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Abstract

Automated next-best action recommendation for each customer in a sequential, dynamic

and interactive context has been widely needed in natural, social and business decision-

making. Personalized next-best action recommendation must involve past, current and

future customer demographics and circumstances (states) and behaviors, long-range

sequential interactions between customers and decision-makers, multi-sequence interac-

tions between states, behaviors and actions, and their reactions to their counterpart’s

actions. No existing modeling theories and tools, including Markovian decision processes,

user and behavior modeling, deep sequential modeling, and personalized sequential recom-

mendation, can quantify such complex decision-making on a personal level. We take a

data-driven approach to learn the next-best actions for personalized decision-making by a

reinforced coupled recurrent neural network (CRN). CRN represents multiple coupled

dynamic sequences of a customer’s historical and current states, responses to decision-

makers’ actions, decision rewards to actions, and learns long-term multi-sequence interac-

tions between parties (customer and decision-maker). Next-best actions are then recom-

mended on each customer at a time point to change their state for an optimal decision-

making objective. Our study demonstrates the potential of personalized deep learning of

multi-sequence interactions and automated dynamic intervention for personalized decision-

making in complex systems.

Introduction

In enterprise and complex problem-solving, automated and personalized decision-making is

highly needed but rarely possible in practice. Personalized decision-making requires personal-

ized next-best actions to be learned and used in a dynamic, sequential and interactive process

and context, which is extremely demanding in both private and public sectors and natural and

social systems. Examples are next-best treatments to-be-made by healthcare providers on

patients, next-best trading strategies to-be-taken by investors in a capital market, next-best

interventions on cybersecurity attacks or climate change in real time, next-best
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communications between a bank and its clients, and any other services involving client-pro-

vider interactions. Personalized next-best action-taking sets up a high standard for long-term

dependent, dynamic, sequential and interactive personalized and automated decision-making

in sophisticated and constrained real-life environments. However, automated decision-mak-

ing with personalized next-best action recommendation is extremely challenging: (1) the cir-

cumstances and response behaviors of each target client (interchangeable with customer) must

be characterized and modeled when they evolve over time; (2) any decision actions taken by a

decision-maker on the client at a time step takes place in a sequential and interactive context,

where both client responses and decision actions interact and co-evolve under client-specific

circumstances and decision-policy constraints, forming multiple interactive and coupled

sequences; (3) often multiple decision choices are available at a time step, and the best decision

action needs to fit client states, expected decision goals and effect, and the underlying environ-

ment; (4) taking any decision actions will further affect the state, action and environment at

the next time step, and the cumulative effect from all prior steps also evolves along the sequen-

tial action-response interactions, which form long-term dependencies between multiple

sequences to affect the next-best action selection; and (5) while each next-best action is to

achieve an expected local goal and effect on the client, the sequence of next-best actions should

generate the optimal global goal and effect.

In practice, domain-driven action rules are often generated and tuned by a group of domain

experts to address the complexities in the aforementioned personalized next-best action-taking

in complex enterprises and systems. This domain-driven action selection collectively considers

and balances the relationships between service policies, constraints, client circumstances, busi-

ness procedures, risk indicators, decision rules, and intervention strategies. Although hand-

crafted action rules may be effective for specific and static scenarios on a small scale, they are

ad hoc and ineffective for wide and dynamic applications and for large-scale real-time deci-

sion-making. They lack a general and proactive capacity to tackle personalized, sequential and

interactive decision-making and often result in issues such as a high false intervention rate,

high missing rate, and low cost-effectiveness.

The advances in new-generation artificial intelligence and data science have made possible

the automated selection and optimal recommendation of personalized next-best actions in

the above complex decision-making settings. This, however, poses a significant challenge to

existing decision-support systems and modeling methods, including sequential decision-mak-

ing [1, 2], sequential and personalized recommendation [3–6], and deep learning [7, 8]. To

the best of our knowledge, there are no existing theories or modeling methods capable of han-

dling the aforementioned demand and challenges in an automated or semi-automated man-

ner. Typical sequential decision-making methods [9–13] assume that decision-making falls in

the Markov decision processes (MDPs), i.e., the next state only depends on the current state

and action [1]. Other approaches involve all historical states such as by weighing their impact

on current states [14–16]. They do not fit personalized decision-making that goes beyond

