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Accurate detection and location of tumor lesions are essential for improving the diagnosis
and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is
mainly dependent on experiences and with low accuracy and efficiency. Here, we
developed a logistic regression model based on mutational signatures (MS) for each
cancer type to trace the tumor origin. We observed MS could distinguish cancer from
inflammation and healthy individuals. By collecting extensive datasets of samples from ten
tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580
samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust
performance in distinguishing different types of primary and metastatic solid tumors (AUC:
0.76 ~ 0.93). Moreover, we validated our model in an Asian population and found that the
AUC of our model in predicting the tumor origin of the Asian population was higher than
0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor,
suggesting the capability of MS in identifying the tissue-of-origin for metastatic
cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90%
accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the
CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our
study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors
and provided new insights into predicting tissue-of-origin.
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INTRODUCTION

An accurate cancer diagnosis is crucial for choosing the optimal therapy and predicting clinical
outcomes (Jerjes et al., 2010; Varadhachary and Raber, 2014; Thomson, 2018). Histological
examination of the resected specimen remains the gold standard for diagnosing tumors.
However, rapid, accurate diagnosis based on morphology and routine ancillary techniques is
challenging for lesions with fuzzy histology, especially metastatic cancers (Saudemont et al.,
2018; Conway et al., 2019). The accuracies of computed tomography and positron emission
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tomography in identifying the tissue-of-origin of the carcinoma
with unknown primary were 20–27% and 24–40%, respectively,
which are far from enough for determining targeted therapies (Fu
et al., 2019; He et al., 2020a). Therefore, effective strategies are
urgently needed for tumor detection and localization.

The mutation data is easily accessible molecular profile, which
could be robustly retrieved and sequenced in various samples,
such as formalin-fixed and paraffin-embedded specimens.
Previous studies showed a high concordance in mutational
patterns between primary and metastatic tumors, especially
when pathogenic mutations in driver genes were considered
(Manca et al., 2019). Accordingly, some methods were
proposed for tumor origin prediction based on somatic
mutations (Dietlein and Eschner, 2014; Marquard et al., 2015;
Jiao et al., 2020). However, somatic mutations also could be
detected in healthy individuals (Welch et al., 2012; Blokzijl et al.,
2016; Martincorena and Campbell, 2016), increasing the
difficulty of cancer diagnosis. Moreover, mutational profiles
showed substantial overlap across different cancer types,
making it difficult to trace the origin of the tumor (Jurmeister
et al., 2019).

Somatic mutations result from multiple mutational processes,
including exposure to exogenous or endogenous mutagens,
enzymatic modification of DNA, and defective DNA repair.
Different mutational processes generate unique combinations
of mutation types, termed mutational signatures (MS). Single
nucleotide variants can be divided into six types according to the
type of base substitution: C >A, C >G, C >T, T >A, T >C, T >G.
Alexandrov et al. extended the original classification of six types
of single-base substitutions by including base 5′ and base 3′ to the
somatic mutation. Mutational signature (MS) is created by
counting the number of substitutions for each of these 96
mutation types. The COSMIC database has described 30 types
of reference MS based on the analyses of ~10,000 whole-genome
or whole-exon sequencing datasets from TCGA and ICGC
databases (https://cancer.sanger.ac.uk/signatures/signatures_v2/
). MS is cancer-derived etiologies that provide a powerful
alternative for understanding cancer pathophysiology
(Alexandrov et al., 2013; Helleday et al., 2014; Roberts and
Gordenin, 2014; Alexandrov et al., 2016; Pilati et al., 2017;
Zou et al., 2018). Unlike the extensive heterogeneity of
somatic mutations across samples, MS is more stable across
individuals in the same tumor type. Previous studies reported
that different tumor types leave distinctive patterns of MS
(Degasperi et al., 2020). For example, the MS patterns
generated in experimental systems for tobacco carcinogens
exposure were observed in lung cancer (Alexandrov et al.,
2016). MS patterns in colorectal cancer are mostly related to
defective DNA mismatch repair (Pandey et al., 2019). Therefore,
we reasonably speculated that MS patterns could predict the
tumor origin.

