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Abstract10

The rate of new HIV infections globally has decreased substantially from its peak in the late
1990s, but the epidemic persists and remains highest in many countries in eastern and southern
Africa. Previous research hypothesised that, as the epidemic recedes, it will become increasingly
concentrated among sub-populations and geographic areas where transmission is the highest and
that are least effectively reached by treatment and prevention services. However, empirical data
on subnational HIV incidence trends is sparse, and the local transmission rates in the context of
effective treatment scale-up are unknown. In this work, we developed a novel Bayesian spatio-
temporal epidemic model to estimate adult HIV prevalence, incidence and treatment coverage
at the district level in Malawi from 2010 through the end of 2021. We found that HIV incidence
decreased in every district of Malawi between 2010 and 2021 but the rate of decline varied by
area. National-level treatment coverage more than tripled between 2010 and 2021 and more than
doubled in every district. Large increases in treatment coverage were associated with declines in
HIV transmission, with 12 districts having incidence-prevalence ratios of 0.03 or less (a previously
suggested threshold for epidemic control). Across districts, incidence varied more than HIV
prevalence and ART coverage, suggesting that the epidemic is becoming increasingly spatially
concentrated. Our results highlight the success of the Malawi HIV treatment programme over the
past decade, with large improvements in treatment coverage leading to commensurate declines
in incidence. More broadly, we demonstrate the utility of spatially resolved HIV modelling in
generalized epidemic settings. By estimating temporal changes in key epidemic indicators at a
relatively fine spatial resolution, we were able to directly assess, for the first time, whether the ART
scaleup in Malawi resulted in spatial gaps or hotspots. Regular use of this type of analysis will
allow HIV programmanagers to monitor the equity of their treatment and prevention programmes
and their subnational progress towards epidemic control.
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Introduction11

Globally, new human immunodeficiency virus (HIV) infections have decreased from a peak of 3.012

million in 1997 to 1.5million in 2020, while AIDS deaths decreased decreased from 1.9million in 2004 to13

680,000 in 2020.1 These improvements have resulted, in large part, from the rapid scale-up of life-saving14

antiretroviral therapy (ART), alongside combination HIV prevention.2–4 Although HIV elimination15

will only be attained in future generations, measuring progress towards epidemic transition, in16

which low levels of acquired immunodeficiency syndrome (AIDS) mortality are maintained and new17

infections are continually reduced, is critical for guiding policy-making at global and local levels.5,618

The goal of epidemic transition has been encoded into international policy in the UNAIDS Fast Track19

Strategy, which calls for a 90% reduction in new infections from 2010 levels by 2030.720

The most rapid progress in reducing new HIV infections and improving ART coverage has been in21

Eastern and Southern Africa (ESA), where burden and programme investments have historically been22

highest. Over the past 25 years, annual new HIV infections have more than halved from 1.6 million in23

1997 to 670,000 in 2021.1 However, the region remains disproportionately affected: those 670,000 new24

infections accounted for 45% of all global infections in 2021.25

The rate of new HIV infection in a population, or incidence, reflects the epidemic’s trajectory in the26

short- and long-term, making it the most important metric for measuring progress towards epidemic27

transition.6,8,9 For example, high incidence today will necessitate sustained long-term treatment28

provision far into the future due to the need for lifelong ART. Estimating incidence has therefore been29

a central task of HIV epidemiology since the beginning of the epidemic. A 2017 UNAIDS consultation30

recommended several “HIV epidemic transition” metrics to assess whether HIV programmes are31

on track towards ending the AIDS epidemic.6 In addition to the rate of new infections and percent32

reduction in new infections, the leading recommended indicator was the incidence-to-prevalence33

ratio (IPR) with target threshold of 0.03, below which the epidemic is on a long-term trajectory of34

decline. National estimates of IPR have since been regularly reported by UNAIDS and others.1,1035

However, epidemic transition has not been well-quantified at subnational areas, where HIV dynamics36

are highly heterogeneous.11,12 Sustaining declining incidence will require granular information about37

where ongoing HIV transmission and new infections occur. Previous work has hypothesized that as38

the epidemic recedes, incidencewill become increasingly concentrated inmore vulnerable populations39

and geographic areas.13–15 Areas with persistent high prevalence could become “sources” of new40

infections that sustain epidemics in otherwise well-managed “sink” areas.16 Such dynamics could41

stall or even reverse progress.42

Estimating HIV incidence43

Despite its importance as an epidemiological indicator, population-level HIV incidence is difficult44

to measure directly, even at the national level.8,17 Long survival following HIV infection (fifteen45

years or more untreated and 30 years or longer with ART) means that prevalent cases or new46

diagnoses may represent individuals infected many years ago.18,19 Therefore, HIV diagnoses data47

provide little direct information on trends in new infections. In settings with complete HIV case48

reporting, back-calculation methods can be used to estimate incidence from new diagnoses, but49

case reporting is only partially implemented in most high HIV-burden settings20–22 Additionally,50

health data systems currently struggle to distinguish new diagnoses from repeat diagnoses, rendering51

existing back-calculation approaches unsuitable.23 Recent biomarker-based algorithms have been52

deployed to identify recently infected individuals (typically in the previous 4-6 months), providing53

cross-sectional estimates of HIV incidence in national surveys.24,25 However, national surveys are54
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infrequent and require prohibitively large sample sizes to provide reliable estimates of trends in55

incidence.2656

Instead, in high HIV burden settings, incidence estimation has relied on fitting mathematical57

models to data measuring trends in HIV prevalence from national household surveys and from58

antenatal care (ANC) surveillance systems.27–29 These models infer incidence trends consistent with59

observed prevalence trajectories by combining assumptions about HIV transmission dynamics and60

survival after infection with and without ART. However, these models assume both statistical and61

epidemiological independence across regions, making them inappropriate for subnational estimation.62

Such independence means that HIV transmission dynamics are assumed to not vary systematically63

over space and that spatial treatment seeking dynamics cannot be accounted for.3064

