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Abstract: Three-dimensional BaTiO3 (3D BT)/polyvinylidene fluoride (PVDF) composite dielectrics
were fabricated by inversely introducing PVDF solution into a continuous 3D BT network, which was
simply constructed via the sol-gel method using a cleanroom wiper as a template. The effect of the 3D
BT microstructure and content on the dielectric and energy storage properties of the composites were
explored. The results showed that 3D BT with a well-connected continuous network and moderate
grain sizes could be easily obtained by calcining a barium source containing a wiper template at
1100 ◦C for 3 h. The as-fabricated 3D BT/PVDF composites with 21.1 wt% content of 3D BT (3DBT–2)
exhibited the best comprehensive dielectric and energy storage performances. An enhanced dielectric
constant of 25.3 at 100 Hz, which was 2.8 times higher than that of pure PVDF and 1.4 times superior
to the conventional nano–BT/PVDF 25 wt% system, was achieved in addition with a low dielectric
loss of 0.057 and a moderate dielectric breakdown strength of 73.8 kV·mm−1. In addition, the
composite of 3DBT–2 exhibited the highest discharge energy density of 1.6 × 10−3 J·cm−3 under
3 kV·mm−1, which was nearly 4.5 times higher than that of neat PVDF.

Keywords: poly(vinyl difluoride); barium titanate; dielectric constant; 3D network; energy storage

1. Introduction

Flexible polymer dielectrics with fast charge–discharge speeds and a high-power
density exhibit advantages over many batteries and supercapacitors, particularly in the
field of 5G/6G technologies, electromagnetic weapons, power engineering, and other mi-
croelectronic devices [1–3]. However, the low permittivity and poor energy storage density
of polymers limit their vast industrial applications. Among the well-known polymers,
poly(vinyl difluoride) (PVDF) and its derivates, possessing a relatively high dielectric
response and flexibility show potential applications in dielectric storage and conversion.
Consequently, various studies have been reported on enhancing the permittivity and re-
ducing the dielectric loss of PVDF-based composites; thus, meeting the requirements of
high energy storage purposes [4]. From the energy storage equation of a dielectric material:
U = 1/2ε0εrEb

2 [5], where Eb is the breakdown strength, and ε0 and εr are the vacuum and
relative dielectric constant of the material, it is known that the increase in Eb and εr can
effectively improve the energy storage capacity of materials. Nevertheless, simultaneously
enhancing both ε and Eb is a technical bottleneck because a large permittivity usually
results in a large dielectric loss, thus leading to the reduced breakdown strength and
lifetime of electronic devices. Therefore, increasing the permittivity and maintaining break-
down strength play an important role in enhancing the overall energy storage capacity
of composites.
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Polymers incorporated with ferroelectric ceramic nanoparticles, such as barium ti-
tanate (BaTiO3, BT), lead zirconate titanate (PZT), barium strontium titanate (BST), etc.,
have been widely applied to improve the dielectric performances of polymer systems as
these ceramics usually possess a high permittivity and a relatively low dielectric loss [6–8].
Additionally, the dielectric properties of polymer/ceramic composites can be well tailored
by controlling the filler concentration as well as their microstructures. Hu et al. [6] pre-
pared BST/PVDF composites using a solution casting method and found that the dielectric
constant of the BST/PVDF composite with 40 vol% BST reached as high as 40 (1 kHz),
together with a very low dielectric loss tangent (tanδ = 0.17) and an improved energy
density (U = 0.36 J·cm−3). Luo et al. [7] further improved the dielectric performances of
BT/PVDF systems by depositing Ag nanoparticles onto the surface of BT. A high dielectric
constant of 94.3 and low loss of 0.06 were achieved for BT@Ag/PVDF composites with 43.4
vol% BT@Ag content (1 kHz). The presence of conducting nano-Ag effectively promoted
the interfacial polarization of PVDF while not forming a conductive network, implying
promising applications in electronic devices.

