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ABSTRACT
The whole world is facing a great challenging time due to Coronavirus disease (COVID-19) caused by
SARS-CoV-2. Globally, more than 14.6M people have been diagnosed and more than 595K deaths are
reported. Currently, no effective vaccine or drugs are available to combat COVID-19. Therefore, the
whole world is looking for new drug candidates that can treat the COVID-19. In this study, we con-
ducted a virtual screening of natural compounds using a deep-learning method. A deep-learning algo-
rithm was used for the predictive modeling of a CHEMBL3927 dataset of inhibitors of Main protease
(Mpro). Several predictive models were developed and evaluated based on R2, MAE MSE, RMSE, and
Loss. The best model with R2¼0.83, MAE ¼ 1.06, MSE ¼ 1.5, RMSE ¼ 1.2, and loss ¼ 1.5 was deployed
on the Selleck database containing 1611 natural compounds for virtual screening. The model pre-
dicted 500 hits showing the value score between 6.9 and 3.8. The screened compounds were further
enriched by molecular docking resulting in 39 compounds based on comparison with the reference
(X77). Out of them, only four compounds were found to be drug-like and three were non-toxic. The
complexes of compounds and Mpro were finally subjected to Molecular dynamic (MD) simulation for
100ns. The MMPBSA result showed that two compounds Palmatine and Sauchinone formed very sta-
ble complex with Mpro and had free energy of �71.47 kJ mol�1 and �71.68 kJ mol�1 respectively as
compared to X77 (�69.58 kJ mol�1). From this study, we can suggest that the identified natural com-
pounds may be considered for therapeutic development against the SARS-CoV-2.
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1. Introduction

A novel respiratory pathogen, SARS-CoV-2 has recently
received worldwide attention, and has been declared a pan-
demic disease worldwide. The Coronavirus disease (COVID-
19), which is caused by SARS-CoV-2 emerged in Wuhan City,
Hubei Province, China during the late November 2019, has
shown a burgeoning spread and since then as it has been
known to infect more than 14.06M people around the world,
resulting in nearly 595 K deaths as of 17 July 2020 (https://
www.worldometers.info/coronavirus/?utm_campaign=homeA
dvegas1?). SARS-CoV-2 becoming more deadly day by day
and symptoms of the disease are also changing continu-
ously. According to WHO, most people infected with the
COVID-19 will experience mild to moderate respiratory illness
and recover without requiring special treatment. Older peo-
ple and those with underlying medical problems like cardio-
vascular disease, diabetes, chronic respiratory disease, and
cancer are more likely to develop serious illness. New
research by ROBITZSKI on 21 April 2020 suggested that the
SARS-CoV-2 virus have already mutated into more than 30
separate strains that make it far harder to fight off infections
and facilitates spread (Robitzski, 2020).

Many antiviral drug combinations are being used by doc-
tors to treat the disease but reports are indicating these drugs
are not very effective to treat COVID-19. Keeping in mind this
problem, many scientists are researching to find novel com-
pounds against SARS-CoV-2, which will give benefit to the
near future to fight against coronavirus disease. To fight
against SARS-CoV-2 many medicinal plants and their com-
pounds can be used to treat COVID-19 disease (Joshi, Joshi,
et al., 2020). For several years, medicinal plants and their com-
pounds have been used as traditional medicines for treating
various types of diseases (Lin et al., 2014). Naturally occurring
herbal medicine provides a wide variety of natural products,
which can serve as an ancillary guide for unlocking many mys-
teries behind human illnesses (Ganjhu et al., 2015; Mahady,
2001). According to the WHO report, 80% of the population in
developing countries relies on conventional plants for health
needs (Ganjhu et al., 2015). Therefore to search potential and
specific inhibitors of Coronavirus, we carried out the virtual
screening of natural compounds against SARS-CoV-2 from
Selleck-Natural-Product-Library to identify novel compounds.
In this study, we present a computational screening of (1611)
natural compounds using deep learning and molecular dock-
ing methods. Deep learning is a machine learning method
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that uses advanced algorithms inspired by biological brain
functions called artificial neural networks. It is made of mul-
tiple processing layers and artificial neurons to simulate func-
tion like the human brain (Rusk, 2016). Deep learning has been
reported successful in several areas like image processing, self-
driving cars, natural language processing, medical diagnosis,
and drug discovery, etc (Esteva et al., 2019; He et al., 2019).

To find out new compounds, we have targeted 3C-like pro-
teinase (3CLpro) or Main protease (Mpro). Initially, we developed
a predictive model by deep learning algorithms using a
CHEMBL dataset, CHEMBL3927. This dataset contains 85 com-
pounds and their IC50 values against SARS coronavirus-I 3C-like
proteinase. Deep learning models are inspired by information
processing and communication patterns similar to biological
nervous systems. To make a predictive model, deep learning
online server was used (http://deepscreening.xielab.net).
CHEMBL3927 dataset was preprocessed by the inbuilt PaDEL
tool to develop Pubchem fingerprint features. Pubchem finger-
print features contain 881 features to representmolecular struc-
tures. After that, Pubchem fingerprint features were used to
construct several regression models. The best regression model
with high accuracy and sensitivity was used to predict natural
compounds from the Selleck database by virtual screening. The
screened compounds by deep learning-based virtual screening
were further enriched by the molecular docking process by
using AutoDock Vina. Furthermore, all screened hits were

subjected to a drug-likeness investigation based on physio-
chemical properties using the DruLiTo tool. The common
screened compounds having drug-like property and high bind-
ing affinity with target protein were taken for ADMET analysis.
Further, all screened hits that were non-toxic were taken for
rescoring using X-Score. Protein-ligand molecular interaction of
compounds with remarkable inhibitory characteristics against
the target protein was viewed with PyMOL and Discovery stu-
dio visualizer to gain structural insight into the binding inter-
action, including the types of bonding interaction and the
amino acids involved in such interactions, compared to the ref-
erence compound. Finally, all screened compounds were fur-
ther preceded to MD simulation to analyze the stability of
protein-ligand complexes. In this study, we have identified two
anti-SARS-CoV-2 natural compounds using deep learning and
structure-based screening approach. The outline of the method
is shown in Figure 1. The results of this research work may be
helpful in the discovery of novel drug candidates against
COVID-19.

2. Material and methods

2.1. Predictive modeling by deep learning

A deep learning algorithm was used to develop the predict-
ive model. To make this model, deep learning online server
was used (http://deepscreening.xielab.net) (Liu et al., 2019).

Figure 1. Depiction of the outline of predictive modeling and virtual screening.
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The CHEMBL dataset (CHEMBL3927) was used, which con-
tained IC50 values for the inhibition activity of the SARS cor-
onavirus 3C-like proteinase. This CHEMBL dataset was
preprocessed for molecular vectorization by applying
PubChem fingerprint which generates 881 fingerprints using
PaDEL software (Yap, 2011). The PubChem fingerprints were
used to construct a regression model by applying deep
recurrent neural networks (RNN). Several models were gener-
ated by manual optimization of hyperparameters like learn-
ing rate, epoch, batch size, number of neurons, hidden
layers, etc to select the best model (Table 1). All the hidden
layers used ReLU activation function (y¼max (0, 1)), while
the output layer used a sigmoid function.