Based on the MS patterns, we used the logistic regression
method to construct a model for each cancer type to predict the
origin. Our results showed that MS could distinguish cancer
patients from healthy individuals and inflammation.
Furthermore, our MS-based models showed high accuracy in
detecting the origin of tumors in both primary and metastatic

lesions. Besides, we also found that MS had a better performance
in distinguishing various cancer types than somatic mutations.
Finally, we indicated that considering the MS patterns could help
increase the accuracy of cancer-type prediction by cfDNA.

MATERIALS AND METHODS

Collection of the Whole Exome Data of
Tissues and cfDNA
All variant data of primary tumors were downloaded from TCGA
(http://gdac.broadinstitute.org/), International cancer genome
consortium (ICGC, https://icgc.org/), and other previous
studies (Supplementary Tables S1, S2). In these cases, we
used only the data in TCGA for training (Data Set1). The data
outside of TCGAwere validated (Data set 2). The somatic profiles
of metastatic tumors were derived from 303 metastatic tumors
across nine tumor types (Supplementary Table S3). We
assembled several sets of normal or inflammatory tissues to
evaluate the difference in genomic landscape between tumor
patients and healthy individuals. One of the data sets included
28 healthy individuals, 48 patients with ulcerative colitis, and 18
patients with colitis-associated neoplasia, and the other data set
contained 9 normal brains tissues, 13 normal colon tissues, and
13 normal kidney tissues. We also acquired somatic mutations
from 27 breast and 14 prostate cancers of cfDNA and biopsy. All
these data were obtained by whole-exome sequencing and aligned
to the hg19 genome.

Identification of the Cancer-Type-Specific
Mutational Signatures Patterns
The characteristic MS patterns of each cancer type meet the
following requirements. First, MS was observed in at least 20% of
samples. Secondly, there were significant differences compared
with other cancer types, including a fold change greater than 1.5
and an absolute difference greater than 0.1.

Mutational Signatures-Based Machine
Learning Procedure for Predicting the
Cancer Types of the Primary Tumor
For each of the ten cancer types selected from the TCGA data set,
we used a stepwise logistic regression model to train classifiers for
each cancer type on the CTS-MS described in the above section
and validated our models in an independent dataset. To evaluate
the performance of our model in different populations, we
downloaded the somatic mutation data for Asian populations
from the ICGC database, including non-small cell lung cancers
(n = 76), colorectal cancers (n = 187), bladder cancers (n = 103),
gastric cancers (n = 10), and liver cancers (n = 163). We
developed a logistic regression model based on MS for each
cancer type to trace the tumor origin. Take breast cancer as
an instance, we calculated the score of each sample in the
validation dataset using the breast cancer model, labeling
breast cancer patients as “1” and non-breast cancer patients as
“0” to obtain grouping information. The prediction performance
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of AUC was calculated using the predicted values estimated by
the model with the combination of selected MS as predictors and
the group as an outcome.

Tracing the Origin of Metastatic Sites Based
on Mutational Signatures Patterns
First, we used the liver cancer model above to distinguish primary
liver tumors and malignant liver lesions originating from other
tissues. We further predicted the origin of lesions originating
from other tissues, which were correctly classified in the previous
step, including 28 breast cancers, 9 esophagus cancers, and 10
prostate cancers. To predict the origin of malignant liver lesions
originating from other tissues, we combined CTS-MS and the
score of these three primary tumor models to train a classifier by
neural networks based on the three cancer types selected from the
TCGA data set. Then, we used the model to predict the origin of
malignant liver lesions originating from other tissues.

Combination of Mutational Signatures
Patterns and Somatic Mutation to
Distinguish Different Cancer Types Based
on Plasma cfDNA Data
Based on the CTS-MS, we predicted the origin of tumors from
cfDNA, including 27 breast cancers and 14 prostate cancers. We
compared the scores of each sample in the breast cancer model
and the prostate cancer model. The origin of the sample was
considered to be from the tumor type with a high score. Further,
we combined CTS-MS and tumor-specific mutations to improve
the precision. We identified the tumor-specific mutations as
follows: 1) we calculated the frequency of mutations in each
gene in each cancer and identified genes that were mutated in
more than 5% of the samples as candidate markers. 2) it was
considered a tumor-specific mutation if the mutation frequency
changes more than 0.1 compared with other cancer types. Then,
using the stepwise logistic regression model, we developed
classifiers for prostate and breast cancer based on the CTS-MS
and tumor-specific mutations.