Higher filler loading usually results in a poor flexibility of polymer dielectrics, thus
leading to poor stability and processability. Accordingly, structural design is inevitable in
obtaining a comprehensive dielectric performance of composites. Xie et al. [8] introduced
core–shell ployimide@BaTiO3 (PI@BT) filler into a PVDF matrix. The core–shell structured
PI@BT, for one thing, enhanced the interfacial polarization between the filler and matrix,
and, for another, effectively limited the charge leakage, thus improving the dielectric
breakdown strength as well. Wang et al. [9] designed a sandwich structure by using PVDF
as the intermediate layer and BT/PVDF as the outer layers. An ultrahigh energy density
of 16.2 J·cm−3 was obtained at a breakdown strength of 410 kV·mm−1. Luo et al. [10]
presented a new strategy by constructing a three-dimensional (3D) BT network in epoxy
resin. The dielectric constant of the composite reached 200 with a relatively low filler
loading of 30 vol%. In addition to this, the energy density exhibited was 16 times higher
than that of neat epoxy matrix.

In this work, a novel continuous 3D BT network is easily constructed by calcinating a
cleanroom wiper template containing barium resource gelation. The inexpensive cleanroom
wiper composed of 45 wt% polyester fiber and 55 wt% cellulose, exhibiting an interwoven
fiber network with a high adsorption ability. These allowed the construction of a 3D BT
network completely along the orientation of the wiper fiber filaments. The 3D BT/PVDF
dielectric composites were then fabricated by inversely introducing a PVDF solution into
the above-mentioned 3D BT network. The 3D BT network was expected to provide a
continuous polarization pathway, thus effectively increasing the dielectric constant of the
composites at a small filler loading. The effect of microstructure and content of the 3D BT
on the dielectric and energy storage performances were systematically studied.

2. Materials and Methods
2.1. Materials

Barium acetate, diacetone, and tetrabutyl titanate were supplied by Tianjin Kermel
Chemical Reagent Co. Ltd. (Tianjin, China) and were used as received. Ethylene glycol
methyl ether, acetic acid glacial, N-methyl pyrrolidone and N,N-dimethylformamide
(DMF) were purchased from Sigma Aldrich Company. Poly(vinylidene fluoride) (PVDF,
Kynar 740) was supplied by Atofina Chemicals Inc. (Houston, TX, USA). Barium titanate
nanoparticles (nano–BT, diameter = 500 nm, 99.9% metals basis) were obtained from
Ourchem Company (Guangzhou, China). Cleanroom wiper (45 wt% polyester fiber and
55 wt% cellulose, areal density is 135 g·m−2, thickness is ~100 µm) was purchased from
Wuchenbu factory, Kunshan, Jiangsu, China [11].

2.2. Preparation of 3D BT Network

The fabrication of the 3D BT network was based on the sol-gel method. More visual-
ized schematic procedures are shown in Figure 1. Briefly, 12.77 g of barium acetate was
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dissolved in 30 mL acetic acid (AR, ≥99.5) at 80 ◦C. The barium solution was then cooled
down to room temperature and followed by the addition of 52.3 mL of ethylene glycol
methyl ether, 17.6 mL tetrabutyl titanate, and a little acetylacetone (0.1 mL) to obtain 0.5 M
of barium titanate (BaTiO3) precursor. The cleanroom wiper templates (Figure 1a) with
a dimension of 40 × 40 × 0.1 mm3 were cut from one piece of the received cleanroom
wiper and immersed in the above–mentioned precursor solution for 2 h with intermittent
ultrasonication. The barium precursor was then infiltrated into the porous wiper template
until saturation. After drying in an oven (60 ◦C) to eliminate the acetylacetone, the barium
precursor solution rapidly became a gelation (Figure 1b). For comparison, the saturated
template was placed in a muffle oven and sintered at different temperatures (1000 ◦C,
1100 ◦C, and 1200 ◦C) for three hours at a heating rate of 4 ◦C·min−1 under an air atmo-
sphere. Finally, the BT with a continuous three-dimensional network, similar to the wiper’s
interwoven structure, was constructed (Figure 1c).
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Figure 1. Schematic illustration of the fabrication of 3D BT/PVDF composites. The upper-left
displays digital images of each process.