2.2. Model evaluation and virtual screening

Several deep learning models were built and evaluated
based on several statistical matrices. In this study, regression
modeling of data set was carried out for developing the
model. To evaluate model performance, we used R squared
(R2), Mean squared error (MSE), Root MSE (RMSE), Mean
absolute error (MAE), and Loss. The best regression model
was deployed on the Selleck-Natural-Product-Library (Library
id- L00012) of Selleck database which contains 1611 natural
compounds for virtual screening. The model predicted 500
screened hits by virtual screening.
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� �2

where,
ŷ ¼ Predicted Value of y
yi ¼ Mean value of y

2.3. Protein receptor and ligand preparation

The 3D structure of COVID-19 Main protease (MPro) co-crys-
tallized with an inhibitor i.e. X77 was retrieved by download-
ing PDB ID 6W63 from the Protein Data Bank in PDB format
(https://www.rcsb.org). All water molecules and existing

ligand were removed from the protein molecule using
PyMOL software and then hydrogen atoms were added to
the receptor molecule by using AutoDockTools (ADT). The
3D structure of reference molecules, X77 which is N-(4-tert-
butylphenyl)-N-[(1R)-2-(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)
ethyl]-1H-imidazole-4-carboxamide was retrieved from 3D
structure of Mpro i.e. 6W63 in SDF format. The natural com-
pounds, as well as X77 were converted from SDF to mol2
chemical format using Open babel. Thereafter, non-polar
hydrogens were merged while polar hydrogen was added to
protein and ligand, and subsequently saved into dockable
pdbqt format for molecular docking analysis.

2.4. Active site confirmation

The CASTp online web server is used in this study for locat-
ing, delineating, and measuring geometric and topological
properties of protein structure. After predictive modeling, the
active site of the protein was checked by Computed Atlas of
Surface Topography of proteins (CASTp 3.0) server (http://
cast.engr.uic.edu) to confirm that the ligands are linked with
protein on the active amino acid. The CASTp 3.0 provides
many active amino acid residues which may be vital for pro-
tein-ligand interaction. The predicted pocket associated with
the residues bound with reference compound was consid-
ered for rigid docking. DS Visualizer (BIOvIA, 2015) was also
used to visualize the hydrogen and hydrophobic interactions
of X77 with Mpro. Therefore, pocket on the target protein
provided by CASTp which was associated with the binding
of its inhibitor X77 was selected for Molecular docking.
Thr25, Thr26, Leu27, His41, Cys44, Met49, Tyr54, Phe140,
Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164,
Met165, Glu166 Leu167, Pro168, His172, Asp187, Arg188, and
Gln189 were taken as the reference amino acids for virtual
screening as they were reported to actively participate in the
stabilization of its natural substrates (Figure 5(b)).

2.5. Molecular docking

The screened compounds by the best deep-learning model
were enriched by molecular docking. Molecular docking
simulation was performed with 500 screened compounds

Table 1. Manual optimization of hyperparameters to select the best deep learning model.

S. no. Model ID Epoch Hidden layer No of neuron Loss R2 MSE RMSE MAE

1 7GT137487G20GXEW1V6U 30 2 100, 100 17.06 0.82 17.06 4 4
2 1ABB0GA4HLN8K3MHA2IP 80 2 700,200 2 0.84 2 1.44 1.2
3 6362M585L5M11FZ7LKM5 50 2 500,200 2.35 0.83 2.35 1.5 1.32
4 351I50CJ7LE437ZR0UTW 50 2 500,300 1.98 0.83 1.98 1.41 1.2
5 8EP5F65V9088ZE6BB322 30 3 500,200,100 11.36 0.82 11.36 3.37 3.21
6 380ED9D7FYYC9Z08U32Y 50 3 1,000,500,200 4.7 0.86 4.7 2.17 1.92
7 I6V7SFFMS49S8FMOAT20 80 3 1,000,500,200 4.7 0.86 4.7 2.17 1.92
8 042CC5C0GJ6J9162GH2K 80 3 1,000,700,500 17 0.83 17 4 3.86
9 K340SL383UBEJX3347V6 80 3 1500, 1000, 700 3.78 0.85 3.78 1.95 1.72
10 285O6P887KWHBOE1A054 80 3 1200, 1000, 800 1.5 0.83 1.5 1.2 1.06
11 140U19B3FB45MH7K2551 80 3 1300,1000, 700 5.49 0.84 5.49 2.34 2.16
12 Y8M627G1154U90FJO1A5 80 3 1200, 9000,700 21.22 0 21.22 4.61 4.5
13 37V081I70JD08XCQ474X 80 3 1,000,700,300 16.81 0.83 16.81 4 3.81
14 YH2P608A240QV2517S4X 80 3 1,000,700,200 15 0.82 15 3.88 3.52
15 3C0OFWMOF277K24267O9 80 3 1,000,500,100 8.35 0.83 8.35 2.89 2.43

The bold one is the best regression model in terms of R2, MSE, RMSE, MAE, and Loss.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 3

https://www.rcsb.org
http://cast.engr.uic.edu
http://cast.engr.uic.edu


and X77 with target protein by using Autodock Vina (Trott &
Olson, 2010). For docking, a three-dimensional grid box was
set into X¼ �23.36, Y¼ 13.84, and Z¼ �29.63 grid points,
and the grid spacing was 67.06� 35.58� 31.63 Å for X, Y and
Z coordinates respectively. The number of exhaustiveness
was set to eight for predicting the accurate result.
Throughout the molecular docking process, the ligand mole-
cules were flexible and the receptor was kept as rigid.
Finally, the result in the form of binding energy was
extracted from the software. The best confirmation with the
low binding energy or docking score as compared to X77
were chosen for further analysis.

2.6. Pharmacokinetics and drug-likeness analysis

The compounds that were finalized by Autodock Vina after
virtual screening were further proceeded to predict their
pharmacokinetics and drug-likeness. Various physicochemical
properties, Log P, pharmacokinetics, and drug-likeness were
predicted by DruLiTo open-source software. Lipinski (Lipinski
et al., 2001), Veber (Veber et al., 2002), Ghose (Ghose et al.,
1999), and CMC-like (Ghose et al., 1999) filters were used in
DruLiTo to predict the drug-likeness of compounds.

2.7. ADMET analysis

The compounds having drug-like property and good binding
affinity with target protein were taken for the extensive ADMET
analysis. The ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) properties are very important for
approving a drug. ADMET prediction of the compounds was
performed using web servers; admetSAR and PreADMET, which
are quick, accurate, and easy-to-use prediction servers. The
admetSAR server has 95,629 compounds in its dataset that are
FDA approved and are used to predict the key features for
ADMET. Here, several features including blood-brain barrier
(BBB), human intestinal absorption (HIA), caco-2 permeability,
P-gp substrate/inhibitor, plasma protein binding, cytochrome
p450 (CYP450) substrate/inhibitor, human Ether-a-go-go-
Related Gene (hERG) inhibition, AMES toxicity, carcinogenicity,
biodegradability, etc. were predicted by these servers.

2.8. Scoring and visualization

The compounds that were drug-like and non-toxic were
rescored using X-score (Wang et al., 2002). X-score uses three
different empirical scoring functions viz. HPScore
(Hydrophobic Pair), HMScore (Hydrophobic Match), and
HSScore (Hydrophobic surface). VDW, H-Bond, RT denotes
Van der Waals interaction, Hydrogen bonding, rotatable
bonds respectively. They can be written as -:

HPScore ¼ C0:1 þ CVDW:1�ðVDWÞ þ CHB:1�ðHBondÞ
þ CHP� Hydrophobic Pairð Þ þ CRT:1� Rotorð Þ

HMScore ¼ C0:2 þ CVDW:2� VDWð Þ þ CHB:2� HBondð Þ
þ CHM� Hydrophobic Matchð Þ þ CRT:2� Rotorð Þ

HSScore ¼ C0:3 þ CVDW:3� VDWð Þ þ CHB:3� HBondð Þ
þ CHS� Hydrophobic surfaceð Þ þ CRT:3� Rotorð Þ

X�Score ¼ HPScore þ HMScore þ HSScoreð Þ=3
PyMOL, a molecular viewer (Yuan et al., 2017) was used

to visualize the docked pose of hit compounds at the active
site of Mpro. Further other interactions along with hydrogen
bonds were studied by DS Visualizer.