Statistical Analysis
The deconstructSigs approach was used to determine the linear
combination of pre-defined signatures of a single tumor sample
(Rosenthal et al., 2016). We next applied SomaticSignatrues to
identify the de novoMS (Gehring et al., 2015). The information of
pre-defined MS was downloaded from the COSMIC database.
The de novo MS was mapped to pre-defined MS through cosine
similarity. If the similarity was higher than 0.75, it was considered
the same MS.

We annotated the mutated genes in each sample in the
STRING database (https://string-db.org/). According to the
STRING database, we constructed a network of protein-
protein interactions for all mutated genes in each sample.
Mutation connection scores were defined by gene connectivity,
measured by the ratio of the number of genes with interactions to
the total number of mutated genes (Eq. 1). Larger mutation

connection scores indicate that the mutated gene is more
functionally relevant.

Mutation connection score � the number ofgeneswith interactions

the total number ofmutated genes

(1)
We calculated the similarity between tumors as Eq. 2. For each

sample i of tumor M and each sample j of tumor N, we calculated
the cosine similarity (rho) between i and j based on pre-defined
MS. Finally, a similarity matrix with m rows and n columns was
generated. We performed zero-mean normalization on each row
and each column of the similarity matrix. Then, we ranked each
row and divided it by the number of columns. Further, we ranked
each column and divided it by the number of rows.

similarity � ∑
i≤m

∑
j≤ n

rho(i, j)2

mn
(2)

Statistical analyses were performed using R software. The
significance probability (p) values were calculated by the two-
tailed Wilcoxon test functions in R, and the LSAfun package
calculated the cosine similarity. Figures were drawn using the
ggplot2, or package under R environment.

RESULTS

Mutational Signatures Patterns Distinguish
Cancers From Inflammation and Healthy
Individuals
To compare the difference in the genomic landscape among
tumor patients, non-tumor inflammation patients, and healthy
individuals, we collected three datasets, including healthy
individuals (HI, n = 28), patients with ulcerative colitis (UC,
n = 48), and patients with colitis-associated neoplasia (CAN, n =
18) (Nanki et al., 2020). We first computationally defined a tumor
mutation connection score measurement to explore whether the
mutated genes were functionally related. The higher the tumor
mutation connection score, the stronger the functional relevance
of the mutated genes in the individual (detail in methods). Results
showed that the functional relevance of the mutated genes in
CAN is significantly different from HI and UC (Figure 1A). The
tumor mutation connection score of CAN was significantly
higher than HI and UC (HI vs. CAN, Wilcoxon rank-sum test
p < 0.001; UC vs. CAN, Wilcoxon rank-sum test p < 0.001),
indicating that rather than randomly mutation, specific
endogenous or exogenous factors were involved in the
mutation genesis in CAN. Accordingly, we next explored the
potential causal factors of the differences between CAN and HI/
UC. Using the non-negative matrix factorization method, we
identified two known MS that showed differential contributions
among cancer, normal, and inflammation groups (Figures 1B,C;
Supplementary Figure S1A), one of which is related to aging and
the other is associated with DNA mismatch repair defective
(MMR). The contribution of aging-related MS was remarkably
higher in CAN than in HI and UC (HI vs. CAN, Wilcoxon rank-
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sum test p < 0.001; UC vs. CAN, Wilcoxon rank-sum test p <
0.001, Figure 1B). To avoid bias from age, we checked the
distribution of age across three groups in our dataset. There
were no differences in the age distribution of the tumor and
healthy individuals/inflammation patients (ANOVA test, p =
0.319, Supplementary Figure S1B). Furthermore, we found
that senior individuals were biased towards higher age-related
signature in the healthy population (Spearman correlation:0.41,
p = 0.035, Supplementary Figures S1C,D). However, there was
no correlation between age and the age-related signature of
cancer patients (Spearman correlation -0.16, p = 0.51,
Supplementary Figures S1C,D). Notably, the age-related
signature of tumor patients was much higher than those of
healthy individuals/inflammatory patients across all age