2.3. Preparation of 3D BT/PVDF Composites

PVDF was dissolved in a solution mixture of DMF and acetone (molar ratio of 1:1)
to obtain a 10 wt% PVDF solution. A small amount of the PVDF solution (2 mL, 1.5 mL,
1 mL) was then introduced dropwise into the above-mentioned 3D BT network (Figure 1d).
After infiltration, flexible 3D BT/PVDF composites were finally obtained after removing
the solvent in an oven at 80 ◦C, and they were denoted as 3DBT–1, 3DBT–2, and 3DBT–3,
respectively. In comparison, conventional nano–BT/PVDF composites with contents of
25 wt% and 50 wt% were prepared by adding 0.94 g and 2.81 g of nano–BT to 30 mL of
the above-mentioned PVDF solution (10 wt%), and were designated as BT–1 and BT–2,
respectively. The mixtures were then cast onto a glass plate (30 cm × 20 cm) using laboratory
casting equipment (MSK-AFA-III, Hefei Kejing Co., Ltd.) with a casting thickness of 100 µm.
Table 1 describes the composition and designation of the 3D BT/PVDF composites. The
contents of the 3D BT were obtained using TGA and the results are in Figure 9. The volume
percentage of BT was calculated using Equation (1), where the density of BT (ρ1) and PVDF
(ρ2) are 5.85 g·cm−3 and 1.78 g·cm−3, respectively [12].

vol% =
wt%/ρ1

wt%/ρ1 + (1 − wt%)/ρ2
(1)

Table 1. Composition and designation of conventional nano–BT/PVDF composites and the 3D
BT/PVDF dielectric composites.

Composites Designation Content

3D BT/PVDF (2 mL) 3DBT–1 14.7 wt% (5.0 vol%) 3D BT
3D BT/PVDF (1.5 mL) 3DBT–2 21.1 wt% (7.5 vol%) 3D BT
3D BT/PVDF (1 mL) 3DBT–3 27.4 wt% (10.3 vol%) 3D BT

nano–BT (0.94g)/PVDF (30 mL) BT–1 25 wt% (9.2 vol%) nano–BT
nano–BT (2.81g)/PVDF (30 mL) BT–2 50 wt% (23.3 vol%) nano–BT
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2.4. Characterization

The crystalline structure of the 3D BT and the microstructure of the composites
were examined using an X-ray diffractometer (XRD, D8 ADVANCE, Bruker, Karisruhe,
Germany) in the range of 5–80◦ with a scanning rate of 6◦·min−1. The morphologies of the
3D BT network and the 3D BT/PVDF composites were observed using a field emission
electron microscope (FESEM, Zeiss Merlin Compact) and an optical microscope (CX43,
Olympus, Tokyo, Japan). The thermal property was determined on a synchronous thermal
analyzer (STA 449C, Netzsch, Bavaria, Germany) from 20 ◦C to 700 ◦C with a heating rate
of 10 K·min−1 under an oxygen atmosphere. A Precision LCR Meter (UC2876, Ucetech,
Changzhou, China) was used to measure the dielectric and electrical properties of the
materials within a frequency range from 50 Hz to 5 MHz. To eliminate surface resistance,
both sides of the composite samples were coated with a self-made thin layer of carbon black-
based conducting adhesive (carbon black 8 wt%/epoxy mixture, electrical conductivity
>0.2 S·m−1) as electrodes. The diameter of each electrode was 4 mm. All specimens were
measured at least 5 times for accuracy. The breakdown strength of the materials was
obtained via a dielectric strength tester (ZJC–50KV, Beijing Air Times, Beijing, China) with
a voltage rise of 1 kV·s−1.