2.9. MD Simulation

The MD Simulation study of Mpro and screened ligand-pro-
tein complexes was performed using GROMACS 5.0 (Pronk
et al., 2013) package of Molecular Dynamics as described in
a publication (Joshi, Sharma, et al., 2020). MD Simulation was
performed on a work station with configuration Ubuntu
16.04 LTS 64-bit, 8GB RAM, IntelVR CoreTM i7-9900K CPU, and
6GB GPU. Four systems were created, one for predicting the
stability of the Mpro-X77 complex and others for Mpro-lig-
and complexes and subjected for 100 ns MD Simulation stud-
ies. The topology file for ligand and protein was generated
by using CGenFF server and pdb2gmx respectively by apply-
ing CHARMM 36 force field (Vanommeslaeghe et al., 2009).
After that, a water solvated system was built by using the
water model of TIP3P with dodecahedral periodic boundary
conditions having box vectors of equal length 9.81 nm. The
solutes were centered in the simulation box with a minimum
distance to the box edge of 10 Ð (1.0 nm). After defining the
box, all the systems were solvated using the TIP3P water
model in a dodecahedral box. Each solvated system was neu-
tralized by the addition of 4Naþ ions. Energy minimization
was done at 10 KJ/mol with steepest descent Algorithm by
using Verlet cut off-scheme taking Particle Mesh Edward
(PME) columbic interactions and the total nsteps taken by all
systems during energy minimization cycle were 50,000. After
that, position restraints were applied in the equilibration
step. Then, NVT equilibration was done in 300 K and 5000 ps
of steps and NPT equilibration taking Parrinello-Rahman
(pressure coupling), 1 bar reference pressure, and 5000 ps of
steps. At last, the production MD of the protein and protein-
ligand complex was run for 100 ns. All the MD Simulations
were performed with a time step interval of 2 fs. After suc-
cessful completion of MD Simulation for 100 ns, the Root
mean square deviation (RMSD), Root mean square fluctuation
(RMSF), and Radius of Gyration (Rg) were calculated using
g_rms, g_rmsf, g_gyrate, tools of GROMACS 5.0.7.

2.10. Post-MD simulation

After successful completion of MD Simulation for 100 ns, we
computed the numbers of H-bonds, solvent accessible surface
area (SASA), and the average distance between protein and
ligand to quantify the strength of the interaction between pro-
tein-ligand complexes. The numbers of H-bonds, SASA, and
average distance were calculated by g_hbond, g_sasa, g_dist
tool of GROMACS 5.0.7. Further, Principal component analysis
(PCA) was carried out by g_covar, g_anaeig, and g_sham tools.
The MD trajectories were analyzed by visual molecular
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dynamics (VMD) software. Finally, the xmgrace tool was used
for generating and visualizing the plots.

2.11. Binding free energy calculation using MM-PBSA

MMPBSA (Molecular Mechanics Poisson-Boltzmann surface
area) method is widely used to calculate the binding free
energy to predict the stability of the protein-ligand complex
after MD Simulation (Kumari et al., 2014). Binding free energy
calculations consist of free solvation energy (polar and non-
polar solvation energies) and potential energy (electrostatic
and Vander Waals interactions). Here, binding free energy cal-
culations of protein-ligand complexes were done by the
MMPBSA method. The MD trajectories were processed before
doing MM-PBSA calculations for the last 10 ns. Then average
binding energy calculations were done with ‘python’ script pro-
vided in g_mmpbsa.

3. Results and discussion

3.1. Predictive modeling and virtual screening

The interrelations between IC50 values and molecular finger-
prints were modeled by a deep learning algorithm to build a

predictive model. To develop the best model, several hyper-
parameters were manually optimized and statistical parame-
ters were analyzed. Finally, the best model was achieved
with learning rate 0.01, Epochs 80, batch size 16, hidden
layers 3, number of neuron 1200, 1000, and 800, activation
function ReLU, Drop out 0, and output function sigmoid. The
best model showed the acceptable range of statistical
parameters like R2, MSE, RMSE, MAE, and loss and yielded
good performance with R2 value (0.83), MSE (1.5), RMSE (1.2)
MAE (1.06) and loss (1.5) (Figure 2).

After that, the deep learning model was subjected to carry
out virtual screening on the Selleck-Natural-Product-Library of
Selleck database which contains the library of 1611 natural
compounds. Virtual screening resulted in 500 hits showing a
range of value scores from 6.9 to 3.8 as shown in Figure 3. All
the 500 screened natural compounds were retrieved in a sin-
gle file in SDF format from the server. The single SDF file of
500 compounds was split into individual SDF files by using
the“ChemmineR” package of R (version 3.4.3).

3.2. Active site confirmation

Pockets for probable active sites on the target protein
(Mpro) were identified by using CASTp online tool. The

Figure 2. Performance of the best deep learning regression model for Mpro enzyme of SARS-CoV.
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pocket selected for virtual screening has the following amino
acid residues;-

Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, Met49,
Pro52, Tyr54, Phe140, Leu141, Asn142, Gly143, Ser144,
Cys145, His163, His164, Met165, Glu166, Leu167, Pro168,
His172, Asp187, Arg188, Gln189, Thr190, and Gln192 (Figure
4(b)). This pocket was selected because it contains all the
amino acid residues (Thr25, Thr26, Leu27, His41, Cys44,
Met49, Tyr54, Phe140, Leu141, Asn142, Gly143, Ser144,
Cys145, His163, His164, Met165, Glu166 Leu167, Pro168,
His172, Asp187, Arg188, and Gln189) that are associated with
the binding of X77 which is an inhibitor of Mpro (Figure
5(b)). According to CASTp results, the active site area covered
by Mpro enzymes was 304.26 and the volume was 296.68
(Figure 4(a)).

3.3. Molecular docking

Before screening the ligands using molecular docking, the
docking protocol was validated by re-docking the X77 into
its binding pocket within the Mpro crystal structure to obtain
the correct coordinates and docked pose. The result showed
that the docked X77 was completely superimposed with
crystallized X77 (Figure 5(a)). Thus, this protocol was consid-
ered good enough for reproducing the docking results simi-
lar to the X-ray crystal structure and can be applied for
further docking experiments.

All compounds (n¼ 500), screened by the deep learning
model were docked in the active site of Mpro by using
AutoDock Vina for predicting the best possible binding pose
of ligands and lower binding energy. From molecular

docking, a total of 39 compounds were selected which
showed binding energy ranging from �11.8 to �8.2 kcal
mol�1. The binding energy of X77 was �8.2 kcal mol�1

(Table 2). All 39 compounds showed lower binding energy in
comparison with X77. Among the screened compounds, 7-
Epitaxol (S9265) showed the lowest binding energy i.e.
�11.8 kcal mol�1 followed by Rifapentine (S1760) which had
the binding energy of �10.5 kcal mol�1 and Indacaterol
(S5654) that showed the highest binding energy i.e. �8.2 kcal
mol�1 which was comparable to the reference molecule. The
results show that screened compounds may have the same
mechanism of action as the reference molecules. Then, all
these 39 compounds and the X77 were further used for
Drug-likeness prediction.

3.4. Pharmacokinetics and drug-likeness analysis

Various physicochemical properties like molecular formula,
molecular weight (Mw), rotatable bonds, hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), topological
polar surface area (TPSA), etc. are important for the com-
pound to be considered for a drug candidate. DruLiTo
software was used to predict the physicochemical proper-
ties of 39 compounds that were obtained after molecular
docking. DruLiTo calculates more than 23 physicochemical
properties which are important for evaluating the drug-
likeness of a molecule. Here, the drug-likeness was meas-
ured under the different filters of drug-likeness i.e. Lipinski,
Veber, Ghose, and CMC-like filters. Among the 39 com-
pounds, 18 compounds follow Lipinski RO5 and only four
compounds i.e. Sanguinarine, Palmatine, Sauchinone, and

Figure 3. Screening results of Mpro model against Selleck natural product library.
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Tabersonine show better pharmacokinetics and successfully
passed all filters (Table 3). The compounds which show
better pharmacokinetics and satisfied the fundamental
drug-likeness rules are accepted for showing drug-like

nature. After that, these four compounds were subjected
to ADMET prediction. So from out of 1611 natural com-
pounds, we have selected 4 compounds for
ADMET analysis.