Other recent research has focused on quantifying spatial burden of HIV prevalence and ART65

coverage using spatial smoothing, small-area estimation, Bayesian geostatistical, andmachine learning66

approaches.11,12,30,31 Less research has addressed subnational incidence estimation. The Naomi model67

predicts subnational incidence alongside prevalence and ART coverage but does not estimate trends.3068

Sartorius et al. fit a compartmental epidemic model to predicted subnational HIV prevalence trends69

but included incomplete subnational HIV treatment data and did not consider spatial structure in70

infection dynamics.12,3271

In this work, we developed a spatio-temporal epidemic model that bridges the gap between spatially72

resolved models of prevalence and national-level models of incidence. Our model simultaneously73

infers HIV prevalence, incidence, and treatment coverage by subnational region, sex, and time by74

fitting spatio-temporally varying HIV transmission and treatment initiation rates within an epidemic75

model to data from household surveys, ANC facilities, and ART programmes.76

HIV in Malawi77

We used our model to estimate district-level HIV prevalence, incidence, and treatment coverage in78

Malawi from 2010 through 2021. Malawi is a country in Southern Africa with population around 2079

million people.33 It consists of 28 districts, each having an average population of slightly more than80

700,000 people. Its total area of approximately 100,000 squared kilometres makes it one of the smallest81

countries in the ESA region.82

Malawi has experienced a severe HIV epidemic over the past 40 years, similar to nearby countries in83

the ESA region. Incidence among adults aged 15-49 peaked at 22 new infections per 1,000 people in84

1993, and HIV prevalence among adults remains among the highest in the world at 8%.385

High national-level prevalence in Malawi masks dramatic subnational spatial variation. UNAIDS86

estimated that in 2021, district-level adult HIV prevalence ranged from 3% to 17% across districts.3487

The epidemic disproportionately affects the south of country, which is more densely populated than88

the north. Even within small regions, urban areas exhibit much higher prevalence than surrounding89

rural areas.90

Despite high HIV burden and health system constraints, Malawi has built one of the most successful91

HIV treatment programmes in the world by implementing a public health approach to scaling92

up treatment that focuses on ensuring equitable access to ART across the country.35–38 A recent93

household survey estimated that 87% of adultswithHIVwere virally suppressed, indicating successful94

treatment.39 Programmatic success has been underpinned by robust, standardised data collection95

through which HIV testing and ART provision is systematically reported to central health authorities96

on a quarterly basis.97
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The confluence of high-quality data, previously well documented spatial variation, and local demand98

for district-level burden estimationmadeMalawi an ideal setting in which to develop and demonstrate99

our model. We used these estimates to quantify district-level progress towards the target incidence-100

prevalence ratio of 0.03, as well as the incidence thresholds proposed by Galvani et al.9 Finally, we101

investigated whether large improvements in treatment coverage between 2010 and 2021 resulted in102

spatially equitable changes in district-level HIV incidence and whether, consistent with the “source-103

sink” theories described above, the epidemic in Malawi was becoming more spatially concentrated.104

Results105

District-level HIV data106

Subnational HIV data in Malawi consisted of (1) cross-sectional measures of adult HIV prevalence107

from four nationally-representative household surveys conducted between 2004 and 2016, with cross-108

sectional ART coverage and proportion recently infected in the 2015-2016 Malawi PHIA (MPHIA), (2)109

routinely collected health system data on the HIV status of pregnant women attending ANC services110

each quarter between 2011 and 2021, and (3) data on the number of patients accessing ART the end of111

each quarter between 2004 and 2021.40–43112

Nationally, HIV prevalence among adults aged 15-49 years was estimated as 10.0% (9.2% to 10.8%) in113

2015-2016 from the MPHIA and 9.0% (8.2% to 10.0%) from the 2015-16 Malawi Demographic and114

Household Surveys (MDHS), a large decline from 10.6% (9.7% to 11.6%) in 2004-2005.40–43 Declining115

prevalence was corroborated by HIV prevalence among pregnant women, which declined from 8.5%116

in 2011 to 6.3% in 2021. ART coverage was 68.6% (65.9% to 71.2%) in the 2015-2016 MPHIA survey,117

reflecting the dramatic scale-up in treatment since the programme’s start in the early 2000s. Between118

2010 and 2021, the number of people receiving ART in Malawi increased nearly four-fold from 247,100119

to 895,100.120

The high burden and high treatment coverage at national level masks dramatic subnational variation.121

Prevalence in the Southern region is more than twice that in the Central and Northern regions, at122

15.3% (14.1% to 16.6%), 6.0% (5.2% to 6.9%), and 6.8% (5.4% to 8.6%), respectively, in the 2015-2016123

MPHIA survey. Across districts, prevalence in the survey ranged from 20.3% (14.4% to 27.8%) in124

Phalombe to 2.4% (0.7% to 8.0%) in Ntchisi, while ART coverage ranged from 89.8% (58.7% to 98.2%)125

in Mwanza to 47.7% (29.9% to 66.2%) in Dowa. HIV prevalence among pregnant women at ANC126

corroborated this wide variation, ranging from 11.1% inMulanje to 1.9% in Ntchisi. However, between127

2011 to 2021, prevalence declined consistently across all 28 districts by a median of 28% (interquartile128

range [IQR] 24% to 30%). The number of patients accessing ART increased between 2010 to 2021 by a129

median of 267% (IQR 215% to 311%).130

Model fit and model selection131

We used a cross-validation strategy to evaluate potential specifications for the modelling the HIV132

transmission rate over time. Among 146 combinations considered, no single specification clearly fit133

better to the data than all others. In general, the best fitting models used five-year spaced spline knots134

with first-order autoregressive priors in the transmission rate model. The results presented here were135

generated using a B-spline of order two with autoregressive priors on the first differences between the136

coefficients (Supplemental Material Sections 1.5 and 2).137

Figure 1 presents an example of the model fit to data about multiple outcomes from 1995 through138

2021 for Blantyre, a densely populated high-prevalence district in southern Malawi. HIV prevalence139

in Blantyre declined among both women and men across the four household surveys, and HIV140
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prevalence among pregnant women declined steadily over the whole period. Since ART programme141

inception in 2005, the number of adults 15-49 receiving ART in Blantyre increased to 79,000, and 92%142

