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A global map of planting years of 
plantations
Zhenrong Du1,2,3, Le Yu   3,4 ✉, Jianyu Yang1,2 ✉, Yidi Xu3, Bin Chen5, Shushi Peng   6, 
Tingting Zhang1,2, Haohuan Fu3, Nancy Harris   7 & Peng Gong   4,8,9

Plantation is an important land use type that differs from natural forests and affects the economy and 
the environment. Tree age is one of the key factors used to quantify the impact of plantations. However, 
there is a lack of datasets explicitly documenting the planting years of global plantations. Here we 
used time-series Landsat archive from 1982 to 2020 and the LandTrendr algorithm to generate global 
maps of planting years based on the global plantation extent products in Google Earth Engine (GEE) 
platform. The datasets developed in this study are in a GeoTIFF format with 30-meter spatial resolution 
by recording gridded specie types and planting years of global plantations. The derived dataset could be 
used for yield prediction of tree crops and social and ecological cost-benefit analysis of plantations.

Background & Summary
Forests are the dominant terrestrial ecosystem on Earth, covering approximately one-third of the global land 
area, and they play an important role in the water and heat balance, global carbon cycle and climate change1–3. 
Since the turn of the century, forest loss driven by human activities and natural disturbance, such as agricultural 
expansion, fire and pest infestation, has been a serious global environmental issue4. On the brink of the decrease 
in biodiversity, carbon storage and economic incomes caused by forest loss5, many countries have implemented 
tree planting programmes, which have resulted in the expansion of plantations around the world6–8.

Plantations, as distinct from natural forests, generally consist of tree crops and planted forests, where tree 
crops are planted to provide fruits, nuts or other tree products (such as coconut, coffee and oil palm), and planted 
forests are grown for the production of wood and wood fiber or for the protection of ecosystems. Plantations 
can not only bring economic benefits by supplying wood, fiber, fruit, nuts and other products, but also provide 
important ecosystem services such as carbon sequestration and biodiversity promotion9. However, some plan-
tations (e.g., oil palm) have negative impacts on society and the environment10, biodiversity declines11, loss of 
natural forests12 and peatlands13, and carbon emissions14. The quantification of positive and negative outcomes 
from plantations, such as yield and aboveground biomass estimate, usually depend on the planting year or tree 
age because this directly determines the biophysical attributes, including canopy size, tree height, root structure, 
and soil properties15–17. Although regional and national tree age datasets/annual datasets for certain plantations 
have been developed recently18–20, the planting years of plantations remain unknown at the global scale. To 
forecast the supply and demand of tree crops and quantify the benefits or costs of planted forests, it is essential 
to generate and share global planting year maps for plantations.

Compared with traditional methods for estimating tree age, which are mainly based on the biophysical prop-
erties of sample trees (e.g., tree rings, height, or crown size)21,22, remote sensing has the advantages of high 
efficiency and low costs. The biophysical characteristics of trees, such as leaf area index (LAI) and tree height, 
can be estimated through remote sensing observations. By combining these with the tree species data, statistical 
relationships between these characteristics and tree age can be developed23,24. However, these empirical models 
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are difficult to apply globally because they are usually generated locally for certain tree species and are not appli-
cable to crop trees25,26. Recently, public access to Landsat imagery and the development of cloud-computing 
platforms have made it possible to use long-term remote sensing images to detect and monitor forest distur-
bances27–29. On the basis of the time series of Landsat data, temporal trajectory analysis algorithms, such as 
Breaks for Additive Season and Trend (BFAST)30 and Landsat-based Detection of Trends in Disturbance and 
Recovery (LandTrendr)31, have been proposed to make full use of the rich and continuous temporal informa-
tion from Landsat imagery. Several recent studies have applied LandTrendr to monitor forest loss and gain32–34, 
proving that the temporal fitting and segmentation strategies in this algorithm are effective for the mapping of 
planting years.