Markovian [16–18], which involves complex interactions and couplings between clients and

providers and their states, responses and actions [19–24], as well as their dynamics and adap-

tation to bi-party (or multi-party) interactions [25, 26]. More recent work selectively repre-

sents historical interactions between clients and decision-makers using methods such as

temporal logic-based models [27–31], and recurrent neural networks (RNNs) with memories

[32, 33]. However, they are ineffective for next-best action recommendation, since they either

treat states and actions homogeneously, i.e., ignoring the differences between states and

actions, or ignore their complex interactions and couplings, by taking a predefined action on

a state without selecting the actions for the best fit between clients, states, actions, and con-

texts. In addition, personalized recommendation and sequential recommender systems
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(including next-item and next-basket recommendation) have emerged recently [3, 4, 34–36]

to recommend particular or next products to users who may prefer in the next context. The

existing methods do not involve comprehensive user-product couplings and heterogeneities

(i.e., non-IIDness of users and items [37]), dynamic user-product interactions, sequential

actions and responses, or optimal decision effects, etc. In addition, intensive research has

been done on group decision making and recommendation [38–40], which are irrelevant to

this work.

Here, we introduce a computational approach: a reinforced coupled recurrent network

(CRN) to model the intrinsic nature of recommending personalized next-best actions in the

aforementioned complex decision-making settings. CRN integrates deep learning, reinforce-

ment learning, behavior informatics and recommender systems to learn dynamic, sequential,

interactive and personalized decision-making processes. First, CRN models client circum-

stances, states, behaviors, responses and decision-making actions by multi-dimensional

sequential representations using recurrent neural networks. This captures and transforms

the states and behaviors of clients and actions made by decision-makers and their evolution

into computable vector representations. Second, CRN builds a coupled recurrent unit (CRU)

to capture relevant historical behaviors and simultaneously learn the following sophisticated

couplings and interactions between clients and decision-makers on the above learned

sequential representations using two long-term memories and five control gates: (1) the

long-term sequential dependencies between an action and its previous actions taken by a

decision-maker, called action-action dependence, to reveal the influence and transition

between a series of prior actions and the current action; (2) the long-term sequential depen-

dencies between a response and its previous responses made by a client, called response-
response dependence, to learn the influence and transition between previous responses and

the current one; and (3) the long-term sequential dependencies between a current response

and its corresponding previous actions, called action-response dependence, to model the influ-

ence and transition between previous sequential actions and the current response of a client.

As a result, CRU captures, represents and memorizes a sequence of relevant interactions

between a client and a decision-maker with their particular states and behaviors and their

history. Third, CRN combines the represented behaviors with the client’s current state fea-

tures and transforms them to a compact client state representation, which models client

states and their transition. Lastly, CRN models the reward to candidate actions and learns the

dependence between the current reward to actions and the next client state in a compact

state representation to determine the next-best action tailored for the client to achieve the

decision goal.

The CRN model was tested in a major Australian government agency for debt collection to

recommend next-best intervention actions on specific debtors for tailored, active and efficient

debt collection. CRN automatically recommends the next-best action tailored for each debtor

at a particular time by incorporating the debtor’s current state and historical records, the gov-

ernment’s optional and constrained action sequences, and reward to actions specified by their

debt collectors (domain experts) measuring the effectiveness of action on debt collection. In

contrast to the related work that either assumes a Markovian property of sequential decision-

making actions or has a limited computational capability in modeling complex contexts and

interactions in personalized decision-making, our approach collectively involves and automat-

ically learns sequences of decision actions, client behaviors and states, their interactions and

transitions, the action-action, response-response and action-response dependencies, and the

action effect (reward) on client responses in dynamic, sequential and interactive decision-

making contexts at a client level.
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Methods

Learning next-best actions

Assume a next-best action selection process (illustrated in Fig 1) involves a client and their

demographics and states, a decision-maker and their actions taken on the client under certain

policy constraints, the response (behaviors) of the client to the actions, and the reward that

measures the effectiveness of an action on the client to achieve business goals at a time point.