(86% to 97%) and 80% (72% to 88%) of women and men, respectively, with HIV were on ART by 2021.143

These changes in prevalence and ART coverage resulted from steeply and steadily declining HIV144

incidence from 2000 to present. During this period, the HIV transmission rate by untreated adults with145

HIV was stable: 0.11 (0.10 to 0.11) in 2000 and 0.10 (0.09 to 0.11) in 2021. Infectious men transmitted146

HIV at a 3.9 (2.5 to 6.2) times higher rate than infectious women. The annual probability of ART147

initiation for an untreated adult reached 21.3% (16.2% to 39.4%) in 2021. Similarly good fits were148

obtained in all 28 districts (Supplemental Figures 5-32).149

National-level estimates150

Aggregating over all districts, at the end of 2021, 7.9% (7.6% to 8.2%) of adults aged 15-49 years in151

Malawi were living with HIV, of whom 88% (86% to 93%) were on ART. The HIV incidence rate was152

2.3 (1.7 to 2.7) new infections per 1,000 at risk. Between 2010 and 2021, HIV prevalence decreased by153

25% (22% to 29%) and incidence decreased by 69% (64% to 76%), while ART coverage increased from154

26% (26% to 27%) to 88% (86% to 93%), a 3.3 (3.2 to 3.6) times increase.155

HIV prevalence among women aged 15-49 in 2021 was 10.4% (10.0% to 10.8%), twice as high as156

5.1% (4.7% to 5.7%) among men. ART coverage was also higher among women at 91% (89% to 95%),157

compared to 81% (76% to 88%) among men. Incidence was 2.5 (1.7 to 3.6) times higher among women158

than in men: 3.2 (2.6 to 3.8) new infections per 1,000 women compared to 1.3 (0.8 to 1.8) per 1,000 men.159

For comparison, UNAIDS estimated incidence rates of 2.4 and 1.4 among Malawian women and men,160

respectively, in 2021.3161

Subnational estimates162
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Figure 1: Model fit to HIV data sources in Blantyre District, 1995-2021. Estimated prevalence, ART coverage, untreated
transmission rates, annual ART initiation probabilities, ANC prevalence, and ART patient counts in the Blantyre district in
southern Malawi with household survey data (HIV prevalence and ART coverage), HIV prevalence among pregnant women
attending ANC facilities, and the number of adults 15-49 receiving ART programmatic reporting data (points). Prevalence,
ART coverage, incidence rate, and ART patients reflect adults aged 15-49 years. Vertical dashed lines indicate years of ART
eligibility changes. Different colours on panel “ANC prevalence” indicate different ANC facilities.
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Table 1: Estimated national and district-level HIV prevalence, ART coverage, and HIV incidence in Malawi in 2021 and percent changes between 2010 and 2021. Point estimates are posterior medians, and
parenthetical estimates are 95% credible intervals.

Prevalence ART Coverage Incidence
2021 value 2010-2021 decrease 2021 value 2010-2021 increase 2021 value 2010-2021 decrease

National 8% (8%-8%) 25% (22%-29%) 88% (86%-93%) 3.3 (3.2-3.6) 2.3 (1.7-2.7) 69% (64%-76%)
Northern
Chitipa 3% (2%-4%) 27% (15%-40%) 91% (75%-96%) 3.9 (2.6-6.5) 0.8 (0.4-1.3) 71% (59%-80%)
Karonga 7% (7%-8%) 20% (11%-27%) 91% (83%-97%) 3.3 (2.8-3.8) 2.2 (1.5-3.2) 68% (58%-76%)
Likoma 7% (6%-9%) 29% (20%-34%) 94% (79%-98%) 3.1 (2.7-3.7) 1.5 (0.9-3.0) 73% (61%-80%)
Mzimba 6% (5%-6%) 20% (13%-29%) 94% (85%-97%) 2.7 (2.4-3.1) 1.7 (1.0-2.6) 66% (49%-75%)
Nkhata Bay 6% (5%-7%) 33% (26%-39%) 83% (69%-94%) 3.9 (3.1-5.3) 1.7 (0.9-2.6) 69% (59%-82%)
Rumphi 6% (4%-7%) 23% (14%-30%) 89% (73%-97%) 2.6 (2.2-3.2) 1.8 (1.0-2.8) 64% (46%-72%)

Central
Dedza 4% (3%-5%) 30% (24%-40%) 90% (74%-96%) 4.3 (3.5-6.3) 0.9 (0.5-1.7) 75% (61%-83%)
Dowa 3% (2%-4%) 31% (23%-40%) 77% (56%-89%) 2.1 (1.6-2.7) 0.8 (0.5-1.5) 62% (43%-74%)
Kasungu 4% (3%-5%) 22% (14%-33%) 90% (76%-96%) 3.9 (3.0-6.3) 1.1 (0.6-1.6) 70% (57%-81%)
Lilongwe 6% (6%-7%) 25% (17%-32%) 92% (84%-96%) 2.8 (2.4-3.3) 1.6 (1.0-2.9) 68% (48%-78%)
Mchinji 5% (5%-6%) 30% (23%-39%) 92% (77%-97%) 3.5 (2.5-5.0) 1.3 (0.7-2.0) 73% (59%-85%)
Nkhotakota 5% (4%-6%) 38% (29%-44%) 94% (73%-97%) 3.1 (2.3-4.2) 0.8 (0.5-1.4) 78% (70%-86%)
Ntcheu 8% (7%-9%) 28% (21%-34%) 93% (73%-98%) 3.2 (2.6-4.1) 1.9 (1.1-3.3) 73% (57%-85%)
Ntchisi 2% (2%-3%) 39% (32%-44%) 89% (70%-96%) 3.0 (2.4-4.2) 0.4 (0.2-0.9) 76% (63%-81%)
Salima 5% (4%-6%) 29% (21%-35%) 93% (83%-97%) 4.2 (3.1-6.2) 1.3 (0.8-1.9) 74% (62%-81%)