In this study, we used the latest global plantation extent dataset to estimate and map their planting years 
at a 30 m resolution using Landsat imagery. The global plantation extent dataset was composed of the Spatial 
Database of Planted Trees (SDPT)35 and Descals’ global oil palm maps36, including planted forests and tree 
crops. We developed a method using the Google Earth Engine (GEE) to detect the year of the planting event 
with the LandTrendr algorithm and the time-series Landsat images spanning 1982–2020 (Fig. 1). We further 
included regional-scale planting year products and the first all-season sample set (FAST)37 for a comparison to 
evaluate the accuracy of the derived planting year map in this study.

Methods
Data preprocessing.  Global plantation extent dataset.  The SDPT provides global spatial information on 
planted forests and tree crops by compiling and synthesizing national or regional data. The product is an active 
database that is being gradually improved and enlarged. However, only version 1.0 of the product can be publicly 
downloaded. This version of the SDPT contains spatial data on plantations in countries shown in Table S1. The 
SDPT is a Geographic Information System (GIS) vector file with an attribute table that includes the original 
data source, species and polygon area. To improve the efficiency of planting year detection, the SDPT product 
was transformed into a raster with a resolution of 30 m. The information on the tree species in the product was 
retained by setting the value of the raster according to Table S2. The planting extent of oil palm in the SDPT was 
replaced by the latest global oil palm map provided by Descals et al.36 because it gives a more comprehensive 
insight into both smallholder and industrial oil palm plantations. The oil palm map is hosted on GEE as an Image 
Collection with a resolution of 10 m. To match the Landsat resolution, the resolution of the oil palm map was 
reduced to 30 m. The preprocessed SDPT raster and Descals’ oil palm map were used as a mask in the following 
process to identify the planting years.

Landsat imagery.  All available Landsat Tier 1 surface reflectance imagery in GEE acquired from June to 
August between 1982 and 2020 was used in this study, including images collected by the Thematic Mapper 
(TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) sensors. We used images 
corresponding to the same season for each year to reduce the possibility of falsely detecting land-cover change 
because of phenology, flooding, or changes in solar geometry31. All the Landsat images were atmospherically 
corrected using Landsat ecosystem disturbance adaptive processing system (LEDAPS)38 and Landsat 8 Surface 

Fig. 1  Workflow of generating global planting year maps of plantations.

LandTrendr parameters Values

Max Segments 10

Spike Threshold 0.9

Vertex Count Overshoot 3

Prevent One Year Recovery False

Recovery Threshold 1.0

pval Threshold 0.05

Best Model Proportion 0.75

Min Observations Needed 6

Table 1.  Parameter settings for LandTrendr in this study. The definition for parameters can be found in the user 
manual (https://emapr.github.io/LT-GEE/index.html).
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Reflectance Code (LaSRC)39 by the United States Geological Survey (USGS). Clouds, shadows, and snow were 
masked using the C Function of Mask (CFMask)40 algorithm. Considering the good agreement between the TM 
and ETM+41–43, we only normalized the OLI reflectance using the coefficients introduced in Roy’s paper44 to 
reduce mapping errors caused by the difference between the OLI and ETM+ sensors. Then, the annual max-
imum value of the Normalized Burn Ratio (NBR)45 was calculated to derive the time series for detecting the 
planting year. NBR is an index that uses a combination of near-infrared (NIR) and short-wave infrared (SWIR2) 
bands (Eq. (1)), and generally healthy and dense vegetation corresponds to a high NBR value. We chose NBR as 
the spectral index because it has a high sensitivity to forest disturbance and recovery32,46.

= −
+

NBR NIR SWIR
NIR SWIR

2
2 (1)

Owing to the uneven distribution of data in various regions of the world, Landsat data in different regions 
accumulated in different years, and some regions had missing data in some years. To generate a complete and 
continuous NBR time series from 1982 to 2020, we defined a 3-year sliding window that moved backwards from 
2020. A null value in 2020 was supplemented by the value of the year closest to it. For other years where the NBR 
was null, we calculated the mean value of the 2 adjacent years to fill the gap. For years where the previous year 
was also null, we used the value of the following year as the supplementary value.