Figure 5. The superimposition of the docked X77 with its X-ray crystal structure, Orange color indicates Docked X77 and Blue color indicates Experimental X77 (a).
2D interaction of X77 with Mpro crystal structure as identified from Protein data bank (b).

Figure 4. Active binding site of target protein-(a) Active site area (b) Active amino acid residue (Highlighted).
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3.5. ADMET analysis

ADMET analysis is one of the major factors for drug testing
and design. The screened four compounds were further used
for ADMET prediction using PreADMET and admetSAR data-
base. Out of the selected four compounds, three (Palmatine,
Sauchinone, and Tabersonine) compounds have acceptable
ADMET properties and are non-toxic while the remaining
one (Sanguinarine) is toxic (Table 4).

The BBB (Blood-Brain Barrier) permeability describes the
efficiency of drugs in terms of crossing the BBB and its
action on the central nervous system. The admetSAR gave
theþ ve and� ve sign for the compounds which can pass
and fail the BBB, respectively. In our study, we observed that
all four compounds were able to cross this barrier. The com-
putational BBB value corresponds to its entry into the central
nervous system. The acceptable range of BBB values for an
ideal drug candidate ranges between �3.0 and 1.2 (Nisha
et al., 2016). All the compounds have the BBB value under
this range. Absorption of the drug in the gastrointestinal
tract is a crucial factor for oral drug delivery and it is
described by HIA. All four compounds showed absorption in
the human intestine. The permeability of the drug molecule
from the large intestine can be assessed by CaCo-2 (colorec-
tal carcinoma) permeability. In our study, all four compounds

can pass from the Caco-2 cell line while X77 failed in these
criteria. Log S refers to the solubility of the drug molecule
that ideally ranges between �6.5 and 0.5. All the compounds
are showing Log S values under this range. P-glycoprotein
(P-gp) receptor present on the cell surface is involved in the
efflux of xenobiotics. admetSAR predicts two classes, as
either predicted hit is substrate/non-substrate of P-gp or pre-
dicted hit is an inhibitor/non-inhibitor of P-gp. The P-gp sub-
strate indicates that this molecule can be effluxed by these
P-gp proteins while P-gp non-substrate indicated that this
compound cannot be effluxed by P-gp proteins. Likewise, P-
gp inhibitor and non-inhibitor compounds can inhibit and
non-inhibit the P-gp proteins, respectively. Out of the four
studied compounds, two compounds acted as non-substrates
while the other two compounds and X77 were substrates of
P-gp. All the studied four compounds act as a non-inhibitor
of P-gp (Table 4). The distribution factor is renal organic cat-
ionic transporter inhibition/non-inhibition. Out of the four
compounds, two compounds have shown inhibition while
the other two compounds and X77 showed non-inhibition of
renal organic cationic transporter. The major enzyme
involved in the metabolism of xenobiotics inside the cell is
Cytochrome P450 (CYP450). admetSAR server can predict
substrate and inhibitor of Cyp450 enzymes. The data on the
metabolism profile of hit compounds are also compiled in

Table 2. Summary of Molecular docking results between Mro and screened hits.

S. No. Name of Hit Compound Compound ID Molecular formula Deep learning score Binding energy (kcal mol�1)

1 Reference (X77) 145998279 C27H33N5O2 – �8.2
2 Nicergoline S4797 C24H26BrN3O3 6.78 �8.6
3 Rifapentine S1760 C47H64N4O12 5.80 �10.5
4 Rifampin S1764 C43H58N4O12 5.72 �10.3
5 Reserpine S1601 C33H40N2O9 6.20 �8.7
6 Sanguinarine S9032 C20H14NO4

þ 6.05 �8.3
7 BTB06584 S7460 C19H12ClNO6S 5.51 �8.8
8 Bedaquiline S5623 C32H31BrN2O2 6.16 �9.3
9 Tanshinone IIA sulfonate (sodium) S3766 C19H17NaO6S 5.68 �8.9
10 Ecabet sodium S4853 C20H27NaO5S 5.31 �8.8
11 Cephalomannine S2408 C45H53NO14 4.64 �9.8
12 7-Epitaxol S9265 C47H51NO14 4.63 �11.8
13 Nafcillin Sodium S4042 C21H21N2NaO5S 4.44 �9
14 Sennoside B S4018 C42H38O20 4.50 �9.1
15 Sennoside A S4033 C42H38O20 4.50 �9.1
16 Lithospermic acid S9259 C27H22O12 4.51 �8.9
17 Salvianolic acid B S4735 C36H30O16 4.51 �10
18 Coptisine chloride S5249 C19H14ClNO4 5.22 �8.5
19 10-Deacetylbaccatin-III S2409 C29H36O10 4.40 �9.9
20 Protopine S3883 C20H19NO5 4.85 �8.9
21 Dicloxacillin Sodium S4111 C19H16Cl2N3NaO5S 4.69 �9
22 Berberrubine S9237 C19H16ClNO4 5.12 �8.4
23 Cefpiramide sodium S5353 C25H23N8NaO7S2 5.14 �9.5
24 Doxycycline S5159 C22H24N2O8 4.58 �8.9
25 Dibenzoyl Thiamine S5474 C26H26N4O4S 4.44 �8.9
26 Palmatine S3769 C21H22NO4

þ 4.98 �8.7
27 Itraconazole S2476 C35H38Cl2N8O4 4.17 �8.3
28 Indacaterol S5654 C24H28N2O3 4.61 �8.2
29 Rotenone (Barbasco) S2348 C23H22O6 4.38 �9.2
30 Sauchinone S9406 C20H20O6 4.72 �8.9
31 Tenacissoside I S9030 C44H62O14 4.18 �8.7
32 Tabersonine S9427 C21H24N2O2 4.12 �8.6
33 Anamorelin S4980 C31H42N6O3 4.89 �9.7
34 Chelidonine S9154 C20H19NO5 4.33 �8.4
35 Terconazole S5033 C26H31Cl2N5O3 4.27 �8.5
36 Corynoline S9085 C21H21NO5 4.24 �8.9
37 Buparvaquone S4971 C21H26O3 4.80 �8.4
38 Folic acid S4605 C19H19N7O6 4.62 �8.5
39 Calcium folinate S5136 C20H21CaN7O7 4.45 �8.7
40 NADþ S2518 C21H27N7O14P2 4.39 �9.1
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Table 4. The renal clearance of the compounds is predicted
by an excretion parameter, MDCK (Madin Darby Canine
Kidney). All hit compounds showed better results in terms of
MDCK than reference. admetSAR also predicts toxicity and
carcinogenicity of the predicted hits. In our study, three com-
pounds and X77 were found to be non-toxic while only one
compound, Sanguinarine was toxic. We found that the refer-
ence and hit compounds were non-carcinogenic. The Human
ether-a-go-go-related gene (HERG) encodes a membrane
channel protein (potassium ion channel) and its inhibition
can lead to QT syndrome. In our study, we found that all the
compounds have shown non-inhibition toward HERG i.e.
they showed no risk of QT syndrome. Lethal dose50 (LD50)
refers to the dose a compound required to kill 50% of the
population of an organism. The LD50 was predicted in silico
in a rat simulation model. Low LD50 values denote the high
efficacy of the compound. In this study, all hit compounds
showed LD50 values between 2 to 3mol�kg�1 similar to the
reference. From the ADMET profile, we selected Palmatine,
Sauchinone, and Tabersonine for rescoring which showed
acceptable ADMET properties and fulfill all the
enlisted criteria.