Southern
Balaka 8% (7%-9%) 31% (25%-35%) 96% (89%-98%) 3.0 (2.7-3.6) 1.9 (1.4-2.5) 74% (68%-80%)
Blantyre 14% (13%-15%) 22% (16%-26%) 87% (80%-93%) 2.8 (2.6-3.2) 4.2 (3.1-5.3) 64% (54%-73%)
Chikwawa 8% (7%-9%) 26% (18%-34%) 93% (81%-98%) 3.7 (2.8-5.0) 1.8 (1.1-2.9) 75% (64%-83%)
Chiradzulu 12% (11%-14%) 28% (24%-33%) 93% (85%-97%) 2.3 (2.1-2.9) 3.1 (2.1-4.0) 70% (62%-78%)
Machinga 7% (7%-9%) 26% (18%-32%) 90% (77%-96%) 4.1 (3.5-5.1) 2.0 (1.3-3.6) 73% (58%-81%)
Mangochi 9% (8%-10%) 23% (16%-31%) 93% (81%-97%) 5.6 (4.6-7.5) 2.7 (1.6-3.6) 73% (67%-82%)
Mulanje 16% (14%-17%) 16% (8%-24%) 95% (86%-97%) 4.6 (4.0-5.3) 5.2 (3.7-7.2) 71% (62%-77%)
Mwanza 7% (5%-8%) 21% (11%-27%) 87% (72%-96%) 3.7 (2.6-5.3) 2.2 (1.4-3.4) 66% (53%-75%)
Neno 8% (7%-10%) 29% (21%-37%) 95% (76%-98%) 3.1 (2.7-3.9) 2.0 (1.1-3.3) 74% (59%-85%)
Nsanje 10% (8%-12%) 23% (13%-30%) 53% (43%-71%) 4.3 (3.1-7.2) 4.8 (2.8-7.4) 58% (43%-74%)
Phalombe 15% (13%-17%) 17% (9%-24%) 96% (84%-98%) 6.0 (4.5-8.0) 4.6 (3.1-7.3) 76% (63%-83%)
Thyolo 12% (10%-13%) 26% (21%-34%) 93% (86%-97%) 3.5 (3.0-4.7) 2.8 (1.9-3.9) 76% (69%-83%)
Zomba 12% (11%-14%) 22% (12%-28%) 89% (81%-94%) 3.4 (3.0-4.0) 3.6 (2.4-5.5) 71% (62%-79%)
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Across 28 districts of Malawi, median prevalence was 7.1% (6.7% to 7.5%) in 2021. Prevalence ranged163

from 15.6% (14.3% to 17.4%) in Mulanje in south-east Malawi to 2.0% (1.6% to 2.6%) in Ntchisi in164

central Malawi (Figure 2, Table 1). Median ART coverage was 91% (87% to 95%) and ranged from 96%165

(84% to 98%) in Phalombe to 53% (43% to 71%) in Nsanje. Median HIV incidence across districts was166

1.9 (1.5 to 2.2) new infections per 1,000 people but varied across district. Incidence was highest in167

Mulanje at 5.2 (3.7 to 7.2) new infections per 1,000 and lowest in Ntchisi at 0.4 (0.2 to 0.9) (Table 1).168

Incidence decreased by at least 50% in all districts between 2010 and 2021, although declines varied169

spatially. The smallest decrease was from 11.7 to 4.8 (a 58% (43% to 74%) decline) in Nsanje, while the170

largest was in Nkhotakota from 3.8 to 0.8 (a 78% (70% to 86%) decline).171

Incidence declines corresponded to large increases in ART coverage in every district. Between 2010172

and 2021, treatment at least doubled in every district among both men and women (Figure 2, Table173

1). The smallest relative increase in ART coverage was an increase of 2.1 (1.6 to 2.7) times in Dowa,174

and the largest was a 6.0 (4.5 to 8.0) times increase in Phalombe. Phalombe had the second-lowest175

ART coverage in 2010, while Dowa had the second-highest, illustrating that the largest improvements176

were in the districts that had the lowest coverage in 2010. Lower ART coverage in 2010 was strongly177

associated with large increases between 2010 and 2021 (Figure 2).178

Subnational progress towards epidemic transition179

In all 28 districts, incidence decreased by at least 20% in every posterior simulation (corresponding to180

posterior probabilities of 100%). The posterior probability of a 50%-or-greater decrease was above181

90% in 26 of 28 districts, with Dowa and Nsanje only reaching 84% and 78%. No districts had 90%182

or higher posterior probabilities of incidence decreases of at least 75% (Figure 3); only five districts183

(Thyolo, Chikwawa, Nkhotakota, Ntchisi, and Phalombe) had 50% or higher posterior probabilities of184

75% decreases or more.185

In 27 of 28 districts, at least half of the posterior density in incidence change was located between 60%186

and 80% incidence reductions between 2010 and 2020 (Figure 4), indicating that although no district187

definitively achieved the UN-targeted 75% reduction, many districts were approaching that threshold.188

Nationally, the posterior probability of a 75%-or-greater decrease was only 4.9%, but the probability189

of a 65%-or-greater decrease was 94.8%.190

The spatial structure of our model allowed us to infer subnational transmission dynamics. Following191

Ghys et al., we calculated the ratio of new infections to PLHIV (or incidence-prevalence ratio) and its192

inverse, which measures the number of PLHIV per new infection.6 The national incidence-prevalence193

ratio (IPR) was 0.026 (0.021 to 0.030), corresponding to one new infection per 38 (33 to 48) PLHIV.194

These figures represent considerable improvements from 2010, when the national-level IPR was 0.062195

(0.058 to 0.064) or one new infection per 16 (16 to 17) PLHIV. The posterior probability that Malawi196

had met the 0.03 IPR threshold proposed by Ghys by 2021 was 97.4%.6197

We estimated substantial spatial heterogeneity in HIV transmission. District-level IPRs in 2021 ranged198

from a high of 0.044 (0.028 to 0.057) in Nsanje to a low of 0.016 (0.011 to 0.024) in Nkhotakota. These199