For example, in government services such as social welfare and taxation, when a client incurs a

debt (called a debtor, i.e., a government client who owes money to the government), the gov-

ernment may take a series of actions to recover the debt in full or fast. Although debt collection

is a widely used yet sophisticated process, experienced debt collectors not only consider a debt-

or’s circumstances, the government’s service policies and constraints, business objectives, and

the effect of particular actions, they also monitor a debtor’s responses to the implemented

actions before a new action is taken. Some collectors may quantify the rewards for applied

actions to indicate their effectiveness in intervention. At present, such action-based debt col-

lection is mainly driven by business assumptions and rules, i.e., debt collection rules which we

also call domain-driven action rules for complex systems and decision-making [41]. Domain-

driven action rules play an important role in active and personalized debt collection using the

collectors’ experience, understanding and belief of the debtors’ circumstances and possible

responses and judgment in matching actions with client profiles.

However, domain-driven action selection is often ad hoc, costly and unsuitable for complex

enterprise decision-making. A debt collection action must be carefully chosen and applied on

a debtor at a particular time point by considering the client’s circumstances, the government’s

policies and service objectives, the previous actions already taken on the client, the debtor’s

responses, the potential response to an action, and the business impact of interventions (e.g.,

whether the debt will be collected faster, in a less costly manner etc.). The action selection

Fig 1. Next-best action-based personalized decision-making in constrained, tailored, sequential and interactive

dynamic processes with state-action-response-coupled sequences. A decision-maker interacts with a client

sequentially at t time steps. At each time point i, the client is associated with his demographics di and state si. The

decision-maker takes an action ai on the client’s state si under policy constraint pi. The client responds to the action

with his behavior oi, and the undertaken action takes effect with reward ri showing the transform effect from the

current state to the next state. Note, the diagram only illustrates an ideal scenario: one client who interacts with one

decision-maker, and one action corresponds to one response at each time point. From bottom to top: a rectangle

represents a client’s demographics, a light-blue ellipse represents a client’s response, a circle represents a client’s states,

a light-red ellipse represents decision actions, and a rounded rectangle represents policies constraining decision

actions.

https://doi.org/10.1371/journal.pone.0263010.g001
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process also needs to consider a debtor’s evolving circumstances, which further change during

the sequential interactions with the government. Consequently, debt collection often involves

a sequence of constrained candidate actions and the interactions with debtors in dynamic con-

texts sequentially and interactively. In summary, smart debt collection must be tailored for

each debtor and debt case, dynamic in terms of catering for evolving debtor circumstances and

business environmental settings (i.e., states), interactive between debtors and debt collectors

with their iterative communications over the collection process, and sequential with both pre-

ceding and successive actions and states considered.

We model the above debt collection problem illustrated in Fig 1 as personalized next-best
action recommendation on each client in a dynamic, sequential, interactive and constrained

decision-making process. This personalized next-best action recommendation involves client

information, sequences of client and decision-maker behaviors, and interactions between cli-

ents and the decision-maker under certain contexts and constraints at each time point.

Without loss of generality, we assume a client c over time t can be described by a three-ele-

ment tuple Ct =< Dt, At−1, Ot>, where Dt = {di|i = 1, � � �, nd} refers to a set of client’s relatively

stable information di (e.g., the demographics of the client); nd refers to the size of Dt; At−1 = {ai|

i = 1, � � �, t − 1} refers to a sequence of t − 1 past actions sequentially assigned by the decision-

maker to the client before the current time t, in which ai refers to the action assigned at the

past time step i (i� t − 1); and Ot = {Ot,i|i = 1, � � �, t} refers to a sequence of client responses to

the correspondingly assigned actions during the interaction time period, in which Ot,i = {oj|

j = 1, � � �, nr} refers to a set of responses consisting of oj made by the client at time step i to

action ai−1 (i� t) and nr is the size of the response set. Ct thus jointly captures the client’s cir-

cumstances, behaviors, prior decision-making actions taken on the client, and the client

responses to the actions. Accordingly, Ct forms a comprehensive representation of client states,

which will be further used to model the interactions with the decision-maker and quantify the

effect of next-best action candidates. Further, after taking action ai, a reward value r<Ci, ai>

measures the effectiveness of ai on the client’s next responses Ot,i+1. The larger r<Ci, ai> indi-

cates higher effectiveness. At the current time t, a subset of k actions Â�t ¼ fa
j
tjj ¼ 1; � � � ; kg

are selected as the next-best actions on the client from a candidate action set A�t satisfying pol-

icy constraints to achieve the top-k highest rewards fr
<Ct ;a

j
t>
jj ¼ 1; � � � ; kg. In practice, k = 1

indicates that only the action associated with the highest reward is recommended, correspond-

ing to the next-best action.

