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Effect of glial cells on remyelination after spinal cord 
injury

Introduction
Spinal cord injury (SCI) is common and involves widespread 
damage to the central nervous system (CNS). SCI often 
leads to severe neurological symptoms such as varying de-
gree of paralysis, paresthesia, urinary obstruction, and other 
progressive neurological abnormalities. SCI also involves so-
cial loss: data on western countries show that governments 
spend $40,000–$180,000 for each patient depending on the 
site of injury. Patients lose their jobs and receive medical 
treatment, rehabilitation, and maintenance, and each patient 
costs the country millions of dollars (Ning et al., 2012). In 
the 1920s, SCI cases increased from 6.7 to 60 per million in 
some regions of China (Ning et al., 2012).  

The pathological process of SCI can be divided into two 
stages: primary injury and secondary injury. Primary injury 
occurs immediately after the initial injury, and its patholog-
ical processes include demyelination of the spinal cord and 
necrosis of neurons and axons (Yu et al., 2016). Secondary 
injury occurs throughout the disease, and its pathological 
processes include demyelination, axonal and neuronal ne-
crosis, nervous tissue ischemia and edema, oxidative stress, 
inflammatory reaction, and glial scar formation (Balentine, 
1978; Kwo et al., 1989; Wrathall et al., 1996; Azbill et al., 1997; 
Ray et al., 2016). Among these pathological reactions, demy-

elination occurs immediately after injury, and is induced by 
oligodendrocyte necrosis after mechanical damage. At the 
stage of secondary injury, because of extensive apoptosis and 
autophagy of oligodendrocytes, axons that have not been 
damaged or are slightly damaged become necrotic owing to 
demyelination (Almad et al., 2011). 

Myelin can be regenerated. When demyelinating lesions 
occur, newly generated oligodendrocytes can repair or re-
construct damaged myelin. Regeneration of myelin, with 
oligodendrocyte generation as the main physiological pro-
cess, can last up to three months after SCI. A recent study 
found that most oligodendrocytes required for remyelin-
ation after demyelination are derived from oligodendrocyte 
precursor cells (OPCs) and neural progenitor cells. OPCs 
can be labeled by neural/glial antigen 2 (NG2) or plate-
let-derived growth factor (PDGF) receptor alpha, and show 
very active proliferation in the CNS (Alizadeh et al., 2015). 
Previously, OPCs were discovered to have a role in repair-
ing myelin (Hackett and Lee, 2016). Moreover, OPCs have 
been called the fourth glial cells, in addition to astrocytes, 
microglia, and oligodendrocytes. OPCs become mature 
oligodendrocytes through migration, proliferation, differ-
entiation, and maturation, and subsequently repair injured 
myelin. Nevertheless, the amount of new myelin is unable to 
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cover all exposed axons, and the remyelination rate cannot 
keep up with the speed of demyelination. A negative myelin 
balance increases the number of naked axons, and thereby 
results in disability, degeneration, and sensory and motor 
disorders in residual nerves. In the CNS, the interaction be-
tween various glial cells and neurons is consistently demon-
strated. Further, many of the physiological and pathological 
responses are strongly associated with intercellular bio-
logical signaling pathways. Increasing evidence shows that 
cellular interactions play a significant role in demyelination 
and remyelination (Domingues et al., 2016). After central 
nerve injury, various glial cells directly or indirectly damage 
myelin. Simultaneously, these glial cells also affect myelin 
regeneration. Here, the aim of this review is to summarize 
latest research results and discuss the effect of glial cells on 
remyelination in nervous tissue after SCI. 