groups. Even the weights of age-related signature in younger
tumor patients were five times higher than that in healthy senior
individuals (Wilcoxon rank-sum test p = 0.004, Supplementary
Figure S1C). The MMR-relatedMS in CAN also showed a higher
contribution than HI and UC (HI vs. CAN, Wilcoxon rank-sum
test p = 0.046; UC vs. CAN, Wilcoxon rank-sum test p = 0.007,
Figure 1C). These results suggested that the underlying specific
mutagenic processes drove the mutations in CAN, which differed
from HI and UC. To further validate this observation, we
identified MS from 35 normal tissues of the brain (n = 9),
colon (n = 13), kidney (n = 13) (Hoang et al., 2016). Results
showed that the identified MS had low similarity with any known
MS in the Catalogue of somatic mutations in cancer (COSMIC)
database (cosine similarity < 0.75). Although somatic mutations

FIGURE 1 | Mutational signatures for cancer diagnosis. (A–C) The biological processes of accumulated mutations in healthy individuals (HI) and patients with
ulcerative colitis (UC) and colitis-associated neoplasia (CAN). (D) The correlation between DataSet1 (TCGA) and DataSet2 (previous studies) based on MS in bladder
cancer (BLCA), non-small cell lung cancer (NSCLC), pancreatic cancer (PAAD), breast cancer (BRCA), ovarian serous cystadenocarcinoma (OV), liver hepatocellular
carcinoma (LIHC), and gastrointestinal cancer, including colorectal cancer (CRC), esophageal carcinoma (ESCA), and stomach adenocarcinoma (STAD). The
darker the color, the higher the similarity. (E) Heatmaps of MS in BLCA (n = 412), NSCLC (n = 1,108), PAAD (n = 179), BRCA (n = 985), OV (n = 435), skin cutaneous
melanoma (SKCM, n = 468), LIHC (n = 464), CRC (n = 398), ESCA (n = 184), and STAD (n = 439). The color indicates the average contribution of MS. The size of the dots
indicates the fraction. Fraction: The proportion of samples with a mutational signature contribution of more than 0.06 in each cancer type as a proportion of the total
samples. Contribution: Average contribution of each mutational signature in each cancer type.
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were detected in nearly all normal samples, even with some
mutations located on cancer driver genes, we did not find any
known MS associated with tumor initiation in the whole-exome
data of normal tissue (Supplementary Figures S1E,F). These
results suggested that most mutations in normal tissues
accumulated passively and randomly, without clear evidence of
external pathogenic mutagenic processes. Therefore, our results
indicated that MS possessed the potential to distinguish cancer
patients from inflammation patients and healthy individuals.

Identification of the Cancer-Type-Specific
Mutational Signatures Patterns
We next attempted to evaluate the cancer-type-specificity of MS
patterns. We collected two independent datasets with ten primary
cancer types, including non-small cell lung cancer (NSCLC),
ovarian serous cystadenocarcinoma (OV), bladder cancer
(BLCA), breast cancer (BRCA), liver cancers (LIHC), stomach
adenocarcinoma (STAD), esophageal carcinoma (ESCA), colon
adenocarcinoma (COAD), pancreatic cancer (PAAD), and
prostate cancer (PRAD) (Supplementary Table S1). Results
showed that tumor samples from the same tissue origins had a
high degree of homogeneity in MS between two independent
datasets (Figure 1D). In addition to PAAD and PRAD, the MS of
other cancer types had been maintained in a stable state
(similarity > 0.95). Although the MS of PAAD and PRAD had
a slight inconsistency in the two datasets, the similarity of tumors
from the same tissue origin was still greater than 0.9. These results
suggested that although driver mutations among different
individuals were highly diverse, the mutagenic processes in
specific cancer types were consistent. Therefore, it was
reasonably speculated that MS was a stable and informative
tissue-specific molecular biomarker to distinguish cancer types.