By empowering reinforcement learning [12, 42, 43] for sequential and interactive decision-

making, the next-best action corresponds to the decision action that can lead to the highest

reward per client state and to achieve the decision goal, which is learned by an action-value

function rθ(�, �). We learn the action-value function rθð�; �Þ : C �A! R̂, which formulates the

response’s reward r<Ci, ai> of action ai (ai 2 A) on the client’s representation Ci (Ci 2 C) at

time step i, where C, A, and R̂ are the spaces of client descriptions, decision-making actions,

and estimated rewards. Assuming R represents the space of a real reward, the personalized

next-best actions faj
tjj ¼ 1; � � � ; kg at time t for client c satisfies the following objective function:

minimize
faj

t jj¼1;���;kg
DivðR̂jjRÞ �

Xk

j¼1

rθðCt; a
j
tÞ

subject to aj
t 2 A�;

ð1Þ

where Div(�||�) is the divergence between the estimated reward space R̂ and the actual reward

space R, and θ refers to the parameters in the action-value function rθ(�, �).
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The above action-value function differs from the typical reinforcement learning

settings and Markovian decision processes where the action-value should be modeled as

rθð�; �Þ : O�A! R, i.e., on the dependence between decision actions at and client responses

Ot,t (Ot;t 2 O; O is the space of the client’s responses), which only selects the action based on

the current state but ignores the client’s sequential behaviors in history. On the contrary, our

action-value function captures the client circumstance Dt and his sequences of response behav-

iors Ot on decision-making actions At−1 using a comprehensive client description Ct rather

than client responses Ot,t at each time step t. Our action-value function thus models the com-

plex dependencies between states, between actions, and between states and actions in the

sequential state-action-response-coupled sequences (Fig 1), which sufficiently represent past-

to-present interactions between a client and his decision-maker during sequential and interac-

tive decision-making processes.

We further adopt empirical error minimization to learn the action-value function rθ(�, �) in

Eq (1). For a group of nc clients at time step t, we collect information about historical

sequences of decision actions, responses, and rewards of each client c(j), and define the objec-

tive function below to learn the action-value function capturing the long-term dependent

interactions within the client group:

minimize
θ

Xnc

j¼1

XtðjÞ

i¼1

lðrθðC
ðjÞ
i ; a

ðjÞ
i Þ; r<CðjÞi ;aðjÞi >

Þ; ð2Þ

where lð�; �Þ : R�R! R refers to a loss function that measures the difference between the

real and estimated rewards, CðjÞi refers to the description of the j-th client at time step i, aðjÞi

refers to the historical decision action on the j-th client at time step i, and t(j) refers to the maxi-

mal length of historical sequence of the j-th client. Our model also captures the client’s behav-

iors within function rθ(�, �), which caters for personalized recommendation for each client c(j).

Consequently, rather than only assuming the Markovian property between states, we model

the long-term dependencies between client states, between decision actions, and between

states and actions by jointly involving client circumstances, response behaviors to actions, and

action constraints and rewards. In doing so, we capture the rich, personalized and evolving

couplings and interactions in sequential, dynamic and interactive decision-making processes

between individual clients in their group. After learning the action-value function rθ(�, �), we

further learn the personalized next-best actions Â�t ¼ fa
j
tjj ¼ 1; � � � ; kg from the candidate

action set A�t by optimizing the following objective function:

maximize
faj

t jj¼1;���;kg

Xk

j¼1

rθðCt; a
j
tÞ

subject to aj
t 2 A�t :

ð3Þ

For example, for the aforementioned debt collection, we model each debtor’s state at time t
by involving the debtor’s demographics, debt amount and duration, historical debt collection

actions applied by the government, and response behaviors, etc. to represent the debtor’s cur-

rent description Ct, and further collect optional and sequential debt collection actions A�t con-

siderable by the government. We aim to optimize the objective function in Eq (3) to obtain the

next-best intervention actions Â�t ¼ fa
j
tjj ¼ 1; � � � ; kg � A�t on each debtor.
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Modeling the process of personalized next-best action-oriented decision-

making

We model the personalized next-best action-oriented decision-making process as a personal-

ized next-best action recommender, as shown in Fig 2. The next-best action recommender

achieves the objective defined in Eq (3) in terms of two main learning tasks: (1) learning the

action-value function, and (2) selecting the next-best actions. The first task learns the action-

value function rθ(�, �), which is then used in the second task to evaluate the actions in the candi-

date set based on a client’s behaviors and current state. Those actions with the top-k highest

rewards are then recommended as the next-best actions.