Myelin and Demyelination
Myelin is composed of cytoplasm and the membrane of 
oligodendrocytes and Schwann cells. Myelin wraps around 
axons forming a special sheath-like structure. In the nervous 
system, the resistance of myelin is high, which reduces the 
capacitance of ensheathed axons. Consequently, myelin pro-
vides the structural basis for saltatory conduction of nerve 
signals (Nave and Werner, 2014). Myelin also provides nu-
tritional support for ensheathed axons (Li and Leung, 2015). 
Only CNS oligodendrocytes generate myelin. Moreover, 
oligodendrocytes are associated with nerve signal trans-
duction. A previous study suggested that myelin damage 
leads to abnormal neurological behavior (Love, 2006). De-
myelination occurs immediately after SCI. The mechanism 
of demyelination remains unclear, but one likely reason is 
death of oligodendrocytes induced by various factors (Nave 
and Trapp, 2008). These factors include tumor necrosis fac-
tor-alpha- and interleukin-1 beta-mediated inflammatory 
reactions, glucose–adenosine triphosphate-mediated cyto-
toxicity, edema, and various free radical-induced ischemia/
reperfusion injury (Almad et al., 2011; Plemel et al., 2014). A 
previous study demonstrated that a single oligodendrocyte 
can be involved with 30–80 axons, with each connection 
wrapping into an internode (O’Rourke et al., 2014). Thus, 
accidental death of each oligodendrocyte can cause a series 
of demyelination (Chong et al., 2012; Young et al., 2013). 
Physiologically, there is a special signaling pathway between 
myelin and the axon, with one reason for demyelination 
being that the axon–oligodendrocyte signaling pathway is 
damaged after axonal injury (Alizadeh et al., 2015). In the 
absence of axonal nutritional support, oligodendrocyte de-
generation rapidly occurs, resulting in demyelinating lesions 
(Lappe-Siefke et al., 2003). 

OPCs and Remyelination
OPCs are small cells of bipolar or tripolar structure, which 
can be found in the white and gray matter of the CNS. The 
number of OPCs is greater in the white matter than gray 
matter (Dawson et al., 2003; Dincman et al., 2012). As 
precursor cells, a new view of OPC outcome has recently 

been developed from in vivo and in vivo studies. Purified 
rat OPCs can dedifferentiate into neural stem cells and then 
differentiate into neurons, oligodendrocytes, and type I and 
II astrocytes (Kondo and Raff, 2000; Belachew et al., 2003; 
Nunes et al., 2003). In contrast, Tognatta et al. (2017) metic-
ulously labeled differentiating OPCs in mice with 2′,3′-cyclic 
nucleotide 3′-phosphodiesterase (CNP)-Cre, but obtained in-
sufficient evidence of OPC differentiation to neurons. OPCs 
can be specifically labeled by PDGF receptor alpha and NG2 
proteoglycans (Tripathi and McTigue, 2007; Barnabe-Heider 
et al., 2010). OPCs can directly differentiate into oligodendro-
cytes without cell division (Hughes et al., 2013), but do not 
express NG2 after differentiating into oligodendrocytes. 

After demyelination following SCI, remyelination occurs 
spontaneously on residual axons (Salgado-Ceballos et al., 
1998; Zawadzka et al., 2010). During remyelination, some 
lost oligodendrocytes are replaced by OPCs. After injury, 
OPCs migrate to the injury site and rapidly proliferate. 
From the day of injury to day 7, the number of OPCs per-
sistently increases, with high levels maintained within one 
month. Under permissible conditions, these OPCs differ-
entiate into oligodendrocytes outside myelin (Franklin and 
Ffrench-Constant, 2008; Hesp et al., 2015). This process can 
be regulated by various signaling pathways such as neuren-
ergen, growth factors, cytokines, and transcription factors 
(Table 1). Previous studies have confirmed that neurotroph-
ic factor-3, fibronectin, and PDGF-A promote OPC prolif-
eration (Barres and Raff, 1994; Hill et al., 2013). PDGF-A 
and fibronectin promote OPC migration by recruitment of 
phosphorylated extracellular signal-regulated protein kinas-
es 1 and 2 (ERK1/2) and generation of parapodium (Tripathi 
et al., 2016). Cholinergic neurotrophic factor and leukemia 
inhibitory factor promote early maturation of OPCs. Knock-
ing out these two cytokines causes delayed OPC develop-
ment (Mayer et al., 1994; Barres et al., 1996; Ishibashi et al., 
2009). Cytokine interleukin-17A promotes differentiation 
of OPCs into oligodendrocytes. Moreover, expression of 
key proteins (such as tau) also alters remyelination by af-
fecting OPC differentiation (Ossola et al., 2016). Another 
study suggested that DEAD-box helicase 54 (Ddx54) may 
be a key factor for promoting OPC maturation (Tokunaga 
et al., 2016). Oligodendrocyte transcription factor 2 (Olig2) 
promotes OPC migration and myelination. Interestingly, 
single action of Olig2 leads to tumor-like growth of OPCs, 
and an interaction between Oligo1 and Oligo2 prevents the 
tumor-like growth pattern (Kim et al., 2011; Wegener et al., 
2015). Hackett et al. (2016) revealed that deficit of signal 
transducer and activator of transcription 3 (STAT3) leads to 
reduced oligodendrogenesis, while knocking out suppressor 
of cytokine signaling 3 (SOCS3) results in enhanced OPC 
proliferation after SCI. 