IPRs correspond to one new infection per 22 (17 to 35) PLHIV in Nsanje and per 61 (41 to 91) PLHIV200

in Nkhotakota. In 2021, 12 of 28 districts had a 90% or greater posterior probability of an IPR less201

than 0.03. The district-level posterior probability of having reached an IPR of 0.03 in 2021 or lower202

was correlated with ART coverage in 2021 (Pearson �: 0.82) but not with the change in ART coverage203

between 2010 and 2021 (Pearson �: -0.16).204

District-level changes in IPR varied less over space than absolute levels, due in part to uniformly205

large improvements in ART coverage. The percent decreases in IPR ranged from 45% (20% to 57%)206
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Figure 2: Trends and levels of HIV in Malawi, 2010-2021. A) Hexagonal tile maps present district-level HIV prevalence,
ART coverage, and HIV incidence among adults aged 15-49 in Malawi in 2021. The angle of each arrow corresponds to the
district-level percent change in each indicator relative to the theoretical maximum change from the 2010 baseline. Upward and
downward pointing arrows indicate increases and decreases, respectively. The theoretical maximum change in prevalence and
incidence is a 100% decrease, and the maximum change in ART coverage is the percent change needed to reach 100% coverage
from the 2010 level. B) Scatter plots comparing the level of each indicator in 2010 to change between 2010 and 2021. Change is
G-fold increase for ART coverage and percent decrease for prevalence and incidence.
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Figure 3: Changing subnational adult HIV incidence dynamics in Malawi. A) HIV IPR in 2021 (left), changes in HIV
incidence between 2010 and 2021 (centre), HIV incidence in 2021 (right) among ages 15-49 by district in Malawi. B) Posterior
probabilities of IPRs in 2021 less than 0.03 (left), changes in incidence exceeding 75% decreases between 2010 and 2021 (centre),
and incidence less than 1 per 1,000 in 2021 (right). C) Scatter plots comparing IPR in 2021, percent change in incidence between
2010 and 2021, and incidence per 1,000 in 2021 to relative changes in ART coverage by district.
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Figure 4: Changes in key HIV indicators among adults in Malawi, 2010-2021. Posterior median (points) changes in incidence
risk, ART coverage, and prevalence with 95% and 50% credible intervals (lines and shaded regions, respectively). Districts are
sorted vertically from highest median change in incidence to lowest.
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Figure 5: Changes in spatial heterogeneity in HIV indicators in Malawi, 2010-2021. Coefficients of variation (CVs) across
districts in HIV incidence rate, prevalence, and ART coverage over time. Larger CVs indicates greater spatial variability. Shaded
area represents 95% credible intervals across posterior epidemic draws.

to 70% (57% to 76%) in Dowa and Phalombe, respectively. Figure 3 compares changes in ART207

coverage and IPRs. Because the model accounts for the population-level impact of treatment on208

transmission, changes in transmission were closely correlated with changes in ART coverage. The209

negative correlation between ART coverage change and IPR change indicates that larger improvements210

in ART coverage were associated with larger declines in IPR. The outlier marked with a red point211

in this plot is Nsanje, in which large improvements in ART coverage did not result in the expected212

reductions in HIV transmission.213

The right column of Figure 3 also compares estimated incidence to the threshold of one per 1,000214

by 2030 proposed by Galvani et al. Nationally, Malawi has not met that threshold in 2021 (posterior215

probability 0.0%), but the posterior probabilities varied subnationally. Ntchisi was the only district216

to achieve a 90% or higher posterior probability of one new infection per 1,000 people in 2021. This217

posterior probability was less than 10% in 20 districts. The posterior probability of incidence less than218

one per 10,000 people in 2021 was 0.0% in every district.219

Increasing spatial heterogeneity in incidence220

We measured spatial variability in the three indicators of interest by calculating the coefficient221

of variation (CV) across districts for each predicted year. Incidence varied more over space than222

prevalence and ART coverage (Figure 5). Despite increasing uniformity in ART coverage, the spatial223

heterogeneity in incidence and prevalence increased slightly between 2010 and 2021. This finding224

is consistent with our observation that the relative range in incidence across districts increased225

dramatically over the same period. The posterior probability that the coefficient of variation in226

incidence increased between 2010 and 2021 was 87%.227

Discussion228

Between 2010 and 2021, HIV incidence and prevalence decreased among both men and women in229

all 28 districts of Malawi, coinciding with large increases in ART coverage. There was substantial230

heterogeneity in both levels of and trends in prevalence and incidence, despite rapidly decreasing231

variability in ART coverage.232
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Our results highlight the continued success of Malawi’s HIV treatment programme. National ART233

coverage increased more than three-fold between 2010 and 2021. Districts with the largest increases234

between 2010 and 2021 were those with the lowest coverage in 2010. Whereas a testing and treatment235

strategy that prioritised the highest burden areas could have exacerbated existing gaps, the public236

health approach deployed in Malawi has yielded highly equitable treatment coverage.237

Large and widespread improvements in ART coverage resulted in commensurate decreases in238

incidence across the country. Although we estimated that the incidence rate varied 14-fold across239

districts in 2021, incidence declined by at least 50% in every district. In Twelve districts, the posterior240

probability of incidence-prevalence ratio below the 0.03 threshold in 2021 was above 90%.6 Changes241

in district-level IPRs were strongly correlated with improvements in ART coverage, but the posterior242

probability of havingmet the 0.03 threshold wasmost highly correlatedwith the current ART coverage.243

Consistent with simulations presented by Galvani et al., the elimination target based on an incidence-244

level below one new infection per 1,000 was more difficult to attain than the IPR-based target, with245

only one district having reached less than one new infection per 1,000 people in 2021.9 Both the IPR246

and absolute incidence level decreased dramatically over the study period, reflecting the progress247