Planting year detection using LandTrendr.  To estimate the planting years, we used the LandTrendr 
algorithm, which was implemented on GEE47. LandTrendr obtains temporal segmentation results by analyz-
ing the temporal-spectral trajectory of each pixel. The algorithm includes the following steps: 1) removing the 
ephemeral spikes; 2) identifying potential vertices by simple regression lines; 3) removing excess vertices based 
on low angle change; 4) choosing a single path through the vertices based on flexible fitting rules; 5) developing 
simplified models of the trajectory by removing the weakest vertices; 6) picking the model with the best fit (using 
p-value for the F-statistic). The parameter settings for LandTrendr in this paper followed the values used in De 
Jong’s study34, shown in Table 1. Taking the time series of NBR from 1982 to 2020 as the input, the output of 
LandTrendr was composed of four bands, including the observation year, the original observation value, the fitted 
observation value, and a Boolean value indicating whether an observation was identified as a vertex.

For each pixel, we aimed to identify the latest planting event in this study because more than one segment 
was detected for most pixels using LandTrendr. To remove false detection, we designed a set of decision rules: 1) 
the duration of the segment should be greater than 1 year; and 2) the delta of fitted observation value in the seg-
ment should be greater than 0.2. Then, the observation year of the start vertex was detected as the planting year. 
For pixels that had no segment meeting the decision rules, we detected the segment with the largest increase in 
NBR and took the start vertex as the planting year. For pixels that had no increase segment, the planting year 
was set as “<1982”.

LandTrendr is a change detection algorithm based on a pixel-by-pixel spectral time series. To reduce the 
effect of “salt and pepper”, a spatial filtering with a 3 × 3 window was applied to the mapping results based on a 
“majority vote” rule48. This resulted in global planting year maps for 1982–2019 from Landsat imagery between 
1982 and 2020.

Year Planted forest (km2) Tree crop (km2) Year Planted forest (km2) Tree crop (km2)

1984 38081.25 1658.16 2002 26899.13 14919.97

1985 38849.56 3148.84 2003 48680.67 6845.50

1986 46103.87 1913.93 2004 26928.43 11407.72

1987 39424.48 1753.86 2005 38878.37 12256.13

1988 47016.20 7270.16 2006 35041.45 13032.23

1989 46314.86 8292.65 2007 41681.92 13066.09

1990 33677.97 8078.22 2008 34745.10 10844.11

1991 34516.17 7699.37 2009 34129.27 14163.50

1992 47023.86 13293.75 2010 36073.25 13457.91

1993 38328.85 13775.80 2011 41392.27 12747.78

1994 34690.72 13254.14 2012 60099.08 16669.23

1995 36014.52 9022.56 2013 36089.22 11627.89

1996 32672.71 11336.06 2014 39440.88 12739.29

1997 37637.05 17848.83 2015 37609.67 11416.74

1998 39535.73 14817.48 2016 36046.63 9378.73

1999 39918.69 11810.74 2017 32888.45 6646.81

2000 31976.98 11119.38 2018 33712.34 7315.68

2001 24877.01 9288.99 2019 21001.37 4702.84

Table 2.  Extent of annual new plantations (1984–2019).

https://doi.org/10.1038/s41597-022-01260-2


4Scientific Data |           (2022) 9:141  | https://doi.org/10.1038/s41597-022-01260-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
The dataset developed in this study can be downloaded on the figshare (https://doi.org/10.6084/
m9.figshare.19070084.v1)49. The dataset has a spatial resolution of 30 m. It is in a GeoTIFF format and has three 
bands named “plantyear”,“startyear” and “species”, which describe the planting years, the year in which Landsat 
TM, ETM+ and OLI data began to accumulate, and the species of trees. The “startyear” band should be used as 
the Quality Assessment (QA) band for this dataset because the supplementary value from 1982 to the start year 
may contain erroneous LandTrendr estimates of planting years.