Nevertheless, the quality and integrity of regenerated my-
elin cannot meet demands owing to environmental change 
after injury (Alizadeh et al., 2015). In the microenvironment 
after SCI, degenerative myelin secretes many inhibitory 
molecules. Simultaneously, the extracellular matrix, glial cell 
proliferation, and downregulation of nutrients and growth 
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factors affect remyelination (Meletis et al., 2008; Gauthier 
et al., 2013; Lukovic et al., 2015). The extracellular matrix 
can inhibit remyelination by blocking OPC migration (Sie-
bert et al., 2011). Interleukin-beta limits OPC recruitment 
by activating the interleukin-1 receptor type 1 pathway 
(Kuroiwa et al., 2014). The glial scar produced by glial cells 
not only hinders OPC migration, but also results in a mi-
croenvironment that is not suitable for OPC proliferation. 
Degenerative myelin activates multiple microglial signaling 
pathways leading to release of inflammatory mediators (Sun 
et al., 2010). These molecules and cytokines inhibit axonal 
regeneration and destroy myelin integrity through the com-
plement system (Chen et al., 2000). 

In summary, there are several reasons for lack of remye-
lination: (1) the remyelination process lacks the necessary 
growth factors for promoting formation of intact mature 
myelin from newborn oligodendrocytes; or (2) there is death 
of newborn OPCs as there are not enough biochemical 
factors to promote production of related cells and myelin. 
Consequently, the microenvironment at the injured site af-
ter SCI has an inhibitory effect on remyelination. In view of 
this, OPCs should be at the core of studies on remyelination, 
relieving inhibition, and promoting proliferation and differ-
entiation of OPCs. 

Recently, increasing research has focused on promoting 
remyelination by improving OPC migration, proliferation, 
differentiation, and maturation after SCI. Many drugs, 
hormones, and even treatments have been used clinically 
and are shown to be effective (Table 1). A previous study 
reported that as a hormone, progesterone improves OPC 
survival rate at the injury site by mitigating the inflam-

Table 1 Factors known that regulate remyelination via different 
effects on OPCs

Factors Mechanism of action

PDGF-A/fibronectin Promotes OPC migration by recruitment of 
ERK1/2 and generation of parapodium

Cholinergic neurotrophic 
factor/Leukemia 
inhibitory factor

Promotes early OPC maturation

Cytokine interleukin-
17A

Promotes OPC differentiation to 
oligodendrocyte

Tau key protein Affects OPC differentiation
Ddx54 One of the key factors of OPC maturation
Olig2 Promotes OPC migration with Olig1’s 

prevention of tumor-like growth
STAT3 Regulates OPC oligodendrogenesis
Dried tangerine peel Improves remyelination by elevating Ddx54 

expression
Amiloride Reduces OPC apoptosis and endoplasmic 

reticulum stress response
Electroacupuncture Promotes OPC proliferation
PGDF-AA/MRF Induces remyelination through 

overexpressing in OPC
Progesterone Improves OPC’s survival rate after SCI

OPC(s): Oligodendrocyte precursor cell(s): MRF: myelin regulatory 
factor; PDGF: platelet derived growth factor; SCI: spinal cord injury.