Malawi has made in reducing HIV burden. We also note that because our model produces internally248

consistent estimates of prevalence and incidence, it could be used to estimate any number of epidemic249

control metrics and posterior probabilities of associated targets.250

District-level data from the 2020-2021 MPHIA survey were not publicly available at the time of251

this analysis, so we can use the national level survey estimates as out-of-sample validation for our252

estimates. The survey found a prevalence of 8.0% (7.5% to 8.5%) among adults aged 15-49, while we253

estimated national prevalence of 7.9% (7.6% to 8.2%) in 2021.39 Our estimated national incidence of254

2.3 (1.7 to 2.7) new infections per 1,000 people was also close to the survey estimate of 2.3 (1.1 to 3.6).255

Currently, these comparisons provide an additional layer of validation for our model, but when the256

district-level survey data become available, our model will be able to fit directly to them.257

Although improvements in incidence and treatment coverage were substantial in every district, the258

spatial variation in incidence was increasing as of 2021. These results are consistent with theories that259

the epidemic will recede into harder-to-reach populations and areas as ART coverage reaches high260

levels. Broad, large-scale treatment provision programmes have succeeded in improving outcomes in261

the general population, but they can only partially fill treatment gaps among groups that have greater262

difficulty or hesitancy engaging with centralised healthcare systems.44,45 As treatment coverage263

continues to improve, population-level incidence will increasingly be determined by other, more264

heterogeneous factors (e.g. prevalence of commercial sex work, education, etc.) and the marginal265

effects of improved coverage will decrease.14 Failing to patch seemingly small treatment gaps could266

therefore lead to the emergence of source-sink dynamics that could stall progress towards control and267

elimination.16 The evidence presented in Figure 5 is consistent with this theory, but the estimated268

increases in spatial heterogeneity were small relative to the large decreases changes in incidence269

over time. Analyses of data collected over the next several years will offer a clearer picture of how270

the impact of population-level ART coverage on incidence in high-prevalence settings changes as271

treatment coverage nears 100%.272

Regarding implications for HIV programming in Malawi, our results confirm the large and equitable273

impact of improved access to HIV services on high ART coverage and low and declining incidence.274

Further ART scale-up resources should focus on the districts with relatively higher incidence and275

laggingART coverage, while ensuring appropriate levels of testing, linkage, and retention programmes276

are sustained in all districts to maintain the high ART coverage. The efficiency and cost-effectiveness of277
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other primary prevention interventions depends critically on HIV incidence in the target population.278

For example, WHO recommend that HIV pre-exposure prophylaxis (PrEP) should be prioritised279

for locations and population groups with HIV incidence above 30 per 1,000 to be cost-effective.46280

We estimated that general population incidence was six-fold lower than this in 2021, even in the281

highest incidence districts. This underscores that PrEP and other effective but expensive primary282

prevention interventions are unlikely to be an efficient use of health resources to scale-up to the283

general population in any districts. Instead, access should be prioritised among populations with284

specific risk factors in high incidence districts, as outlined in the Global AIDS Strategy 2021-2026.47–49285

This analysis has a number of limitations. First, we did not explicitly model transmission between286

districts in the model HIV incidence; the district incidence rate was related to prevalence and287

ART coverage in that district. Model comparisons indicated that omitting spatial transmission288

yielded slightly better out-of-sample fit than alternative specifications that included spatial mixing289

(Supplemental Material Section 1.3.1.1). This assumption is consistent with a recent analysis of290

viral genetic data suggesting that HIV transmission in SSA is highly local.50 Second, we omitted291

age structure from the compartmental model. Age is a critical determinant of HIV infection risk292

and mortality, but explicitly representing age resulted in computationally intractable number of293

compartments for our inference framework. Instead we accounted for the effects of age by age-294

standardising mortality and progression rates (Supplemental Material Section 1.3). Future work295

is needed to identify computational strategies for efficiently solving joint epidemic-demographic296

models. Third, we relied on fixed assumptions about HIV disease progression with and without297

treatment, non-AIDSmortality, and the effect of population-level ART coverage on transmission. These298

assumptions align with those made by other compartmental models of HIV, but their applicability to299

subnational regions of Malawi can still be questioned. Of particular importance is the assumption300

made about the effect of ART coverage on transmission. The observed association between changes in301

ART coverage is partly determined by this fixed assumption. Fourth, for computational tractability302

and our focus on estimating HIV incidence trends since 2010, our model started in year 1995 instead303

of from the start of the epidemic. Between 1995 and 2005 national incidence estimates from our model304

differed from national HIV estimates published by UNAIDS, but after 2005 national incidence rate305

estimates from our model were very similar to national UNAIDS estimates (Supplemental Figure306

36). Future implementations of this model will include an option to calibrate to external estimates307

of national-level prevalence and incidence. Finally, for tractability, the model of ART attendance308

assumed that individuals decide where to seek treatment independently every quarter. In future work,309

we aim to develop a more realistic model to estimate treatment initiation, retention, and transferring.310

Despite these limitations, the estimates presented here shed new light on how HIV incidence has311

evolved as ART coverage expands and demonstrates a new modelling approach for Malawi, and312

other countries, to synthesise surveillance data for a more a more spatially granular understanding of313

HIV dynamics. We found that the rapid and equitable scale-up of treatment in Malawi resulted in314

large improvements in ART coverage and incidence across the country, with some districts meeting315

“epidemic control” the threshold proposed by Ghys.6 We observed a small increase in the spatial316

heterogeneity of incidence, consistent with theories that the epidemic is becoming increasingly317

concentrated in the high-ART era. If the impact of broad, general-population treatment provision318

on incidence does decrease over the next several years, then the success of HIV policy-making will319

depend critically on how well it targets the right people in the right places.13 Future models used to320

monitor HIV epidemics must meet these needs.321
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Methods322

We fit a spatio-temporal Bayesian epidemic model of HIV to district-specific HIV data collected in323

Malawi between 1995 and 2021. The model infers three components for each district by sex: the HIV324

transmission rate by untreated adults over time, the probability of ART initiation among untreated325

adults, and the initial HIV prevalence in 1995. We estimated quarterly HIV prevalence, incidence,326

and treatment coverage for adults aged 15-49 from 2010 to 2021 for the 28 districts of Malawi. The327

sections below provide an overview of the data sources, model structure, statistical inference, and328

analyses. Supplemental Material presents the technical details of the model and results of model329

comparisons to select the final model specification.330

Data331

We incorporated data from three sources into our model: nationally representative household surveys,332