3.6. Scoring and visualization of the docked complex

From the virtual screening, molecular docking, drug-likeness,
and ADMET prediction, we found Palmatine, Sauchinone, and
Tabersonine as potential inhibitors of SARS-CoV-2 Mpro as
they are drug-like, non-toxic, approved ADMET and all other
criteria. The re-scoring of the hits by X-Score was performed
for predicting the accurate binding affinity. The virtual
screening score from deep learning, docking score (binding
energy) from Auto Dock Vina, and X-Score of these three
compounds are given in Table 5. The reference molecule X77
showed a binding affinity of �8.2 Kcal.mol�1 from Autodock
Vina and �9.67 Kcal.mol�1 from X-Score. X-score results
show that the predicted three compounds have a good
binding affinity towards Mpro. Among the screened hits,
Palmatine showed the deep learning score 4.98 and binding
affinity of �8.7 Kcal.mol�1 and �8.12 Kcal.mol�1 from
Autodock Vina and X-Score respectively, other compound
Sauchinone showed the deep learning score 4.72 and bind-
ing affinity of �8.9 Kcal.mol�1 from Autodock Vina and
�8.74 Kcal.mol�1 from X-Score while Tabersonine showed
the deep learning score 4.12 and binding affinity of
�8.6 Kcal.mol�1 from Autodock Vina and �8.27 Kcal.mol�1

from X-Score.
PyMOL was used to visualize the 3D interactions of the

protein-ligand complex. The docked poses of reference and
these three compounds with Mpro are shown in Figure 6.
According to Figure 6, Palmatine, forms one hydrogen bond
having distance 2.7 Å with Gln189 (Figure 6(b)), another com-
pound Sauchinone form two hydrogen bonds of 2.4 Å and
2.9 Å distance with the Met49 and His41 respectively (Figure
6(c)) while Tabersonine forms a hydrogen bonds of 2.2 Å dis-
tance with Cys44. The reference molecule, X77 found to
interact with Gly143, Ser 144, and Glu166 of Mpro with 2.6 Å,
2.9 Å, and 1.9 Å distance respectively through hydrogenTa
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Table 4. The ADMET profile of screened compounds obtained from PreADMET and admetSAR server.

Parameters

Hit Compounds

X77 (Reference) Sanguinarine Palmatine Sauchinone Tabersonine

Absorption
BBB probability �/0.5768 þ/0.9651 þ/0.9287 þ/0.8851 þ/0.9573
HIA probability þ/0.9273 þ/0.7267 þ/0.8017 þ/0.9959 þ/0.9941
Caco-2 permeability

probability
�/0.6563 þ/0.7712 þ/0.8444 þ/0.6721 þ/0.5687

Caco-2 permeability 0.7730 1.2338 1.3889 1.5354 0.9175
Aques solubility/ logS �3.6185 �3.2332 �3.0227 �4.1626 �3.0809
Distribution
P-glycoprotein Substrate Substrate/0.5920 Non-substrate/0.7655 Non-substrate/0.5248 substrate/0.6015 substrate/0.8960
P-glycoprotein Inhibitor inhibitor/0.7331 Non-inhibitor/0.9594 Non-inhibitor/0.6853 Non-inhibitor/0.7964 Non-inhibitor/0.6589
Renal Organic Cation

Transporter
Non-

inhibitor/0.7989
Non-inhibitor/0.6641 inhibitor/0.5390 Non-inhibitor/0.7869 inhibitor/0.6649

Metabolism
CYP-2C9

substrate/inhibitor
Non-substrate/
Non-inhibitor

Non-substrate/
Non-inhibitor

Non-substrate/Non-inhibitor Non-substrate/inhibitor Non-substrate/
Non-inhibitor

CYP-2D6
substrate/inhibitor

Non-substrate/
Non-inhibitor

Non-substrate/
inhibitor

substrate/inhibitor Non-substrate/inhibitor Non-substrate/inhibitor

CYP-3A4
substrate/inhibitor

substrate/inhibitor Non-substrate/
inhibitor

substrate/Non-inhibitor substrate/inhibitor substrate/Non-inhibitor

CYP-1A2 inhibitor Non-inhibitor inhibitor Non-inhibitor inhibitor Non-inhibitor
CYP-2C19 inhibitor inhibitor inhibitor Non-inhibitor inhibitor Non-inhibitor
CYP inhibitory promiscuity High High Low High Low
Excretion
MDCK 0.05 34.41 1.20 64.94 72.45
Toxicity
AMES Toxicity Non-AMES-toxic AMES-toxic Non-AMES-toxic Non-AMES-toxic Non-AMES-toxic
Carcinogens Non-Carcinogens Non-Carcinogens Non-Carcinogens Non-Carcinogens Non-Carcinogens
Human Ether-a-go-go-

Related Gene Inhibition
Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

Biodegradation Not ready biodegradable Ready biodegradable Not ready
biodegradable

Not ready
biodegradable

Not ready biodegradable

Acute Oral Toxicity III/ 0.6450 III/0.7774 III/0.7551 III/0.5024 III/0.5367
Rat LD50 2.4787 2.3612 2.6332 2.8354 2.9389

Table 5. Details of the three selected compounds and the reference compound. Structure, Deep learning score obtained after the virtual screening, docking
energies obtained by molecular docking, and X-Score analysis are provided in the table.

S. No.
Name of

Hit Compound Structure

Deep
learning
score

Binding energy with Mpro

AutoDock
Vina

(kcal mol�1)

X-Score

HP SCORE
(�log(Kd))

HM
SCORE

(�log(Kd))

HS
SCORE

(�log(Kd))

AVERAGE_
SCORE

(�log(Kd))

BINDING_
ENERGY

(kcal mol�1)

1 Reference (X77) – �8.2 6.7 7.55 7.02 7.09 �9.67

2 Palmatine 4.98 �8.7 5.73 6.35 5.79 5.96 �8.12

3 Sauchinone 4.72 �8.9 6.03 7.2 5.99 6.41 �8.74

4 Tabersonine 4.12 �8.6 6.03 6.17 5.99 6.07 �8.27
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bond (Figure 6(a)). According to protein-ligand interaction,
Palmatine, Sauchinone, and Tabersonine bind with the active
site residues of Mpro protein, therefore these hit compounds
may inhibit the Mpro of SARS-CoV-2.

Further, to get insights into the binding mechanism of
the screened compound in the active sites of the Mpro, we
performed 2D interactions analysis of the docked complexes
by Discovery studio (DS) visualizer software as shown in
Figure 7. Reference molecule, X77 is interacting with several
residues via significant interactions, including hydrogen and
hydrophobic interactions. It formed three conventional-
hydrogen bonds with Glu166, His163, and Gly143; four
Carbon-hydrogen bond with Met165, Glu166, Asn142, and
Leu141; and other interactions are Vander Waals interaction

with Thr25, Leu27, His164, His41, Asp187, Cys44, Arg188,
Cys145, Ser144, Phe140, and Gln189; and Pi-sulphur bond
with Met 49 of Mpro indicating a strong binding with Mpro
(Figure 7(a)). Palmatine formed hydrogen bonds as well as
other interactions with active site residues. It formed a total
of five hydrogen bonds with active site residues; one con-
ventional hydrogen bond with Gln189 and four carbon-
hydrogen bonds with Thr190, Gln189, His41, and Thr26. The
Mpro-Palmatine complex was also stabilized by Vander Waals
interaction with Asn142, Gly143, Thr25, Leu27, Arg188,
Gln192, Pro168; Pi-Alkyl Hydrophobic interaction with Cys145
and Met165; Pi-sigma interaction with Gln189; and Pi-Pi T-
shaped interaction with His41 (Figure 7(b)). Sauchinone
formed interaction with active site residues. It formed two

Figure 6. Docked poses of the reference (a) and top hit compounds, Palmatine (b), Sauchinone (c), and Tabersonine (d) with Mpro. The target protein is in brown
color cartoon representation. Active site residues are in black colored lines. Hydrogen bonds that are formed in between protein and compound are shown as red
dotted lines.
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conventional hydrogen bonds with Met49 and Gly143 and
one carbon-hydrogen bond with Asn142. Moreover, Mpro-
Sauchinone complex also showed Vander Waals interaction
with Arg188, Asp187, Pro52, Cys44, His41, Thr25, Leu141,
Glu166, and Gln189; Alkyl Hydrophobic interaction with
Cys145 and Met165; Pi-Alkyl Hydrophobic interaction with
Cys145 and Met165 (Figure 7(c)). Another compound,
Tabersonine also formed interaction with active site residues.
It formed two conventional hydrogen bonds with residues
Cys44 and His41 and a carbon-hydrogen bond with His164.
Besides, Mpro-Tabersonine complex was also stabilized by
other interactions like Vander Waals interaction with Thr45,
Thr25, Gly143, Ser46, Val42, Asp187 Arg188, Tyr54, Pro52,
Met165, and Asn142; Alkyl Hydrophobic interaction with
Cys44, His41, Met49; Pi-Alkyl Hydrophobic interaction with
Cys145; and Pi-sigma interaction with His41 (Figure 7(d)).