3. Results and Discussions
3.1. Structure and Morphology of 3D BT Network

Figure 2 displays the XRD patterns of the 3D BT (BaTiO3) ceramics sintered at 1000 ◦C,
1100 ◦C, and 1200 ◦C and the nano–BT, respectively. The distinct peaks at 2θ = 22.1◦, 31.5◦,
38.9◦, 45.4◦, 50.8◦, 56.1◦, and 65.8◦ correspond to the (100), (110), (111), (200), (210), (211),
and (220) characteristic diffractions of cubic BT, respectively. As compared with the XRD
curve of the cleanroom wiper in Figure S1a (Supplementary Materials), the characteris-
tic peaks of the cleanroom wiper were diminished after sintering due to the thorough
decomposition of the cleanroom wiper at high temperature, instead of the BT ceramic
characterization peaks. The TGA curve in Figure S1b further verifies the full decomposition
of the cleanroom wiper under an oxygen environment. The initial decomposition at 5%
weight loss occurred at 283.5 ◦C. After 458 ◦C, most of the cleanroom wiper was degraded
and there was almost nothing left at 700 ◦C. Furthermore, it was seen from the enlarged
XRD peak in the vicinity of 45◦ that the intensity of the (200) peak at 45.4◦ decreased
gradually with increasing sintering temperature. In the meanwhile, a distinct increase
of the peak at 45.0◦ could be observed, which is corresponded to the (002) peak of the
tetragonal BT [13], indicating a cubic to tetragonal transition of the BT crystal. It is well
known that the tetragonal type of BT contributes a higher permittivity than that of the
cubic one [14].
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Figure 3 displays representative SEM images of the cleanroom wipers and the 3D
BT network structure. The cleanroom wiper exhibited a porous interwoven structure
(Figure 3a), which provided a 3D skeleton for the formation of the 3D continuous BT
network (Figure 3b,c). Furthermore, it is seen that the microstructure of the 3D BT sintered
at 1000 ◦C (Figure 3d) possessed a smaller and more uniform grain size than those 3D BT
sintered at 1100 ◦C (Figure 3e) and 1200 ◦C (Figure 3f). However, abnormal grain growth
can be clearly observed at a high sintering temperature of 1200 ◦C, resulting in a larger
and ununiform grain size of 1–3 µm (Figure 3f). Therefore, in this study, the 3D BT used
for fabrication of the following 3D BT/PVDF composites was sintered at 1100 ◦C as it
possessed a much better continuous network structure with uniform small grain sizes and,
of course, more tetragonal forms of BT.
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Figure 3. SEM images of (a) cleanroom wiper, 3D network structure BT sintered at (b) 1000 ◦C—3 h
and (c) 1100 ◦C—3 h, and higher magnification images of 3D BT network structure obtained at
(d) 1000 ◦C—3 h, (e) 1100 ◦C—3 h and (f) 1200 ◦C—3 h.

3.2. Structure and Morphology of 3D BT/PVDF Composites

Figure 4 illustrates the XRD patterns of the 3D BT/PVDF and nano–BT/PVDF systems.
The wide peak at 2θ = 20.5◦ is the characteristic diffraction peak of α-PVDF. Other peaks
located at 22.1◦, 31.5◦, 45.4◦, 50.8◦, 56.1◦, and 65.8◦ are the characteristic peaks of BT. With
the increase in BT content, the peak of the PVDF at 20.1◦ gradually decreases and almost
disappears at 50 wt% BT loading (BT–2), which is due to the fact that the addition of
ceramic filler destroys the ordered arrangement of the PVDF molecules [15].

The microstructure and morphology of the 3D BT/PVDF system is shown in Figure 5.
Figure 5a,b shows representative optical microscope images of 3DBT–2 and BT–1, re-
spectively. An interwoven structure can be clearly observed in the 3DBT–2 composite
(Figure 5a) as compared with that of the BT–1 system (Figure 5b), indicating the successful
formation of a continuous 3D BT network. We also present a deep contrast color image
in the localized lower-right area in Figure 5a. The purple vein further indicates a well-
connected 3D continuous network structure. The inset in the top right of Figure 5a displays
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an enlarged BT filament with a diameter of 23.3 µm, which is a little larger than that of
original wiper fibers, as shown in Figure 3a. Figure 5c,d shows the high and low magnifica-
tion SEM images of the 3DBT–2 system. It can be seen from the cross section of the 3DBT–2
system and the insets of the EDS (F, Ti) element analyses (Figure 5c) that the PVDF matrix
is successfully infiltrated into the 3D BT network. The thickness of the 3D BT and its PVDF
composites is about 130 µm, as determined form the SEM images. Figure 5d indicates
that the PVDF matrix has a relatively good interfacial adhesion and compatibility with the
BT filaments. The good adhesion between the PVDF matrix and the BT may be ascribed
to the large specific surface area and the curved structure of the 3D BT, which possesses
more surface energy and a large adsorption ability. The presence of the 3D BT network
is expected to further provide a continuous polarization channel and a uniform electric
field [16], thus improving the dielectric and energy storage performances of the composites.
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3.3. Electrical Properties