HIV prevalence among pregnant women accessing HIV testing at public ANC facilities, and reports333

of the number of patients receiving ART.334

Household survey data335

Four nationally representative household surveys with HIV serological testing have been conducted336

HIV testing in Malawi: the 2004, 2010, and 2015-16 Malawi Demographic and Household Surveys337

(MDHS), and the 2015-2016 Malawi Population-based HIV Impact Assessment (MPHIA) survey.40–43338

A second MPHIA survey was conducted in 2020-21, but district-level survey data were not yet339

available.39 From the three DHSs, we extracted district- and sex-specific HIV prevalence, and from340

MPHIA we extracted district- and sex-specific HIV prevalence, ART coverage, and the proportion341

recently infected according to a recent infection testing algorithm. HIV positive respondents were342

classified as using ART if either antiretroviral biomarker was detected or the respondent self-reported343

using ART, consistent with primary survey reports of ART coverage. For both survey series, we344

restricted to participants aged 15 to 49 years.345

ANC facility data346

We combined data on HIV prevalence among pregnant women attending public ANC from two347

sources: ANC surveillance conducted at selected sentinel sites between 1994 and 2010 and routinely348

reported results of HIV testing among all pregnant women attending ANC from 2011 onwards.51 ANC349

sentinel surveillance was conducted in approximately two facilities in each district every 2 to 3 years.350

Facility-level HIV prevalence observations were extracted from data inputs to the Estimation and351

Projection Package (EPP) model within the UNAIDS Spectrum estimates software.52 Routine ANC352

testing prevalence for 2011 onward for the same facilities was extracted from the Malawi Department353

of HIV & AIDS Management Information System (DHAMIS), and aggregate to quarterly temporal354

resolution. For the 730 facilities not included in ANC sentinel surveillance, we aggregated routine355

ANC testing data to quarterly, district-level aggregate prevalence observations.356

ART programme data357

We aggregated the number of patients receiving ART at health facilities in each district at the end358

of each quarter from the DHAMIS. Médecins Sans Frontières began operating treatment clinics in359

Chiradzulu before the national ART scale-up, so we supplemented the DHAMIS data with reported360

patient counts in Chiradzulu from 2002 to 2004 from a published report.53 Data included ART patients361

of all ages, so we multiplied each count by the share of ART patients that were between 15 and 49362

years old in each year from national Spectrum model estimates.54363
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District-level population364

We used population estimates of the district population aged 15-49 years by sex from the National365

Statistical Office of Malawi, linearly interpolated to obtain quarterly estimates.55 We used Beers366

graduation to disaggregate five-year age categories into single-year ages to obtain estimates of the367

number of individuals ageing in and out of the 15-49 year-old population each year.56368

Bayesian epidemic model369

We created a compartmental epidemic model of HIV to simulate HIV incidence, prevalence, and370

treatment coverage.57 The HIV transmission rate, ART initiation rate, and initial HIV prevalence in371

1995 are specified by generalised additive models. Given a set of parameters, a single evaluation of372

this model is executed as follows:373

1. Linearmodels predict region-/sex-/time-specific series of HIV transmission rates, ART initiation374

rates, and initial prevalence.375

2. The epidemic model is initialised at the state determined by the estimated initial prevalence376

from (1) and simulated using predicted transmission rates, ART initiation rates, and a fixed set377

of natural history parameters.378

3. The likelihood of each data sources is evaluated as a function of predicted HIV prevalence,379

incidence, and ART coverage from the epidemic model and additional observation model380

parameters reflecting relevant biases and overdispersion in each data source.381

Compartmental model of HIV382

The deterministic compartmental HIV epidemic model tracks the sizes of susceptible, infected without383

treatment and infected with treatment populations by sex and district. The system of ordinary384

differential equations that define the model is in Supplemental Material Section 1.3.385

Untreated and treated infection compartments are stratified into four disease progression stages386

defined by CD4 T cell count bins (500 or more, 350-500, 200-350, and less than 200). Susceptible387

individuals can die or become infected with HIV.Untreated PLHIV can die, begin treatment, or388

progress to the next CD4 category. Treated PLHIV can die or interrupt treatment.389

The initial state of the epidemic model, the transmission rate of HIV, and the rate of treatment390

initiation are inferred. Other model dynamics are fixed at exogenously defined values. Time- and391

sex-specific mortality and rates were calculated using time-, sex-, and age-specific death counts from392

the UNAIDS Spectrum model, allowing us to account for how the changing age age distribution of393

PLHIV affects average mortality rates.54 Progression rates through CD4 categories were calculated394

using the formulation from and the average age of PLHIV not on treatment from Spectrum. The395

time- and sex-varying distribution of entrants and exits into each compartment is fixed at values396

age-aggregated values from EPP-ASM. Supplemental Material Section 1.3 details the calculation and397

implementation of each assumption.398

We calculate time-, sex-, and region-specific incidence as a function of time-, sex-, and region-specific399

transmission rates and opposite-sex prevalence that has been adjusted for ART coverage. Following400

EPP, we assume that HIV transmission would be reduced by 80% at 100% ART coverage.52401

Generalised additive models for model components402

The HIV transmission rate by untreated adults in each quarter is modelled using region-specific403

intercepts and region-specific autoregressive integrated moving average (ARIMA) terms with respect404

to time, which allow for flexible changes over time within district.58 This model was conceived as a405
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generalisation of the “r-spline” model used in EPP.59 The sex ratio of transmission is modelled using a406

log-linear model with respect to time that is shared across all regions.407

In contrast to previous inferential models of HIV incidence, our model infers ART initiation rates and408

fits to patient counts. The model of ART initiation is similar to the model of HIV transmission rates,409

predicting region-, sex-, and time-specific initiation with district intercepts, district ARIMA terms,410

and an inferred sex intercept.411

The initial state of the compartmental model is modelled by independent and identically distributed412

district-specific random effects for logit-transformed HIV prevalence in 1995. The initial prevalence is413

allocated to each CD4 compartment using pre-calculated distributions from the Spectrum model.60414