To characterize the landscape of MS in cancers, we identified
cancer-type-specific MS (CTS-MS) patterns from The Cancer
Genome Atlas (TCGA) dataset (DataSet1). The result showed
that the contribution of signatures across different cancer types
was distinct (Figure 1E; Supplementary Figure S2). Specifically,
NSCLC highlighted smoking signature, which was previously
found in multiple types of lung cancers with probable etiology of
tobacco carcinogens (Pfeifer 2010). OV harbored signature
associated with the BRCA1 and BRCA2 mutation (Yang et al.,
2018). The most common MS in BLCA was related to the
misdirected activity of APOBEC3 cytidine deaminases,
especially APOBEC3A or APOBEC3B (Robertson et al., 2018).
APOBEC related signature and BRCA-mutation-related
signature were the main mechanisms of mutations in BRCA.
The risk of skin cancer was associated with UV light exposure
(Pham et al., 2020). Signatures related to aflatoxin and
aristolochic acid were observed in LIHC (Li et al., 2020; Lu
et al., 2020; Zhang et al., 2020). STAD and ESCA were
enriched in MMR (Meier et al., 2019; Li et al., 2020). The
difference in genomic fingerprints between STAD and ESCA
was Signature.16, which currently had no clear exposure factor
(Wei et al., 2021). The mutations in COAD resulted from
Signature.1, which was associated with an endogenous
mutational process initiated by spontaneous deamination of 5-

methylcytosine (Pandey et al., 2019). In summary, our results
indicated that CTS-MS implied the origin of the tumors and
could be possibly used to detect and localize the cancers.

Mutational Signatures-Based Machine
LearningModel for Sensitive Primary Tumor
Detection and Classification
To evaluate the performance of MS in cancer diagnosis, we
developed a predictive model for each cancer type based on
the TCGA databases, including BLCA, COAD, ESCA, OV,
STAD, NSCLC, BRCA, LIHC, PAAD, and PRAD. We
incorporated the above CTS-MS patterns into a logistic
regression algorithm to propose a diagnosis model for each
tumor type (Figure 2A). We further applied the classifier to
predict the tissue of origin in an independent validation dataset
with 2,580 additional samples (Supplementary Tables S1, S2).
The classifier achieved an accurate classification decision, in
which the area under the curve (AUC) ranged from 76 to 93%
in different cancer types (Figures 2B,C). The AUC was relatively
higher in cancer types with distinctive MS, such as BLCA (93%),
COAD (92.5%), and ESAD (92.5%). However, PRAD was
confused with other tumors, possibly due to the lack of
specific MS patterns (Supplementary Figure S3A).
Furthermore, we divided our validation dataset into three
groups, including young, middle-aged, and elder samples.
Results showed that the performance of our model remained
stable across different age groups (Supplementary Figures
S3B–D). To evaluate the efficacy of MS in inferring primary
tumor sites across different populations, we validated our model
in an Asian population. We found that the AUC of our model in
predicting the tumor origin of the Asian population was higher
than 0.7, indicating that our model is stable in different
populations (Figure 2D). Thus, the above results suggested
that CTS-MS were robust candidate biomarkers for the
differential diagnosis of various cancer types.

Mutational Signature Patterns of Primary
Cancers Maintain in Metastatic Sites
Identification of the primary location of metastatic tumors is
essential for precision treatment. To further evaluate the ability of
MS to trace tumor location, we performed principal component
analysis (PCA) on matched primary and metastatic cancers from
89 lesions (20 patients), including 30 pancreatic cancer and 59
lung cancers (Supplementary Table S3). We found that the
samples were clustered by tumor origins (Figure 3A;
Supplementary Figure S4). This result was consistent with the
study from Connor et al., who found that the MS patterns
between primary and metastatic tumors were similar (Connor
et al., 2017). Furthermore, different tumor sites from the same
individual also showed the same MS pattern (Figure 3B;
Supplementary Figure S5). We compared the MS patterns in
matched primary and metastatic cancers and observed high MS
consistency between primary cancers and paired metastatic
lesions (normalization score > 0.95, Figures 3A,B). However,
the discrimination efficiency based on the original mutation
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FIGURE 2 | The effectiveness of the cancer diagnosis model based on the MS of the primary tumor. (A,B) AUC-curve of cancer diagnosis models in both training
(A) and validation (B) cohort. Random classifiers, indicating the classification accuracies obtained by chance, are shown in gray. (C) The value of AUC and the number of
patients in both training (left) and validation (right) cohort. (D) The model performance across different populations. The vertical axis is the AUC of model. The horizontal
axis represents tumor type. Red represents European and American population in the training dataset; Green represents European and American population in the
validation dataset; Blue represents Asian populations.