Figure 6a–c displays the frequency spectra of dielectric constant, dielectric loss, and
conductivity, respectively. It is seen from Figure 6a that the permittivity of all composites
decreases gradually with increasing frequency, indicating the hysteresis of polarization of
composites with external frequencies [17]. As expected, the dielectric constant increases
with increasing 3D BT and BT contents, implying an enhanced interfacial polarization after
the addition of nanofillers. However, the dielectric constant for the fabricated 3D BT/PVDF
composites increases more distinctly than that of the nano–BT/PVDF system in the whole
frequency range, indicating a larger polarization effect in the presence of the 3D connected
network. Figure 6b exhibits the variation in the loss tangent with the external frequencies.
It can be seen that the tanδ of the composites also increases with different filler loadings,
particularly at a lower frequency range. A significant increase in tanδ can be observed in
the 3DBT–3 system, which is mainly attributed to the large content of the 3D BT network,
providing more pathway for carrier movement. The conductivity of the 3D BT/PVDF
composites shown in Figure 6c increase almost linearly in log–log plots within the tested
frequency range [18]. No frequency-independent plateau region of conductivity at low
frequency is observed, implying a good insulating behavior for these composites. The
variations in the dielectric constant of the 3D BT/PVDF and the nano–BT/PVDF systems
with different filler loadings under 100 Hz is illustrated in Figure 6d. The dielectric constant
of the pure PVDF is only 9.1 at 100 Hz and has a low loss tangent of 0.056. However, the
dielectric constant of 3DBT–3 (27.4 wt%) composite reaches 52.8 (tanδ = 0.156), which is
nearly six times higher than that of the neat PVDF. Furthermore, the permittivity is much
higher than that of the traditional nano–BT/PVDF composite (ε = 31.0) with 50 wt% BT
loading. The large permittivity with a relatively low 3D BT loading is mainly attributed to
the constructed 3D network, which provides a continuous polarization channel throughout
the whole sample [19]. In addition, the experimental results of the nanocomposites are also
compared with those predicted theoretical models [20]. This reveals that the logarithmic
mixing expression can well describe the dielectric response of the PVDF composites filled
with BT nanoparticles. However, both the logarithmic mixing rule and Maxwell–Garnett
approximation cannot predict the dielectric response of the 3D BT/PVDF systems because
the BT filler is no longer spherical when forming a 3D interwoven structure. The dielectric
constant and loss tangent of each composite are summarized in Table 2.

Figure 7a,b show the ε’–ε” and M’–M” (dielectric modulus) plots, respectively, show-
ing different relaxation behaviors of the 3D BT/PVDF and nano–BT/PVDF systems [21].
It is clearly observed that the ε’–ε” plots (Figure 7a) of PVDF and its composites are no
longer classical semicircles. An arc-like relaxation only occurs at a higher frequency and
the diameters of these arcs increase with increasing BT and 3D BT contents. Accordingly,
these arise from two polarization mechanisms. The first originates from dipole relaxation
at higher frequencies, while the latter is attributed to the interfacial polarization at lower
frequencies due to the presence of inorganic nanofillers [22]. The variation of M’ to M”
also illustrates two relaxation behaviors, which exhibit a reverse trend to the ε’–ε” plots.
In addition, from the frequency dependence of the dielectric modulus (Figure 7c,d), it can
be observed that the addition of inorganic fillers, particularly the formation of the 3D BT
network, can distinctively suppress the relaxation peak to lower frequencies [23]. The
modulus formalism is particularly useful to show the relaxation behavior of PVDF and
its composites.
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3.4. Breakdown Strength and Energy Storage

The breakdown strength was determined using a two-parameter Weibull statistical
distribution method [24], which can be written as Equation (2):

P = exp

[
−
(

Eb
E0

)β
]

(2)

where Eb is the experimental breakdown strength, P is the cumulative probability of
electrical failure, β is the shape parameter, which is related to the scatter of the data, E0 is
the scale parameter, which represents the breakdown strength at the cumulative failure
probability of 63.2%. Equation (2) can be derived into the logarithm Equation (3), where
ln[−ln(1 − P(Eb))] shows a linear relationship with lnEb.

ln[−ln(1 − P(Eb))] = βlnEb − βlnE0 (3)

Figure 8a displays the Weibull distribution of breakdown strength. It is seen that the
Eb of the 3D BT/PVDF composites decreases more sharply than that of the conventional
nano–BT/PVDF system, implying the strong effect of constructing such a 3D BT network.
The derived E0 for the 3DBT–2 (21.1 wt%) system is 73.8 kV·mm−1, which is 68.2% pure
PVDF matrix (108.2 kV·mm−1). However, we cannot simply determine the energy storage
behavior just from the reduced breakdown strength according to the energy storage theory.
In this regard, the energy storage capacity of these dielectric materials was evaluated using
a unipolar D–E analyzer under the same field strength (Figure 8b and Figure S2). Figure 8b
show representative D–E loops of the PVDF, BT–1, and 3DBT–2 under different applied
field strengths of 2.0, 2.5, and 3.0 kV·mm−1, respectively, as BT–1 and 3DBT–2 exhibit the
best energy storage performance in their systems (Table 2). It can be observed that the
3DBT–2 system has the greatest electric displacements (Dmax), as high as ~0.143 µC·cm−2

at 3 kV·mm−1, which is nearly 2.7 times superior to the BT–1 composite, indicating the
enhanced polarization of the composites filled with a continuous ceramic network. The en-
ergy storage density is calculated from D–E loops based on the integral U =