The national-level initial prevalence was constrained to be similar to estimated prevalence in Malawi415

in 1995 by placing an informative prior on the aggregate of inferred district prevalences.416

Observation models417

Solving the epidemic model with the dynamics predicted by the three models described in Section418

4.2.2 produces internally consistent estimates of HIV prevalence, incidence, and treatment coverage419

by region, sex, and calendar quarter. These are related to the data described in the “Data” Section420

with a series of observation models.421

Household survey data422

We assume that household survey data were representative by district and sex over their collection423

periods. These surveys are collected via complex multi-stage sampling schemes and therefore the424

estimates we derive from them must be accompanied by design-based variances. For district/sex-425

specific HIV prevalence and ART coverage observations, we calculate the effective sample size and426

number of cases based on design-based survey estimates and standard errors. We use a binomial427

model for the likelihood conditional on predicted rates.61 This method has been used in previous HIV428

mapping exercises.12,30429

For recency assays, we observed the effective number of people with recent infection. Kassanjee et430

al. derived an estimator for incidence given a proportion of positive recency assays, which Eaton et431

al. manipulated to give the expected proportion recently infected as a function of incidence.30,62 Let432

�8 be the true proportion of people who were infected recently, �8 be the true incidence rate, and �8433

be true prevalence. Then, following Eaton et al.,434

�8 =
�8(1 − �8)(Ω − �) + ��8

�8
,

where Ω is the mean duration of recent infection and � is the false positive rate of the recency assay.435

We assume that Ω = 130/365 and � = 0, consistent with primary analysis of MPHIA 2015-16 survey436

data.43 We treat �8 as the probability of a positive recency assay.437

ANC facility data438

Facility-level HIV prevalence at ANC differ from district population prevalence because both selected439

facilities may not be representative of the district population and because HIV prevalence among440

pregnant women is systematically different from general population prevalence. Previous HIV441

models have addressed this by incorporating facility-specific random effects.63 For additional district-442

aggregated facility data not previously included in EPP, we include a random effect capturing443

deviation between ANC prevalence and population prevalence. We extend the random intercepts444

model proposed by Alkema, Raftery, and Clark to allow the representativeness of each facility to445
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change linearly over time, reflecting that, as incidence declines and the population of PLHIV ages,446

HIV prevalence among pregnant women declines more rapidly than general population prevalence.64447

The details of this model are provided in the Supplemental Material.448

We assume that the resulting facility-level predicted prevalence is the true population mean from449

which the quarterly ANC HIV testing data were sampled. We used a beta-binomial likelihood to450

capture overdispersion in observed ANC prevalence observations.65451

ART programme data452

Finally, we fit to data on the number of patients receiving treatment in each district at the end of453

each quarter. Because household surveys are residency-based and patients may seek treatment in454

a different district than they live, there is a fundamental disconnect between survey ART coverage455

estimates andART programme data. Extending Eaton et al., we implement amodel of ART attendance456

that allocates residents on ART to treatment regions, detailed in the Supplemental Material.30 We use457

a modified negative binomial likelihood for the observed ART patient counts, with a mean equal to458

total number of allocated patients and both linear and quadratic scaling terms in the variance.66459

Model selection460

We fit a grid of 146 different transmission rate model specifications data sets that held out data461

beginning in each year from 2015 through 2020. Between 146 specifications and six hold-out horizons,462

we fit 876 models. We measured out-of-sample performance by calculating root mean squared errors463

(RMSEs) on held-out ANC prevalence data and ART programme data.464

Analysis of descriptive results465

We predicted quarterly HIV prevalence, incidence, and treatment coverage for adults aged 15-49 years466

by district and sex for all 28 districts of Malawi from 2010 to 2021. We calculated HIV prevalence as467

the number of PLHIV divided by the total population, ART coverage as the number of PLHIV on468

treatment divided by the total number of PLHIV regardless of treatment eligibility, and reported469

time-, district-, and sex-specific incidence rates directly from the epidemic model. We additionally470

calculated the percent change in all three metrics from the first quarter of 2010 through the final471

quarter of 2021. Whenever appropriate, we present median estimates with 95% credible intervals in472

parentheses.473

We calculated the posterior probability of incidence having changed by more than predefined474

thresholds by finding the share of posteriors samples with percent change values greater or less475

than predefined levels. To quantify changing spatial heterogeneity, we calculated the coefficient of476

variation of incidence rate, prevalence, and ART coverage across districts in each year.477

Finally, to assess determinants of changes in incidence, we linearly regressed estimated changes in478

sex-specific district-level incidence between 2010 and 2021 on sex, region, the proportion of adults479

aged between 15 and 25, incidence in 2010, and the change in ART coverage between 2010 and 2021.480

Implementation481

Our model is implemented in C++ using the Template Model Builder (TMB) R library.67 We used482

the tmbstan library to perform inference with the No-U-Turn Sampler (NUTS), as implemented483

in Stan.68,69 All plots were produced with the ggplot2 library, and the hexagonal tile maps were484

produced using the geogrid library.70,71485

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.02.23285334doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285334
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability486

Facility-level aggregate data from the Malawi DHAMIS system are publicly available from the Malawi487

Ministry of Health (https://dms.hiv.health.gov.mw/dataset/. Data from the DHS Program are488

available at theDHSwebsite (https://dhsprogram.com/Data/) upon registration. Data from thePHIA489

surveys are available upon registration from thePHIAwebsite (https://phia-data.icap.columbia.edu/).490

District population projections are publicly available from the Malawi National Statistics Office491

(http://www.nsomalawi.mw/).492

Code availability493

The C++ code for the analysis is available on Github: https://github.com/twolock/mwi-incidence-494

code/. The analysis is extremely computationally intensive and built specifically for use on the495

Imperial College London High Performance Computing cluster, so we cannot provide a reproducible496

version of this paper.497
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