From the molecular interaction analysis of docked com-
plexes, we observed that all the hit compounds show H-
bond interaction and other interactions with Mpro were

bound to the same binding cavity having the active site resi-
dues similar to reference molecule which suggested the cru-
cial role of these interactions to hold the ligand at the active
site of the target protein. Active side residues viz. Thr25,
Leu27, His41, Cys44, His164, Asp187, Arg188, Cys145, Met49,
and Met165 were the common interacting residues between
Mpro and hit compounds. Ultimately, from these results, we
finalize these three compounds viz. Palmatine, Sauchinone,
and Tabersonine for further analysis using MD Simulation to
study their stability and dynamic properties.

3.7. MD Simulation

The MD Simulation can be used to explain the dynamics like
structural details, conformational behavior, and stability of
the target-ligand complexes, etc. The stability analysis of the
native Mpro, reference complex (Mpro-X77), and the protein-
ligand complexes (Mpro-Palmatine, Mpro-Sauchinone, and

Figure 7. 2D molecular interaction of the reference (a) and top hit compounds, Palmatine (b), Sauchinone (c), and Tabersonine (d) with target protein Mpro.
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Mpro-Tabersonine) was performed by surrounding them into
a dodecahedral box of size 669.34 nm3 at a computationally
maintained temperature of 300 K. TIP3P water model was
used to solvate the system. Water molecules present in the
box in the case of Palmatine were 20622, in the case of
Sauchinone they were 20628, in the case of Tabersonine
they were 20613 and 20626 water molecules in X77. Four
Naþ ions were used to neutralize the system. After that,
each complex was subjected to the process of energy mini-
mization for 50,000 steps of the steepest descent, followed
by equilibration and finally subjected to 100 ns MD
Simulation. The structural changes and dynamic behavior in
complexes were analyzed by the various computational anal-
yses like RMSD, RG, and RMSF calculation.

3.7.1. Root mean square deviation (RMSD)
To determine the conformational and structural stability of
Mpro and Mpro-ligand complexes, we monitored the differ-
ences between the backbone atoms of native protein from
initial conformation to its final position through RMSD ana-
lysis. The deviations produced in protein during its simula-
tion describe the stability of that protein’s conformation.
Smaller deviations in protein reflect its more stable nature.

RMSD score for the C-alpha backbone was calculated for
100 ns MD Simulation to evaluate the stability of all the com-
plexes. Figure 8(a) shows the plot of RMSD (nm) vs. time (ns)
for native protein Mpro, reference complex Mpro-X77, and
three Mpro-ligand complexes (Mpro-Palmatine, Mpro-
Sauchinone, and Mpro-Tabersonine). From this figure, we can
see that the RMSD trajectory of protein and all the com-
plexes attained the equilibration and produced stable trajec-
tories. The average value of RMSD for protein and all the
complexes is shown in Table 6. The average RMSD values for
protein were 0.18 ± 0.03 nm while for complexes; Mpro-X77,
Mpro-Palmatine, Mpro-Sauchinone, and Mpro-Tabersonine
were found to be 0.17 ± 0.02 nm, 0.16 ± 0.02 nm,
0.17 ± 0.04 nm, 0.16 ± 0.01 nm respectively. The reference
complex Mpro-X77and Mpro-Sauchinone showed the same
RMSD value, while Mpro-Palmatine and Mpro-Tabersonine
showed the least value which confirmed the stability of
the complexes.

3.7.2. Root mean square fluctuation (RMSF)
To investigate the conformational fluctuations of Mpro and
the residues involved in the Mpro-ligand interactions, we cal-
culated the average fluctuation of each amino acid of Mpro

Figure 8. MD simulation studies. a. RMSD, b. RMSF, and c. Radius of gyration as a function of time. In all systems, the color code indicates- Mpro protein (black),
Mpro-X77 (red), Mpro-Palmatine (green), Mpro-Sauchinone (blue), and Mpro-Tabersonine (yellow).
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protein by RMSF analysis. The RMSF value describes how the
binding of the ligand can change the confirmation of the
protein during the complex. In proteins, the rigid structures
containing regions like helix and sheets showed low RMSF
value, while loose structures containing region of protein like
sheets and turns showed higher RMSF value. The RMSF plot
of protein and all protein-ligand complexes is shown in
Figure 8(b). RMSF plot shows that the secondary conforma-
tions of Mpro remain stable during the MD Simulation of
100 ns. The average RMSF values for Mpro protein, Mpro-
X77, Mpro-Palmatine, Mpro-Sauchinone, and Mpro-
Tabersonine complexes were recorded as 0.09 ± 0.05 nm,
0.13 ± 0.07 nm, 0.11 ± 0.05 nm, 0.08 ± 0.07 nm, and
0.09 ± 0.37 nm respectively (Table 6).

All the complexes showed similar or less average RMSF
value as compared to the Mpro and Mpro-X77 complex,
which suggests that they did not cause much fluctuation in
protein after binding. The RMSF results represented that all
predicted complexes were stable, and hence, these predicted
compounds had the potential to inhibit the catalytic activity
of Mpro. Using protein-ligand interaction analysis, we found
that Thr25, Leu27, His41, Cys44, His164, Asp187, Arg188,
Cys145, Met49, and Met165 active site residues were
involved in maintaining the catalytic activity of the Mpro-lig-
and complex. From Table 6, it becomes clear that in all the
studied complexes, the RMS fluctuation value decreased due
to the ligand binding. The results suggested that due to the
binding of the ligand, the RMS fluctuation of the active site
residues decreased, resulting in the change in conformation
of Mpro and thereby, inhibiting the activity of Mpro-X77
complex. The RMS fluctuation values of catalytically import-
ant residues are shown in Table 7. In all studied complexes,
the RMSF for each active site residue is lower than 0.2 nm,
which means that the binding cavity is quite stable during
the MD Simulation. This narrow range of RMSF values of the
active site residues of the studied complexes demonstrated
that these compounds were capable of forming stable inter-
actions with the Mpro during the MD Simulation.

3.7.3. Radius of gyration (RG)
The radius of gyration (Rg) is an effective parameter to
understand the level of compaction in the structure of the
protein in the absence and presence of ligands. The time
evolution plot of Rg for Mpro protein and all Mpro-ligand
complexes is shown in Figure 8(c). The average Rg value for
Mpro protein, Mpro-X77, Mpro-Palmatine, Mpro-Sauchinone,
and Mpro-Tabersonine complexes were found to be
1.92 ± 0.13 nm, 1.88 ± 0.26 nm, 1.82 ± 0.18 nm, 1.74 ± 0.24 nm,
and 1.49 ± 0.25 nm, respectively (Table 6). The Mpro-
Tabersonine and Mpro-Sauchinone complex showed much
less Rg value as compared with the Mpro protein and other
complexes, suggesting that they form more compact and
stable complex as compared to other systems, although
other hits also showed relatively good Rg value similar to ref-
erence complex. If the Rg values remain relatively consistent
throughout the MD Simulation, it can be regarded as a sta-
bly folded structure; otherwise, it would be considered
unfolded. From Table 6, it is visible all the systems exhibited
relatively similar and consistent values of Rg as reference
(X77) which indicates that these are perfectively superim-
posed with each other and they exhibit similar compactness
and stability similar to X77. These results show that all com-
plexes achieved relatively stable folded conformation during
the 100 ns trajectory of MD Simulation at the constant tem-
perature of 300 K and the constant pressure of 1 atm.
Overall, it can be concluded that the complexation of protein
with hit compounds increases the compactness/rigidity of
the Mpro structure, leading to increased overall stability.