matory response and improving reactive gliosis after SCI 
(Huang et al., 2015). The Chinese herbal medicine, dried 
tangerine peel, can improve remyelination by increasing 
bone morphogenetic protein (BMP) 2.5 expression and 
elevating Ddx54 expression in cerebral ventricles, the sub-
ventricular zone, and corpus callosum (Tokunaga et al., 
2016). Amiloride is a potassium-conserving diuretic that 
has been shown to promote remyelination by reducing the 
endoplasmic reticulum stress response and reducing OPC 
apoptosis (Kuroiwa et al., 2014). In addition to these drugs, 
there is evidence that physical therapy also has a role in 
promoting remyelination. Huang et al. (2015) reported that 
electroacupuncture promotes OPC proliferation, reduces 
OPC death, and improves remyelination. There have also 
been breakthroughs in promoting remyelination by overex-
pressing certain molecules in OPCs. Yao et al. (2017) report-
ed that PGDF-AA-overexpressing OPC transplantation in 
rats induces remyelination. Myelin regulatory factor (MRF)
overexpression was also reported to stimulate OPC differen-
tiation (Xie et al., 2016). Although the mechanism of remy-
elination is not fully understood, there are numerous ways 
to promote remyelination. Most of these methods are sup-
ported by compelling evidence, but there is still considerable 
distance between these factors and clinical applications, and 
a need for continued innovation.

Astrocytes and Remyelination
Astrocytes are widely present in the CNS. They are the 
most abundant glial cells in white matter and gray matter, 
and have a crucial role in neurophysiology. A recent study 
demonstrated that two kinds of astrocytes in brain tissue: fi-
brous astrocytes in the white matter of the corpus callosum, 
and protoplasmic astrocytes in the gray matter (Ding, 2014). 
The primary function of astrocytes was initially thought to 
support and supply neurons, but nowadays there is plenty 
of evidence showing that astrocytes are strongly associated 
with microglia, oligodendrocytes, and other astrocytes in 
the nervous system. Astrocytes regulate neurotransmit-
ters, participate in synaptogenesis, mediate the immune 
response, express extracellular matrix molecules, promote 
cell migration, and promote differentiation and maturation 
of the CNS (Walz, 1989; Westergaard et al., 1995; Sofroniew 
and Vinters, 2010; Clarke and Barres, 2013). Astrocytes are 
associated with many pathological CNS processes, including 
inflammation, ischemia, infection, and degeneration. After 
activation, changes in cell morphology, gene expression, and 
cell physiology are observed in astrocytes (Sofroniew and 
Vinters, 2010). A previous study confirmed that astrocytes 
directly affect proliferation and survival of the oligodendro-
cyte line (Li et al., 2016), demonstrating that oligodendro-
cytes are strongly associated with remyelination. Astrocytes 
are involved in regulating the balance between Schwann cells 
and oligodendrocyte remyelination, with oligodendrocyte 
remyelination only observed in areas where astrocytes are 
present. A recent study showed that testosterone promoted 
oligodendrocyte remyelination via astrocyte recruitment 
(Bielecki et al., 2016). Indeed, increasing evidence shows 
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that astrocytes directly or indirectly affect remyelination by 
acting on OPCs or oligodendrocytes (Figure 1). 

OPCs and astrocytes are homologous during develop-
ment, and OPCs can directly differentiate into astrocytes in 
vitro (Raff et al., 1983). Furthermore, an in vivo study found 
that immature astrocytes are present within NG2+ cells after 
SCI (Lytle et al., 2009). While another study confirmed that 
after SCI, OPCs that differentiate into oligodendrocytes 
are limited. Further, some OPCs (4–13%) do not differen-
tiate into oligodendrocytes, and instead differentiate into 
astrocytes (Sozmen et al., 2016). OPC differentiation into 
astrocytes will affect remyelination. BMP and Olig2 may be 
involved in differentiation of OPCs into astrocytes. Regard-
ing BMP, current understanding is that BMP4 increases 
after SCI, with its potential source being reactive astrocytes 
after injury (Wang et al., 2011). BMP4 contributes to OPC 
differentiation into astrocytes, although BMP4 antagonists 
have only a limited inhibitory effect on differentiation into 
astrocytes (Hampton et al., 2007). Olig2 may inhibit OPC 
differentiation into astrocytes: Olig2 overexpression reduces 