Learning the action-value function is achieved by learning the personalized client represen-

tation and the action reward prediction. The personalized client representation module repre-

sents each client Ct in terms of the client’s demographics, behaviors and current state as a

vector st, which represents the client state at time t. The action reward prediction module fur-

ther feeds st to a selected action a�t and evaluates the action reward (i.e., effectiveness) in terms

of the learned action-value function rθ(�, �). Those actions with the top-k highest rewards are

selected from the candidate action set and recommended as the next-best actions Â�t . This

design enables the candidate action set to be dynamically updated, which fits dynamic and

constrained decision-making environments, where decision actions are constrained by related

policies and/or environmental settings. This approach is also more efficient that other

approaches such as multi-class classification-based action recommendation, because it does

not need to estimate the probabilities of all possible actions (such estimation is often inefficient

and may generate meaningless results in practice).

Personalized client representation by coupled recurrent networks

We represent each client description Ct by a personalized client representation module. It cap-

tures the relatively stable client circumstances and the sequence of prior response behaviors to

a sequence of corresponding past actions applied for decision-making up to time t. As a result,

each client c is comprehensively yet compactly represented by a state vector st at time t. This

transforms a client’s cumulative behaviors, current state and sensitivity to decision actions

Fig 2. The framework for modeling the next-best action-oriented personalized decision-making. Ct refers to the representation describing client c at

time t, st is the vector of the client’s state representation, at refers to an action selected from the candidate action set A�t , at refers to the vector

representation of action at, and Â�t is the set of recommended next-best actions. The recommender first embeds a client’s demographics, behaviors and

current state to a state vector st by the personalized representation module (Fig 3), then feeds st and at into the reward prediction module to evaluate the

effectiveness of the action. The actions in the candidate set with the top-k highest rewards are then recommended as the next-best actions.

https://doi.org/10.1371/journal.pone.0263010.g002
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into a universal vector space. This personalized client representation of each client’s past and

current situation forms a universal yet tailored foundation to further determine different deci-

sion-making tasks on the client level and makes it benchmarkable for different clients with the

same state representation. We thus can make personalized next-best action recommendation

in this client representation space for each client.

Since a client’s past behavior sequence reflects his personal responses and preferences to the

actions taken by decision-makers in the past, different actions will be selected as the next-best

ones to be taken on clients who share similar states to fit their respective preferences and

achieve the best possible reward for each client. Our method reveals the cumulative action

effectiveness and the sensitivity of a client to actions by learning the complex interactions

between a client’s responses and assigned actions. In addition, involving a client’s personal

information at each time point further explains the fitness between decision actions and client

circumstances. For example, debtors with different demographics and family situations likely

respond differently to the same debt collection action in a government debt recovery cam-

paign. Our approach of integrating a client’s historical behavior sequence and their current

personal information captures comprehensive factors affecting decision-making and is much

more powerful than Markovian process models and other relevant methods.

We learn the personalized client representation using a coupled recurrent network (CRN,

Fig 3). Given a client tuple Ct =< Dt, At−1, Ot>, the decision action ai 2 At−1 and the set of cli-

ent responses Ot,i 2 Ot at each prior time step i are sequentially fed into the CRN. Initially, the

client response’s hidden state is extracted by a fully connected network from the client’s rela-

tively stable personal information. An embedding layer transforms actions described by cate-

gorical values (e.g., sending a message to a debtor) to numerical vectors. CRN embeds the

Fig 3. A reinforced coupled recurrent network to learn personalized client representation. Given a client c at current time t with the description Ct,

Ot,i refers to the client response at past time i, ai is the decision action assigned to the client, oi represents the vector representation of Ot,i, ai represents

the vector representation of ai, a�i represents the hidden state corresponding to the action, o�i represents the hidden state corresponding to the client

response, d is the transformed vector corresponding to the client’s relatively stable personal information Dt, simp indicates the learned data-driven

implicit features, sexp refers to the transformed domain-driven explicit features, st is the resultant state vector representation for the client c, and FC

refers to fully connected networks.

https://doi.org/10.1371/journal.pone.0263010.g003
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client behaviors and personal information as a vector simp, which describes the hidden state of

each client at time t in terms of a data-driven implicit feature since simp is purely generated

based on the client’s observable data and its characteristics by the deep network. We also

extract domain-driven explicit features designed by domain experts to describe the explicit sit-

uations in the CRN and transform it to a vector sexp. Lastly, a client’s current state is repre-

sented by a vector st which fuses the client’s hidden state simp and explicit state sexp through

fully connected layers.