FIGURE 3 | The similarity between metastatic and primary tumors based on MS. (A) PCA based on the MS of matched primary and metastatic cancers. The red
dots represent the primary lung cancer, the red triangles represent metastatic lung cancer, the blue dots represent the primary pancreatic cancer, and the blue triangles
represent metastatic pancreatic cancer. The red dotted line indicates the distribution area of lung cancer, and the blue dotted line indicates the distribution area of
pancreatic cancer. pri., primary cancer; met., metastatic cancer. (B) The similarity between primary cancer and metastatic cancer based on MS. The darker the
color, the higher the similarity. The first line indicates the tumor type. Red represents lung cancer, and blue represents pancreatic cancer. The second line shows the
origin of the sample. The same color indicates that the sample is from the same patient. (C) The correlation between primary and metastatic cancer based on MS in
common cancer. The darker the color, the higher the similarity. The boxplot shows the similarity between the primary and metastatic tumors of the same tumor type and
the similarity between the primary and metastatic tumors among different tumor types.
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spectrum was lower than that of MS, suggesting that MS can
reveal the tissue origin of tumors more effectively than somatic
mutations (Supplementary Figure S6).

To further validate the similarities between MS across the
primary and metastatic tumors, we collected whole-exome
data of primary and metastatic tumors of nine cancer types
from the previous study (Zhao et al., 2016). We
systematically analyzed the homogeneity between
metastatic and primary cancer among nine cancer types.
As shown in Figure 3C, high MS similarities were
observed in the primary and metastatic tumor from the
same tissue-of-origin (similarity > 0.9), which was
significantly higher than the similarity among different
cancer types (Wilcoxon rank-sum test p < 0.01).
Therefore, our result revealed the high homogeneity of MS
among the metastases and primary cancers from the same
tissue, indicating that MS was a potential molecular marker
for tracing the tissue of origin for metastatic cancers.

Cancer-Type-Specific-Mutational
Signatures can Help Identify the Tissue of
Origin for Metastatic Cancers
According to the above results, we next sought to evaluate
whether CTS-MS was a stable and effective molecular marker
for predicting the tissue origin of metastatic cancers. Liver is
the most common site of distant metastasis in solid tumors
(Riihimaki et al., 2016; Dasari et al., 2017). There is a pressing
need for accurate tracing of original tissues (Varghese et al.,
2017). We validated the ability of the CTS-MS to identify the
tissue origin for metastatic tumor samples in an independent
validation dataset that combined a series of 282 primary liver
cancer with 74 liver metastatic tumors originating from other
organs, including breast, prostate, and esophagus. Firstly, our
model accurately distinguished the primary liver cancer and
liver metastasis cancer originating from other organs
(accuracy: 89%, sensitivity is 94%, specificity is 71%,

Figure 4). Then, we determined the origin of cancer
metastasized to the liver. We identified the origins of
metastases with 62% accuracy, in which 75% of breast
cancers were correctly classified. And we predicted
esophageal cancer with 67% accuracy. However, we only
predicted the origin of prostate cancer with 20% accuracy,
probably due to the absence of PRAD-specific CTS-MS
(Figure 1E; Supplementary Figure S3). Therefore, these
results demonstrated that CTS-MS could help identify the
tissue of origin for metastatic cancers.