Figure 2 Microglia and 
remyelination.
Different microglia subtypes 
have varied effects on re-
myelination. OPCs: Oligo-
dendrocyte precursor cells; 
CSPGs: chondroitin sulfate 
proteoglycans.

differentiation of neural stem cells into astrocytes in vitro 
(Fukuda et al., 2004). During development, a large number 
of Olig2 knockout OPCs differentiate into astrocytes instead 
of myelin (Zhu et al., 2012). Reticulon 4 receptor (NgR1) is 
a Nogo receptor that can suppress OPC differentiation into 
oligodendrocytes. Its antagonist promotes OPC differenti-
ation into mature oligodendrocytes (Hampton et al., 2007; 
Sozmen et al., 2016). Molecules that promote OPC differen-
tiation into astrocytes also include hyaluronan, janus kinase 
(JAK)-Stat1, and jagged-1 (Back et al., 2005; Zhang et al., 
2009). In addition, inhibition of leucine rich repeat and Ig 
domain containing 1 (LINGO-1) promotes OPC differentia-
tion into mature oligodendrocytes, and LINGO-1 inhibitors 
have been used for treatment of multiple sclerosis (Mi et al., 
2013). In conclusion, OPC differentiation into astrocytes 
and oligodendrocytes ensures remyelination is a fluctuat-
ing process. Specifically, excessive OPC differentiation into 
astrocytes reduces the number of mature oligodendrocytes. 
Astrocytes have a significant inhibitory effect on remyelin-
ation and axonal regeneration. Thus, recovery of neurologi-
cal function worsens after SCI. Inhibition of astrocyte differ-
entiation contributes to remyelination and ensures recovery 
of neurological function after SCI. 

After SCI, astrocytes are immediately activated in the acute 
stage, and proliferate and secrete many cytokines, chemo-
kines, and ligands in the subacute stage. These molecules 
have a certain inhibitory effect on remyelination. Activated 
astrocytes express the transcription factor, nuclear factor 
kappa B, to damage the oligodendrocyte line. Brambilla et al. 
(2014) verified that inflammatory cell infiltration is reduced 
to protect oligodendrocytes in GFAP-IκBα-dn mice after in-
activation of astroglial nuclear factor kappa B. Furthermore, 
knocking out components of the nuclear factor kappa B 
signaling pathway in astrocytes (e.g., actin [ACT1] and in-
hibitor of kappa B [IkB] kinase 2) protects oligodendrocytes 
(Raasch et al., 2011). Cytokines that regulate astrocyte activa-
tion, such as tumor necrosis factor-alpha and interleukin-1 
beta, are associated with oligodendrocyte survival (Deng et 
al., 2014). C-X-C motif chemokine ligand 10 (CXCL10) is 
expressed by astrocytes after the inflammatory response to 

Figure 1 Astrocytes affect remyelination by affecting OPC 
differentiation and maturation or directly acting on 
oligodendrocytes. 
BMP: Bone morphogenetic protein; OPC: oligodendrocyte precursor 
cell.
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suppress OPC differentiation (Moore et al., 2015). Astrocytes 
can excessively secrete fibroblast growth factor-2, which 
not only promotes OPC proliferation and growth, but also 
inhibits OPC maturation (Goddard et al., 1999). In certain 
environments, fibroblast growth factor-2 transforms mature 
oligodendrocytes into new forms (Bansal and Pfeiffer, 1997). 
A previous study demonstrated that ligand molecules secret-
ed by astrocytes (such as Nogo-A) are strongly associated 
with the NOGO receptor complex, and that this complex can 
inhibit remyelination (Ji et al., 2006). Many astrocyte-asso-
ciated ligands, such as p75, TROY, and BLyS, inhibit regen-
eration of the nervous system. Indeed, their interaction also 
provides evidence for the inhibitory effect of astrocytes on 
remyelination through the corresponding signaling pathways 
(Schwab and Strittmatter, 2014). Astrocytes are important 
carriers of iron in the CNS, and physiological activities of 
OPCs and oligodendrocytes require extracellular uptake of 
large amounts of iron (Todorich et al., 2009; Badaracco et 
al., 2010). Thus, destruction of the astrocyte-involved ferritin 
supply chain will affect remyelination.