3.8. Post-MD simulation

3.8.1. Hydrogen bonds
The receptor-ligand complexes are stabilized by different
kinds of interactions like hydrogen bonds, hydrophobic
bonds, electrostatic, and other interactions but out of them,
the hydrogen bonds are very specific interactions that play a
crucial role in the stabilization of protein-ligand complex.

Table 6. The average values of RMSD, RMSF, Rg, SASA, and Distance between protein-ligand in Mpro-ligand complexes.

S. No Protein/ Protein-ligand complex

MD simulation Post-MD simulation

Average RMSD Average RMSF Average RG Average SASA Average Distance

1 Mpro 0.18 ± 0.03 0.09 ± 0.05 1.92 ± 0.13 – –
2 Mpro-X77 (Reference) 0.17 ± 0.02 0.13 ± 0.07 1.88 ± 0.26 149.29 ± 2.77 3.51 ± 0.21
3 Mpro-Palmatine 0.16 ± 0.02 0.11 ± 0.05 1.82 ± 0.18 148.04 ± 2.33 3.58 ± 0.24
4 Mpro-Sauchinone 0.17 ± 0.04 0.08 ± 0.07 1.74 ± 0.24 148.77 ± 2.52 3.73 ± 0.17
5 Mpro-Tabersonine 0.16 ± 0.01 0.09 ± 0.37 1.49 ± 0.25 152.43 ± 3.01 3.58 ± 0.29

Table 7. Residues of the Active site and their RMSF values (Angstrom).

Residues Mpro Reference Mpro-X77 Mpro-Palmatine Mpro-Sauchinone Mpro-Tabersonine

Thr25 0.07 0.06 0.14 0.06 0.09
Leu27 0.05 0.04 0.07 0.04 0.06
His41 0.05 0.04 0.08 0.04 0.01
Cys44 0.07 0.07 0.11 0.06 0.08
Met49 0.09 0.15 0.20 0.11 0.11
Cys145 0.05 0.05 0.07 0.04 0.06
His164 0.05 0.06 0.06 0.06 0.08
Met165 0.06 0.07 0.08 0.06 0.09
Asp187 0.07 0.09 0.14 0.07 0.08
Arg188 0.07 0.10 0.16 0.08 0.09
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Along with the structural stability of protein, hydrogen
bonds also play a significant role in ligand binding at the
active site of the receptor as well as strongly influence drug
specificity, metabolization, and adsorption in drug design.
Furthermore, the bonding patterns were assessed by observ-
ing the fluctuations of the hydrogen bonds in all the com-
plexes. Figure 9(a) shows the maximum number of hydrogen
bonds versus time for all complexes during 100 ns MD
Simulation. The result shows the appearance of a maximum
of four H-bond interactions between reference compound
X77 and Mpro during the MD Simulation period of 100 ns.
Maximum three hydrogen bonds were observed in Mpro-
Palmatine and Mpro-Tabersonine complexes while Mpro-
Palmatine showed a maximum of four H-bonds with Mpro as
X77. These observed bonding parameters indicated that all
compounds were bound to the Mpro as effectively and
tightly as X77.

3.8.2. Solvent accessible surface area (SASA)
Solvent accessible surface area (SASA) analysis enables us to
measure the proportion of the protein surface which can be
accessible by the water solvent and analyze interactions
between complex and solvent during the MD Simulation.

Figure 9(b) shows the plot of SASA value vs. time for all the
protein-ligand complexes (Mpro-X77, Mpro-Palmatine, Mpro-
Sauchinone, and Mpro-Tabersonine). The average SASA of
148.04 nm2 was calculated for Mpro-Palmatine, 148.77 nm2

for Mpro-Sauchinone, while for Mpro-Tabersonine it was
found to be 152.43 nm2. Likewise, reference complex Mpro-
X77 showed the average value of SASA to be around 149.29
nm2 (Table 6). All complexes showed average SASA values
approximately similar to the reference indicating their stabil-
ity similar to Mpro-X77.

3.8.3. Distance
The gmx_mpi pairdist module of GROMACS was used to cal-
culate the distance between the structure of Mpro and
ligands during the MD Simulation. Figure 9(c) shows the plot
of distance value vs. time for all the protein-ligand com-
plexes (Mpro-X77, Mpro-Palmatine, Mpro-Sauchinone, and
Mpro-Tabersonine). The average distance for the reference
complex Mpro-X77 was observed to be around 3.51 nm.
Likewise, an average distance of 3.58 nm was observed for
the Mpro-Palmatine complex while for the complexes Mpro-
Sauchinone and Mpro-Tabersonine it was computed to be
around 3.73 nm and 3.58 nm respectively (Table 6). From the

Figure 9. Post-MD simulation studies. a. Number of H-bonds, b. SASA, and c. Distance as a function of time. In all panels, the colors indicate- Mpro-X77 (red),
Mpro-Palmatine (green), Mpro-Sauchinone (blue), and Mpro-Tabersonine (yellow).
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result, it is obvious that all hits show a similar value of aver-
age distance as X77 which indicates that during MD
Simulation these ligands have the same distance
toward Mpro.

3.8.4. Principal component analysis (PCA)
To investigate the significant concerted motions during lig-
and binding, the PCA analysis was carried out. It is well
known that the overall motion of the protein is determined
by only the first few eigenvectors (Yang et al., 2014). In this
study, the diagonalization of the matrix is used to calculate
the eigenvectors. For this study, we selected the first 40
eigenvectors for the calculation of concerted motions. Figure
10(a) represents the eigenvalues that are obtained from the
diagonalization of the covariance matrix of atomic fluctua-
tions in decreasing order versus the corresponding eigen-
vector for Mpro-X77, Mpro-Palmatine, Mpro-Sauchinone, and
Mpro-Tabersonine. It was observed that out of the 40 eigen-
vectors, the first ten eigenvectors accounted for 74.59%,
73.35%, 71.67%, and 67.81% of total motions for Mpro-X77,
Mpro-Palmatine, Mpro-Sauchinone, and Mpro-Tabersonine
(Figure 10(a)). All the studied complexes showed very fewer
motions as compared with the reference compound. So from
the PCA, we concluded that all compounds showed fewer
motions and form a stable complex with Mpro. From PCA,
we conclude that ligand binding leads to the change in pro-
tein conformation as well as in dynamics.

The 2D projection plot generation in PCA is another way
to achieve the dynamics of complexes. Figure 10(b) shows
the 2D projection of the trajectories in the phase space for
the first two principal components, PC1 and PC2 for Mpro-
X77, Mpro-Palmatine, Mpro-Sauchinone and Mpro-
Tabersonine complexes. The complex which occupied less
phase space showed and stable cluster represent a more sta-
ble complex while the complex that occupied more space
and showed a non-stable cluster represented a less stable
complex. From the figure, it can be concluded that the
Mpro-Sauchinone (Blue) and Mpro-Tabersonine (Yellow)

complexes were highly stable as they occupied less space in
the phase space, and the cluster was well defined as com-
pared to Mpro-X77 (Red), and Mpro-Palmatine (Green) com-
plexes. All results indicate that Tabersonine and Sauchinone
formed a more stable complex with Mpro. The 2D PCA result
was also in agreement with the above PCA and other MD
Simulation results.

The Gibb’s energy plot for PC1 and PC2 was also calcu-
lated and is shown in Figure 11(a–d). The plot shows Gibbs
energy value ranging from 0 to 12.5, 0 to 11.9, 0 to 13, and
0 to 11.9 kJ�mol�1 for Mpro-X77, Mpro-Palmatine, Mpro-
Sauchinone, and Mpro-Tabersonine, respectively. All the
studied complexes showed significantly similar or low energy
as compared with the Mpro-X77, which suggestes that these
complexes follow the energetically more favorable transition
from one conformation to another.