The values of the three bands range from 1981 to 2019, 0 to 2020 and 1 to 190, respectively. For the “plant-
year” band, a value of 1981 means the planting year was before 1982, and values from 1982 to 2019 correspond 
to the planting years. A value of 0 in the “startyear” band indicates that no Landsat data from June to September 
was obtained for the pixel during the period 1982–2020. Values from 1 to 1981 are not present and values 
1982–2020 show the year when Landsat data started to accumulate. Values 1–190 in the “species” band represent 
tree species provided by the SDPT (Table S2).

Approximately 61.73% of plantation pixels have accumulated Landsat data since 1984, and we provide the 
annual extent of new plantations between 1984 and 2019 in Table 2. Figure 2 shows the planting years of global 
plantations, and Figure S1 provides information on the QA band of this dataset. To better show the results, the 
countries with plantation data are marked in grey.

The external data used in this paper included the global plantation extent dataset and validation dataset. 
The global plantation extent dataset was composed of the SDPT35 and Descals’ oil palm map36, which can be 
downloaded at https://www.wri.org/research/spatial-database-planted-trees-sdpt-version-10 and https://doi.
org/10.5281/zenodo.4473715, respectively. The validation dataset was composed of Danylo’s oil palm planting 
year product20, Chen’s orchard planting year product in California19 and FAST37 from https://dare.iiasa.ac.at/85/, 
https://doi.org/10.1016/j.isprsjprs.2019.03.012 and https://doi.org/10.1016/j.scib.2017.03.011, respectively.

Fig. 2  Planting year maps of (a) global plantations, and plantations in (b) North America, (c) Europe, (d) South 
America, (e) Asia, (f) Oceania and (g) Africa. (For more detailed visualization of results, please see: https://
duzhenrong.users.earthengine.app/view/globalplantationyear).
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Technical Validation
Validation with the oil palm planting year product.  We validated our results using Danylo’s oil palm 
planting year product in Indonesia, Malaysia and Thailand20. The product has a spatial resolution of 30 m with a 
single band that identifies the planting year of oil palm between 1987 and 2017. The definition of planting year for 
the product differed from ours, which said that the detected planting year was 2–3 years behind the plantation. 
Therefore, we subtracted 3 years from the value in the Danylo product to match our results. The comparisons are 
shown in Fig. 3. Although the distribution range of oil palm is different, the two datasets still show a satisfactory 
consistency in the planting years.

To obtain quantitative accuracy evaluation results, the annual F1 score was calculated. First, because the 
extent of oil palm in Danylo’s product differs from the extent used in our study, we extracted the areas that over-
lapped between the two maps. We vectorized the overlapping area, and selected polygons larger than 10 hectares 
to randomly generate validation samples. Then, using 10,000 validation samples, we calculated the F1 score for 

A A

B B

C C

A B C

(a) (b)

A B C

Fig. 3  Comparison with oil palm planting year product in Indonesia, Malaysia, and Thailand. (a) Maps of 
Danylo’s product20. (b) Maps of our results.

Fig. 4  Accuracy evaluation results with oil palm planting year product in Indonesia, Malaysia and Thailand. 
(a) Annual F1 score with different tolerances. (b) Differences between our results and Danylo’s product20. The 
horizontal axis represents the value of the planting years in our results minus that in Danylo’s product20.
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each year (Fig. 4(a)). Considering the sparsity of the pre-1990 Landsat data and the possible uncertainties arising 
from it, accuracy validation results after 1990 was provided here. The F1 score for each year was relatively high 
(78.25%) when the deviation was allowed within ±3 years and 86.83% with ±5 years. Our method tended to 
identify the planting year later than the Danylo product (Fig. 4(b)). This was probably induced by the differences 
in the definition of planting years in the two studies.