Activated astrocytes lead to specific reactive gliosis. During 
this process, their morphology changes significantly and a 
large amount of intermediate filament proteins, mainly gli-
al fibrillary acidic protein (GFAP) and nestin, are secreted 
to form the glial scar (Karimi-Abdolrezaee and Billakanti, 
2012). There are two sources of activated astrocytes after 
SCI: (1) ependymal cell GFAP-astrocytes; and (2) in situ 
activated GFAP+ astrocytes. They play different roles in glial 
scar formation (Meletis et al., 2008; Barnabe-Heider et al., 
2010). Activated astrocytes are harmful to remyelination and 
involved in scar tissue formation, inhibition of OPC migra-
tion, survival and differentiation after SCI, and even axonal 
regeneration (Wang et al., 2011). As a type of immunocyte in 
the CNS, astrocytes express many protein kinases, glycopro-
teins, and chondroitin sulfate proteoglycans after activation. 
These molecules induce inflammatory responses and the glial 
scar directly or indirectly causes severe damage to oligoden-
drocytes and neurons, chemically or physically (Silver and 
Miller, 2004). Glial scar formation limits the inflammatory 
reaction around the injury site, isolates damaged nerve tissue 
from normal tissue, and plays a supporting role in injured 
tissue. Simultaneously, the glial scar has a negative effect on 
remyelination and axonal regeneration. When axonal regen-
eration is inhibited, the link between axon and myelin is de-
stroyed, and remyelination is not possible. Transplantation 
of OPCs and neural precursor cells into the injury site at the 
subacute stage contributes to axon myelination, but does not 
achieve a good outcome. This indicates that the internal en-
vironment after injury around the glial scar has an inhibitory 
effect on remyelination or myelination of axons (Keirstead et 
al., 2005; Karimi-Abdolrezaee et al., 2006). Activated astro-
cytes secrete a variety of chondroitin sulfate proteoglycans, 
mainly consisting of neuroncan and brevican, and versican 
in the nervous system (Yamada et al., 1994). They all have an 
inhibitory effect on remyelination and axonal regeneration 
(Dyck and Karimi-Abdolrezaee, 2015). Activated astrocytes 
affect OPC recruitment and maturation, and axonal en-

sheathment by secreting chondroitin sulfate proteoglycans, 
and finally inhibiting remyelination (Dyck and Karimi-Ab-
dolrezaee, 2015). Chondroitin sulfate proteoglycans not only 
affect OPCs, but Karimi-Abdolezaee et al. (2010) found that 
chondroitin sulfate proteoglycans and the glial scar affect 
differentiation of neural precursor cells to oligodendrocytes. 
The glial scar is not only composed of astrocytes and microg-
lia, and reactive activated OPCs are also involved in scar for-
mation. OPCs also express chondroitin sulfate proteoglycans 
to inhibit axonal regeneration and repair myelin (Chen et al., 
2002). Another inhibitory molecule secreted by astrocytes is 
hyaluronan, which is extensively found in the extracellular 
matrix and white matter of the CNS (Sherman et al., 2002). 
Hyaluronan can act on CD44 receptors of T cells and OPCs, 
and affect OPC maturation (Back et al., 2005; Lundgaard et 
al., 2014). 

Reactive activated astrocytes after SCI participate in glial 
scar formation. Changes in their own cell products and the 
microenvironment surrounding glial scars have a strong 
inhibitory effect on remyelination (Wang et al., 2015). Some 
inflammatory factors mitigate scar formation in reactive 
gliosis by inhibiting astrocyte activation, which may be a 
way to improve remyelination after SCI. Wang et al. (2015) 
suggested that blocking the signaling pathway of platelet 
activating factor can reduce reactive gliosis and inhibit 
demyelination after SCI. Ishii et al. (2016) found that the 
RAS-related C3 botulinum substrate 1 (Rac1)–G1 to S phase 
transition 1 (GSPT1) signaling pathway is a new axis for 
regulating gliosis after SCI. These studies provide evidence 
for remyelination after SCI.