Cancer-Type-Specific-Mutational
Signatures Analysis of Plasma cfDNA
Enables Cancer Classification
The advent of non-invasive molecular profiling of plasma cell-
free DNA (cfDNA) raises the possibility of inferring a suggested
diagnosis in cancer screening. To assess the potential of MS for
tracing the tumor origin based on plasma samples, we compared
the MS patterns between cfDNA and matched breast and
prostate tumor biopsies (Adalsteinsson et al., 2017). We
found a high concordance of MS patterns between cfDNA
and tissue (Spearman correlation, rho = 0.82, p < 0.001).
Somatic mutation and gene expression have been used to
predict cancer origins (He et al., 2020a; He et al., 2020b). To
explore the efficiency of somatic mutation and gene expression
in predicting the tumor origin from blood, we also compared the
somatic mutation patterns and gene expression patterns
between cfDNA and tumor tissue. We used the cancer-type
specific genes (IDH1, PTEN, TP53, KRAS, AC008575.1, APC)
in TOOme (He et al., 2020b) to evaluate the performance of
somatic mutations detected in tissue or ctNDA for identifying
the tumor tissue origin. We found that somatic mutations were
detected in 26.8% (11/41) of tissue samples using these genes.
The performance was even lower in paired ctDNA samples, with
only 24.4% (10/41) detection rate (Figure 5A). Importantly,
these gene mutations cannot distinguish breast cancer from
prostate cancer based on these gene mutations. Thus, the above
observations indicated that the performance of somatic
mutations for inferring cancer tissue-of-origin was limited
due to the substantial overlap in mutational profiles across
different cancer types. Then, we compared the efficiency of
MS and somatic mutations to identify the tumor from ctDNA,
based on the somatic mutations detected from plasma of 111
lung cancer patients and 78 benign lung nodules patients (Chen
et al., 2021). We found that MS was able to distinguish tumor
from non-tumor patients better than mutations (AUC:0.73 vs.
0.67, Figure 5B). Next, we compared the expression similarity
between tissues and plasma from breast cancer patients based
on the genes used in TOOme. Our results indicated that the gene
expression pattern differed between tissue and plasma of breast
cancer. Almost all genes used to infer tumor tissue origin in
TOOme were not expressed in plasma (Pearson correlation:
−0.006, p = 0.96, Figure 5C). However, breast cancer-specific
MS could be detected from ctDNA (Figure 5D). These analyses
showed that MS is a reliable and stable biomarker for predicting
the tumor tissue origin from plasma, compared with somatic

FIGURE 4 | Tracing the origin of metastatic tumor based onMS. The first
column distinguishes whether it is primary liver cancer. The second column
traces the origin of metastatic cancer. TP, true positive; FP, false positive; FN,
false negative; TN, true negative. Indicated are sample numbers and
detection rates in percentages.
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mutation and RNA expression. Then, our model was further
used to distinguish breast and prostate cancers based on MS
patterns of cfDNA and achieved 71% accuracy. However, the
model based on the mutation spectrum called cfDNA cannot
distinguish these two tumor types (Supplementary Figure S7).
We integrated the mutation profile of cfDNA and MS to build
diagnosis models. The results showed that the performance of
these diagnosis models had been significantly optimized. We
predicted the tissue origin with 90% accuracy (sensitivity is 96%,
specificity is 79%, Figures 5E,F). In summary, our analysis
proved that the combination of MS and mutational profile
was an available method to detect and localize cancers from
peripheral blood.

DISCUSSION

Using the whole-exome sequencing data from tumors and
cfDNA, we demonstrated that MS pattern was a potential
approach for tumor detection and localization with high
accuracy and robustness. First, we found that the somatic
mutations in healthy individuals and inflammation patients
were not associated with any known tumor initiation-related
MS in the COSMIC database. This observation indicated that MS
might separate healthy/inflammation patients and tumor
patients. To further investigate whether MS could distinguish
different tumor types, we analyzed the MS landscape of tumors
from TCGA. Our results showed that different cancer types had