Validation with orchard planting year product in California.  An orchard-level planting year product 
of all fruit and nut trees in California provided in Chen’s study19 was also used to validate our mapping result. The 
product was developed based on the geographic boundaries for all nut and fruit tree orchard blocks from the 2014 
state-wide Crop Mapping dataset (https://gis.water.ca.gov/app/CADWRLandUseViewer/). Planting years were 
identified using Landsat imagery from 1984 to 2014. The comparison between the Chen product and our results 
are shown in Fig. 5. Because the planting years in the product were developed based on the mean and standard 
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Fig. 5  Comparison with orchard planting year product in California. (a) and (c) are maps of Chen’s product19. 
(b) and (d) are maps of our results.

Fig. 6  Accuracy evaluation results with orchard planting year product in California. (a) Annual F1 score with 
different tolerances. (b) Differences between our results and Chen’s product19. The horizontal axis represents the 
value of the planting years in our results minus that in Chen’s product19.
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deviations of NDVI within each block, Chen’s product has better space contiguity. However, judging from the 
overall distribution and the zoomed-in details, the results of this study have a high consistency with the orchard 
planting year product in California.

To further quantify the consistency, validation samples were generated using the same method mentioned 
in the previous section. The annual F1 score and differences in planting years between our results and the Chen 
product were calculated (Fig. 6). Generally, the annual F1 score increased with age, and our results achieved 
satisfactory accuracy when the tolerance was ±3 years.

Validation with the FAST.  To give the relatively comprehensive verification of our results, the FAST37 in 
the Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC)50 project was used for the 
validation. Both training and validation samples labeled forest and located in the plantation extent in FAST were 
selected as the validation samples. Planting years of the 757 validation samples were labeled using Huang’s sample 
migration method51. The spectral similarity and distance between the reference year and target year was meas-
ured. The planting years of the validation samples were marked as the year with the greatest spectral difference, 
and checked artificially based on the visually interpretation of Landsat images. The annual F1 score and differ-
ences in planting years between our results and visually interpreted labels (after 1990) were shown in the Fig. 7. 
Our results still show a high accuracy with a tolerance of ±3 years, and remarkable accuracy could be obtained 
when the tolerance was ±5 years.

Usage Notes
The planting year maps developed in this study are the first high-resolution dataset for global plantations at a 
30 m spatial resolution. When overlayed with other global or local climate and socio-economic data, the dataset 
can be used to evaluate the social and ecological benefits and costs from plantations, such as the carbon seques-
tration from planted forests. Because this dataset contains information on the tree species, it can also help with 
the prediction of yield from tree crops and the demand for water. Our code to map planting years can be reused 
on other similar plantation datasets, such as a new version of the SDPT, which may be released in the future. 
However, parameter settings for LandTrendr in this study were determined based on the previous research 
and the testing results for NBR time series of the plantations. When applying this method to other vegetation 
restoration detections, such as the natural restoration of forests, these parameters may need to be adjusted. In 
addition, users should be aware of the strips in the dataset which are caused by the banding problem in Landsat 
ETM + images.

Our dataset is in a GeoTIFF format, and thus can be easily loaded and processed by any GIS software, such 
as QGIS and ArcGIS. The dataset can be visualized online using the GEE experimental app: https://duzhenrong.
users.earthengine.app/view/globalplantationyear. It should be noted that to optimize the visualization effect, we 
merged plantations with mixed species into one category in this app; for example, “Acacia/Wattle, Eucalyptus” 
and “Acacia/Wattle, Kirkii” were merged as “Acacia/Wattle”.

Code availability
The GEE code and validation samples in this study are available in GitHub at https://github.com/IrisDudu/
globalplantations.

Received: 11 November 2021; Accepted: 11 March 2022;
Published: xx xx xxxx

Fig. 7  Accuracy evaluation results with the first all-season sample set (FAST)37. (a) Annual F1 score with 
different tolerances. (b) Differences between our results and visually interpreted labels. The horizontal axis 
represents the value of the planting years in our results minus visually interpreted labels.
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