Microglia and Remyelination
Microglia are macrophages present in the nervous system, 
and are involved in cellular immunity of the nervous system. 
Microglia are usually in a resting state, and in this state are 
in a “cruising” state to detect a pathological reaction at any 
time (Hanisch and Kettenmann, 2007). When a “crisis” aris-
es, microglia can be immediately activated from the resting 
state, migrate to the injury site, and participate in formation 
of the outer layer of the glial scar to isolate damaged tissue 
from normal tissue (Davalos et al., 2005). Nevertheless, 
excessively activated microglia secrete large amounts of 
inflammatory factors, cytotoxic agents, and free radicals, 
thereby causing a severe inflammatory response, which un-
doubtedly inhibits remyelination. However, in recent years, 
more and more studies have focused on promoting the ef-
fect of microglia on remyelination. Microglia can be divided 
into different subtypes in the CNS, which play distinct roles 
in remyelination (Figure 2). 

Microglia have an important effect on remyelination. 
With demyelinating lesions following SCI, some myelin 
fragments may remain outside residual axons. If these resid-
ual myelin fragments cannot be removed, they will have an 
impact on new myelin. Microglia are responsible for remov-
al of fragments (Kotter et al., 2006; Neumann et al., 2009). 
Both in vivo and in vivo, these residual fragments can influ-
ence differentiation, maturation, and myelination of OPCs 
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(Nave, 2010). A previous study reported that this microglial 
function is dependent on downstream activation of the 
DAP12 signaling pathway by triggering receptor expressed 
on myeloid cells 2 (TREM2) (Poliani et al., 2015). A residual 
amount of these fragments is associated with phagocytic 
function of microglia/macrophages. Moreover, this func-
tion is largely determined by the age of the organism. If the 
blood of young animals is injected into the body of older 
animals, remyelination of older animals is improved (Miron 
and Franklin, 2014). Astrocytes recruit microglia to the site 
of injury by expressing the chemokine, CXCL10, which en-
hances phagocytosis of myelin fragments. If astrocytes are 
removed from the culture medium, removal of myelin frag-
ments can be affected, resulting in inhibition of proliferation 
and myelination of OPCs (Skripuletz et al., 2013). Receptors 
associated with microglial phagocytosis of myelin fragments 
include CR3, SRA, and Fc gamma. A previous study found 
that CR3 can reduce phagocytosis by activating or down-
regulating microglial phagocytosis to act on phosphorylated 
cofilin via the spleen tyrosine kinase (Syk) signaling pathway 
(Hadas et al., 2012). Simultaneously, CR3 and SRA interact 
to mediate phagocytosis following axonal injury (Makranz et 
al., 2004). Expression of galectin-3/MAC-2 can alter phago-
cytosis of microglia by modulating CR3 and SRA (Rotshen-
ker et al., 2008). The TLR4 agonist, E6020, promotes repair 
of damaged myelin by stimulating microglia phagocytosis 
and myelinating cell recruitment (Church et al., 2017). It 
also blocks the TLR4 signaling pathway leading to delayed 
phagocytosis and altered expression of cytokines such as 
insulin-like growth factor-1, fibroblast growth factor-2, and 
interleukin-1 beta, which ultimately reduces remyelination 
after SCI (Church et al., 2016).

Macrophages/microglia secrete a variety of cytokines, 
chemokines, and growth factors to affect remyelination 
after SCI. Microglia are divided into two subtypes, namely, 
M1 cells involved in the inflammatory response and M2 
cells with anti-inflammatory and repair effects (Kigerl et al., 
2009). M1 cells are strongly associated with the inflamma-
tory response and suppress remyelination. M2 cells are clas-
sified into three subtypes: M2a, M2b, and M2c (Gensel and 
Zhang, 2015). Kigerl et al. (2009) found that M2 microglia 
ameliorate chondroitin sulfate proteoglycan-induced axonal 
degeneration and reduce residual myelin fragments. M2 
microglia gradually occupy a dominant activated microglial 
position at 3–10 days after demyelination. This time window 
coincides with OPC recruitment and differentiation into 
mature oligodendrocytes at the site of injury (Miron et al., 
2013). A further study verified that M2a and M2c microglia 
promote differentiation and maturation of oligodendrocytes 
by selectively removing M2 microglia (Miron and Franklin, 
2014). These above studies confirm that M1 microglia inhibit 
remyelination after SCI. M2a and M2c (suspected) microg-
lia may promote remyelination by promoting recruitment, 
proliferation, differentiation, and maturation of OPCs after 
SCI. Interleukin-10 is secreted by M2b microglia and an an-
ti-inflammatory cytokine. After SCI, with activation of M2a 
cells, M2b cells reach a peak at 4–5 days after injury. Another 

