in a cell-type-specific manner diverse effects on cell
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proliferation when compared to the classical media. Our data are consistent with previous
observations showing that physiological media formulation affects proliferation kinetics in
cancer cells [6,7]. Third, HPLM altered the mitochondrial bioenergetic profiles in two of
the three cell lines in a cell type-specific manner. Fourth, HPLM revealed a mitochondrial
dysfunction produced by cells exposed to the cancer drug sunitinib that was not present
in the respective cells grown in classical media. Our results provide a fingerprint of
bioenergetic profiles in living cells for analysis of the effects of HPLM in steady state and
under treatment with kinase inhibitors. We successfully implemented respiratory protocols
with coupling-control ratios, flux control efficiencies, and bioenergetic cluster analysis
and provide a general applicable workflow for continuously monitoring mitochondrial
bioenergetic states for 2D cell culture drug discovery efforts.

In our experiments, cell respiration was improved in two of the three cell lines. How-
ever, cell respiration of cancer cell lines was differentially affected. In SW620 cells, respi-
ratory rates were not affected but changes in coupling-control ratios related to ROUTINE
respiration indicate that HPLM influences energy demand (increase of R/E with constant E
and without uncoupling/dyscoupling). This supports the idea that metabolism switches to
more aerobic metabolism in SW620 cells and leads to reduced proliferation rates in HPLM,
which might be related to the glycolytic dependence of colon cancer cells. In MCF7 and
A375 cells, we observed an increase of ROUTINE respiration and ET capacity that was
more pronounced in the melanoma cell line. In MCF7 cells, this enhancement related to a
higher coupling efficiency results in a higher mitochondrial quality with HPLM, indicat-
ing that the mitochondria are more efficient in oxidizing substrates without affecting cell
proliferation [45]. In A375 cells, HPLM increased respiration in all coupling control states,
suggesting that HPLM enhanced mitochondrial biogenesis without alteration of coupling
efficiency. Our results suggest that a correlation of increased in mitochondrial respiration
and cell proliferation might be the case for A375 cells (increasing on mitochondrial density
and proliferation rate in HPLM). Furthermore, our respiratory studies do not exclude the
possibility that HPLM might affect the aerobic glycolysis phenotype that is found in many
cancer cell lines [46]. This mechanism might be relevant in connection with our findings
that sunitinib exerts a mitochondrial dyscoupling effect in SW620 when grown in HPLM.
This would make the cells more sensitive to the drug due to the high dependence on
the glucose metabolism and glucose uptake observed in colon cancer cells [47–49]. Our
findings support previous observations that the cell environment dictates cancer drug
sensitivity, e.g., for the mitochondrial drug metformin [50,51]. This underlines the fact that
off-target toxicity driven by drugs usually produces a mitochondrial dysfunction related to
the coupling state [18,52,53].

5. Conclusions

The results presented in this work show that HPLM alters both the proliferative
behavior and mitochondrial bioenergetic states of living cells when compared to classic
cell culture media. These observations obtained with three highly proliferative cancer
cell lines of different origin need to be considered in future studies related to molecular
analyses and using intervention strategies versus cancer cell models. HPLM mimics a
more physiological situation leading to differences in cell proliferation and cell respiration
that needs to be considered for drawing translational conclusions. Importantly, one FDA-
approved drug impaired mitochondrial function depending on the media composition.
This observation must be considered for interpretations of drug efficacies and their off-
target effects. Further standardization of cell culture media will help to solve the current
reproducibility crisis in cancer biology [54] and, in general, in in vitro 2D cell models. Our
study should increase the awareness of the importance of the cell culture setup to better
streamline the time and cost-intensive quest for identifying more effective lead molecules
in preclinical cancer research.
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