3.9. Binding energy calculation and energetic
contribution of individual residues

The Binding free energy calculation was carried out using
the g_mmpbsa tool for all systems, considering the last 10 ns
of MD trajectories as shown in Table 8. The binding free
energies were composed of their energy components: polar
solvation energy, SASA non-polar solvation energy and non-
bonded interaction energies (Van der Waal and electrostatic
energy) get insights into their contributions. Through Table
8, it can be observed that Mpro-Sauchinone and Mpro-
Palmatine complexes possess the least negative binding
energy i.e. �71.68 þ/� 9.23 kJ mol�1 and �71.47 þ/�
9.750 kJ mol�1 respectively, whereas, Mpro-Tabersonine com-
plex displayed positive free energy (59.21 þ/� 41.96 kJ
mol�1). Two hit compounds (Sauchinone and Palmatine)
showed significantly better binding energy as compared to
the reference complex Mpro-X77 (�69.58 þ/� 29.43 kJ
mol�1). It confirms that both compounds can bind efficiently
at the binding site of Mpro and could be used as lead com-
pounds against COVID-19. Further various energy terms

Figure 10. Principle Component Analysis. a. A Plot of eigenvalue vs eigenvector index. The first 40 eigenvectors were considered for PCA analysis and b. PCA scat-
ter plot along with the first two principal components, PC1 and PC2 showing all-atom fluctuations. In both panels, the color code indicates- Mpro-X77 (red), Mpro-
Palmatine (green), Mpro-Sauchinone (blue), and Mpro-Tabersonine (yellow).
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Figure 11. The Gibbs free energy landscape for Mpro-X77 (a), Mpro-Palmatine (b), Mpro-Sauchinone (c), and Mpro-Tabersonine (d).

Table 8. A Table showing the Van der Waal, electrostatic, polar salvation, SASA, and total binding energy for the Protein-ligand Complexes.

S. no.
NAME Of Protein-ligand

Complex Van der Waal Energy Electrostatic Energy Polar solvation energy SASA energy
Total binding

Energy (kJ mol�1)

1 Mpro-X77 (Reference) �118.54 þ/�10.21 �5.42 þ/� 6.19 70.21 þ/� 29.85 �15.83 þ/� 1.23 �69.58 þ/� 29.43
2 Mpro-Palmatine �117.65 þ/�12.25 �8.49 þ/� 6.01 68.50 þ/� 12.25 �13.82 þ/� 1.15 �71.47 þ/� 9.750
3 Mpro-Sauchinone �120.16 þ/� 9.55 �27.01 þ/� 5.93 89.11 þ/� 10.28 �13.61 þ/� 0.81 �71.68 þ/� 9.23
4 Mpro-Tabersonine 0.000 þ/� 0.00 0.05 þ/� 0.06 59.03 þ/� 42.02 0.13 þ/� 1.91 59.21 þ/� 41.96
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contributing towards binding free energy revealed that in all
the studied complexes, the driving component of binding
was the van der Waals energy which played a major contri-
bution in strengthening the binding mode. The polar solv-
ation energy did not showed a favorable contribution to the
total binding in all the studied complexes. The electrostatic
Energy and SASA non-polar solvation energy contribute simi-
larly to the binding free energy.

To analyze the key residues involved in protein-ligand
interaction, per residue interaction energy profile was cre-
ated using the MM-PBSA approach for the last 10 ns of MD
trajectories. The per-residue decomposition plot of the total
binding energy of the Mpro-ligand complexes is shown in
Figure 12. For the clear depiction of results, only active site
residues are highlighted in Figure. From the plot, it was
revealed that Thr25, Leu27, His41, Met49, Cys145, Met165,
and Asp187 were the actively participating amino acids in all
complexes. The per residue interaction plot indicated that
most of the residues showed negative binding energy, while
few residues showed positive binding energy. The residues
that showed negative binding energy play an important role
in stabilizing the Mpro-ligand complex. Three active site resi-
dues i.e. Met49, Cys145, and Met165 showed higher binding
affinity as compared to other residues. The results revealed
that Met49, Cys145, and Met165 play an important role in
Mpro-ligand stabilization which is in agreement in a previous
study (Joshi, Sharma, et al., 2020).

From the overall MD Simulation (including RMSD, RMSF,
and Rg analysis) and Post-MD Simulation (including hydro-
gen bonds, SASA, distance, and PCA analysis) and binding
free energy analysis results, we conclude that two predicted
hits Palmatine and Sauchinone are very stable complexes
that show excellent binding affinities as compared to the ref-
erence compound.

Drug discovery from natural sources is a basic and novel
idea in a current situation where the whole world is finding
a solution to treat COVID-19. Many studies have proven that
natural compounds are very effective to find potential drug
candidates against different viral diseases. A recent study

suggests that some natural compounds may be helpful for
the treatment of COVID-19 infection (Joshi, Sharma, et al.,
2020; Kumar et al., 2020). In vitro tests have reported that
natural compound lycorine isolated from Lycoris radiata
extract is candidates for the development of new anti-SARS-
CoV drugs in the treatment of SARS (Li et al., 2005). Recently,
an in silico study conducted by Wahedi et. al 2020 showed
that Stilbene-based Natural Compounds particularly resvera-
trol, has shown in vitro antiviral activity against SARS-CoV-2
through disruption of its spike protein (Wahedi et al., 2020).
Several recent studies have used Mpro as a molecular target
to find the anti-SARS-CoV-2 compounds using in silico techni-
ques (Joshi, Sharma, et al., 2020; Mittal et al., 2020). Drug-
repurposing studies have also screened many compounds
against COVID-19 (Elmezayen et al., 2020).

Deep learning methods are an important tool which can
be used to develop a predictive model of an experimentally
validated dataset of compounds and used for prediction or
virtual screening of unknown dataset. Therefore, the current
study was undertaken to find some natural compounds that
can be used against the SARS-CoV-2 virus using various com-
putational techniques like deep-learning-based virtual screen-
ing, molecular docking, drug-likeness analysis, ADMET, X-
Score and MD Simulation. From the overall structures-based
drug discovery methods, we found two anti-SARS-CoV-2 nat-
ural compounds; Palmatine and Sauchinone.

These natural compounds are also used to treat some
other disease as Palmatine is an isoquinoline alkaloid that
has sedative, antidepressant, antioxidative, anti-ulcerative,
antacid, anticancer, and anti-metastatic activities (Long et al.,
2019) and Sauchinone is an active lignan isolated from the
roots of Saururus chinensis, possesses diverse pharmaco-
logical properties, such as hepatoprotective, anti-inflamma-
tory and anti-tumor effects, etc (He et al., 2018). Based on
our results, we suggest that Palmatine and Sauchinone show
better scores by deep learning model and better binding
energy against Mpro receptor and hence they may be con-
sidered for evaluation in vitro experiment against SARS-
CoV-2.

4. Conclusion

The inhibition of Mpro enzyme represents a promising strat-
egy for anti-SARS-CoV-2 drug discovery. In this study, the
best deep learning model predicted many potential natural
inhibitors against Mpro. After that various computational
methods were performed for the identification of natural
molecules as potential inhibitors of SARS-CoV-2 Mpro. From
the overall study, we conclude that two compounds
Palmatine and Sauchinone form a very stable complex with
Mpro that show excellent binding affinities higher as com-
pared to the reference complex. These observations suggest
that these natural compounds can inhibit the activity of
Mpro enzyme of SARS-CoV-2 and may be explored for the
innovation and development of suitable drug candidates
against COVID-19.

Figure 12. The contributions of individual amino acid residues of Mpro to the
total binding energies of Mpro-ligand complexes. In all systems, the color code
indicates- Mpro-X77 (red), Mpro-Palmatine (green), Mpro-Sauchinone (blue),
and Mpro-Tabersonine (yellow). Negative values indicate a stabilization effect
on Mpro-ligand interactions.
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