∫
EdD [25]. The

achieved U under 3 kV·mm−1 for the BT–1 and 3DBT–2 composites are 0.68 × 10−3 J·cm−3

and 1.6 × 10−3 J·cm−3, respectively (summarized in Table 2). The results suggest that
the composite of the 3DBT–2 system exhibit the best improvement in terms of discharged
energy density, which is 4.5 times higher than that of the neat PVDF (0.36 × 10−3 J·cm−3).
A higher 3D BT content (i.e., 3DBT–3) leads to a reduced energy storage capacity because of
the large dielectric loss, as discussed above. Table S1 summarizes the dielectric and energy
storage properties of various BT-filled polymer dielectrics. It can be seen from the ratio of
U/Um that the values in this work are better than those of other reports, providing a new
approach in achieving high energy storage polymer dielectrics.
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3.5. Thermal Stability

The thermal stability of representative PVDF, BT–1, and 3DBT–2 are illustrated in
Figure 9. It can be seen from the TGA curves of Figure 9a that the initial decomposition
temperature (Td, at 5 wt% weight loss) of the composites increases with the addition of
inorganic ceramic fillers, particularly for the 3D BT system, implying enhanced thermal
stability after the formation of the 3D network (Table 2). The introduction of the 3D BT
network also improves the final decomposition temperature of the composites, as revealed
by the DSC curves in Figure 9b. The final decomposition temperature of the 3DBT–2
increases by 2.4 ◦C compared to that of neat PVDF.
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Table 2. Dielectric and thermal properties of PVDF composites.

Sample ε’
(100 Hz)

tanδ
(100 Hz)

Eb
(kV·mm−1)

U (10−3 J·cm−3)
at 3 kV·mm−1

Td
(5 % Weight Loss)

PVDF 9.1 ± 0.2 0.056 ± 0.02 108.2 0.359 ± 0.02 421.9
BT–1 18.7 ± 1.2 0.053 ± 0.003 86.6 0.676 ± 0.03 429.4
BT–2 31 ± 1.7 0.059 ± 0.003 64.4 0.272 ± 0.02 435.5

3DBT–1 20.4 ± 1.5 0.071 ± 0.007 78.4 1.566 ± 0.08 429.4
3DBT–2 25.3 ± 2.2 0.057 ± 0.006 73.8 1.604 ± 0.03 440.0
3DBT–3 52.8 ± 4.7 0.156 ± 0.006 42.1 1.469 ± 0.04 442.0

Since it is arbitrary to judge a dielectric composite with high performance just by
comparing the permittivity, dielectric loss, energy storage density, and breakdown strength
because some of these parameters are contrary to each other, a star chart is presented in
Figure 10, based on the above-mentioned representative results of PVDF, nano–BT/PVDF,
and 3D BT/PVDF systems (Table 2) in order to have a macroscopic comparison of the com-
posites. It is concluded that the 3D BT/PVDF composites possess comprehensive dielectric
performances. The large energy density of the 3DBT–2 system is, of course, the concession
of the dielectric constant, loss tangent, and breakdown strength. Essentially, the constructed
3D BT interwoven network plays an important role in enhancing the permittivity, reducing
the dielectric loss, and maintaining the relatively good breakdown strength.
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4. Conclusions

A novel three-dimensional ceramic network/polymer dielectric composite was suc-
cessfully fabricated by inversely diluting PVDF solution into a 3D BT network. The 3D
interwoven BT structure, not only provides continuous pathways for polarization, but
also promotes the thermal stability of the composites. Consequently, the PVDF filled with
21.1 wt% 3D BT composite (3DBT–2) possesses the best energy storage capacity with a
relatively high dielectric constant (25.3 at 100 Hz), low dielectric loss (0.057 at 100 Hz), and
pertinent breakdown strength (73.8 kV·mm−1). The energy storage density of 3DBT–2 is
4.5 times higher than that of neat PVDF. Therefore, the design of a 3D BT network using a
much cheaper cleanroom wiper provides a new approach in obtaining high energy storage
polymer composites.
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composites.
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