study demonstrated that M2b cells protect against axonal de-
generation. Although it is not clear if M2b cells have a direct 
effect on remyelination, there is enough evidence to show 
that M2b and M2c cells promote spinal cord tissue repair by 
modulating cell proliferation (including OPCs) at the prolif-
erative stage after SCI (Gensel and Zhang, 2015). Bartus et al. 
(2014) have found that lentiviral introduction of the ChABC 
gene immediately after SCI promotes a neuroprotective form 
of M2 microglia and increases storage of neurons and axons 
after 12 weeks of SCI. They also reported that this effect of 
ChABC may be produced by increasing expression of the 
anti-inflammatory factor, interleukin-10, and reducing the 
inflammatory factor, interleukin-12 beta (Didangelos et al., 
2014). To date, increasing pathways have been shown to shift 
M1/M2 polarization. The amount of M1/M2 polarization is 
associated with age, with more M1 polarization detected in 
infarcted brain from older stroke models and more M2 labels 
found in younger ones (Suenaga et al., 2015). Also, many 
mediators (such as interleukin-4 and -13) can enhance M2 
polarization (Wang et al., 2014; Roszer, 2015). Wang et al. 
(2017) reported that heterochromatin protein 1c (HP-1c) 
activates the 5′AMP-activated protein kinase (AMPK)-Nrf2 
pathway to alter M1/M2 polarization and reduce the in-
flammatory reaction in stroke models. Cocoa polyphenolic 
extract is reported to shift M1/M2 polarization, in which M1 
polarization is reduced and alternatively, M2 polarization 
induced (Dugo et al., 2017). Although quite a few pathways 
are related to M1/M2 polarization, and many molecules have 
shown their anti-inflammatory potential by reducing/induc-
ing M1/M2 polarization, alteration of M1/M2 polarization 
after SCI has yet to be fully understood.

Besides astrocytes, microglia are also associated with the 
iron supply chain in the nervous system. Increasing iron 
content in microglia increases the survival rate of co-cul-
tured OPCs, verifying that microglia are a source of iron 
in OPCs (Zhang et al., 2006). Considering a similar role of 
astrocytes, microglia may improve iron protein content in 
both types of glial cells after SCI, improve iron supply in 
OPC–oligodendrocyte lines, and be helpful for remyelin-
ation after injury.

Summary
With an increasing number of SCI patients, the study of de-
myelination/remyelination after SCI has become increasing-
ly significant. In addition to neurons, glial cells are resident 
cells in the CNS. Glial cells play supporting, nutritional, and 
immunological roles in the CNS. Simultaneously, glial cells 
are intimately associated with each other. After SCI, various 
signaling pathways are initiated, which can activate/injure 
glial cells and induce an inflammatory response, glial scar 
formation, neuronal injury, necrosis, and demyelination. 
In demyelinating lesions, OPCs in nerves replace lost oligo-
dendrocytes and become new myelin via migration, prolif-
eration, differentiation, and maturation. However, after glial 
cell activation, the surrounding environment is changed and 
OPC myelination is affected by many factors. Astrocytes are 
the most abundant glial cells in the CNS. They secrete chon-
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droitin sulfate proteoglycans after activation. Astrocytes 
also induce glial scar formation, which has a large effect on 
remyelination. Microglia as major immune cells of the CNS 
initiate an inflammatory response after injury. Inflammatory 
cytokines expressed in microglia affect remyelination. M2 
microglia promote OPC proliferation, differentiation, and 
maturation. Taken together, controlling reactive activation 
of glial cells after SCI to improve remyelination is an im-
portant approach to treat injured spinal cord and promote 
recovery of neurological function.
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