FIGURE 5 | Distinguishing different cancer types based on the MS patterns and somatic mutations called from plasma ctDNA data. (A) The specific mutations in
tissue (left) and ctDNA (right). Red indicates that mutation was detected. CRPC: prostate cancer; MBC: metastatic breast cancer. (B) The efficiency of MS and somatic
mutations to distinguish lung cancer patients from benign lung nodules patients from ctDNA data. (C,D) The correlation between plasma and tissue in breast cancer
based on gene expression (C) and MS (D). Orange indicates breast cancer-specific markers. (E,F) Combined MS patterns and somatic mutations called from
plasma ctDNA data distinguish breast cancer and prostate cancer. The red points represent prostate cancer and the blue points represent breast cancer. The horizontal
axis represents the score of the prostate cancer model and the vertical axis represents the score of the breast cancer model.
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specific MS patterns and validated this result in an independent
dataset.

Moreover, using the CTS-MS, we could predict the tumor
origin with high accuracy among primary and metastatic cancer.
Notably, MS could better distinguish cancers from different
tissues than somatic mutations. Finally, integrating the
mutation profile and MS identified from cfDNA, we could
predict the tissue origin of tumors with high accuracy.
Therefore, our study showed that MS was a robust molecular
marker for cancer diagnosis.

Lines of evidence indicate that the human body accumulates
random mutations with age (Blokzijl et al., 2016; Hoang et al.,
2016; Lodato et al., 2018; Zhang et al., 2019). The inflammation
states accelerate this accumulation, such as ulcerative colitis,
inflammatory bowel, or cirrhosis diseases (Brunner et al.,
2019; Moore et al., 2020; Olafsson et al., 2020). The critical
question is whether these accumulations of the somatic
mutation have a functional impact or increased cancer risk.
Our results indicated that the somatic mutations in healthy
individuals had no functional relevance. In contrast, somatic
mutations in tumor patients were functionally clustered and
were related to specific biological processes, such as DNA
damage repair deficiency. Our study showed that MS could
distinguish between healthy individuals and tumor patients.

Some previous studies have reported that diverse ethnic
populations have different mutational landscapes in the same
type of cancer (Yao et al., 2016; Jia et al., 2017). However, the MS-
based tumor tracing model in our study showed comparable
performance between Asian and European and American
populations for most of the tumor types, such as liver cancer,
non-small cell lung cancer, and bladder cancer. This observation
indicated that MS was a stable marker for predicting the tumor
tissue origin in different populations. Consistently, Zhang et al.
reported that MS patterns were shared in different populations
with liver cancer, including Signature.5, Signature.22, and
Signature.24 (Zhang et al., 2017; Zhang and Guan, 2021).

Notably, with one or more confirmed metastatic malignant
lesions but the undetectable primary origin, cancers of unknown
primary (CUP) make up 3–5% of total cancer diagnoses and have
a very poor prognosis with a median survival of 6–16 months
(Varadhachary and Raber, 2014; Conway et al., 2019). Refining
the diagnostic classification of CUP patients can facilitate the
selection of potentially effective therapies (Varghese et al., 2017).
We found that theMS of the primary andmetastatic cancers from
identical tissue were highly consistent in whole-exome
sequencing, indicating the tumor traceability of MS for
metastatic cancers. We distinguished the malignant liver
lesions originating from other tissues and primary liver tumors
with high accuracy, indicating that our MS-based model could
trace the origin of the metastatic tumor. Besides, MS inferred
from cfDNA was highly compatible with tumor biopsies. Since
liquid biopsy is increasingly used for cancer screening and

diagnosis, our method may help infer the tissue origin by
cfDNA detection.

In this study, although we demonstrated the potential
diagnostic value of MS in determining the cancer origin by
two independent datasets, more samples needed to be
included to train more robust and precise models. Besides,
only a limited number of MS have been discovered in the
human tissue. The etiology and exposure factors of the
majority of MS remain unclear currently (Alexandrov et al.,
2013). With the development of sequencing technology, more
reliable cancer-related MS will be determined, allowing more
features could be included in our model to achieve higher
accuracy.

In conclusion, we showed that MS was a reliable biomarker for
tumor detection and localization. Our study will provide vital
information for clinical diagnosis and tracing tumor origin for
cancers without known primary sites.
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