CRN captures the complex couplings and interactions within and between the sequences of

client states and decision actions in history and models client historical behaviors and interac-

tions with the decision-maker using a coupled recurrent unit (CRU, Fig 4). Similar to the

gated recurrent unit (GRU) [44], CRU stores the historical information in its outputs. How-

ever, there are two outputs in CRU rather than one as in GRU, which correspond to actions

and responses, respectively. Specifically, the historical sequences of actions and client’s

responses are stored in a�t� 1
and o�t , respectively. CRU adopts two gates ro and ra to control the

impact of historical response and action information on their current states respectively.

Meanwhile, gates zo and za control the impact of current states on updating the memory of his-

torical information. In addition, CRU has an interaction gate ri to capture the dependence

between a decision action and a client response. With vector representation ot of the client’s

response Ot,t at time t and vector representation at−1 of decision action at−1 at time t − 1, the

variables in CRU are calculated as follows:

za ¼ sðWza
at� 1 þ Uza

a�t� 2
Þ; ð4Þ

Fig 4. A coupled recurrent unit (CRU) for modeling state-action-response-coupled long-term dependencies. a�t� 1
and o�t refer to the

representation vectors of the historical sequences of actions and client responses, respectively. ro and ra are two gates to control the impact of

historical responses and actions on their current states. Gates zo and za control the impact of current response and action states on updating the

memory of their historical information respectively. ri is an interaction gate to capture the dependence between a decision action and a client

response.

https://doi.org/10.1371/journal.pone.0263010.g004
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ra ¼ sðWra
at� 1 þ Ura

a�t� 2
Þ; ð5Þ

zo ¼ sðWzo
ot þ Uzo

o�t� 1
Þ; ð6Þ

ro ¼ sðWro
ot þ Uro

o�t� 1
Þ; ð7Þ

ri ¼ sðWiat� 1 þ Uio�t� 1
Þ; ð8Þ

ât� 1 ¼ tanhðWaat� 1 þ Uaðra � a�t� 2
ÞÞ; ð9Þ

ôt ¼ tanhðWoot þ Uoðro � o�t� 1
Þ þ Ioðri � ât� 1ÞÞ; ð10Þ

a�t� 1
¼ ð1a � zaÞ � a�t� 2

þ za � ât� 1; ð11Þ

o�t ¼ ð1o � zoÞ � o�t� 1
þ zo � ôt; ð12Þ

where σ(�) is the sigmoid function, tanh(�) is the hyperbolic tangent function, � refers to the

Hadamard product, 1a and 1o are vectors with all elements as 1 and with a na × 1 dimension

and a no × 1 dimension, respectively, Wza
;Wra

;Wi;Wa;Uza
;Ura

, and Ua are learnable matrices

with a na × na dimension, Wzo
;Wro

;Wo;Uzo
;Uro

and Uo are learnable matrices with a no × no

dimension, Ui is a learnable matrix with a na × no dimension, and Io is a learnable matrix with

a no×na dimension, no is the dimension of response vector representation o, and na is the

dimension of action embedding a.

As a result, each client is comprehensively represented in terms of his circumstances, past

decision actions received, past responses to the actions, and domain-driven factors considered

in the decision-making process. For all clients, a personalized representation (see an example

in Fig 5) is learned for each of them. The learned representations differ from or are similar to

each other, corresponding to the similarity between their demographics and responses to

Fig 5. An example of representing three clients by the reinforced coupled recurrent network. Three debtors with different demographics and past

response behaviors to the same decision actions are represented in three vectors.

https://doi.org/10.1371/journal.pone.0263010.g005
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actions. This provides a universal, comprehensive and benchmarkable representation to fur-

ther conduct personalized decision-making.

Reward prediction of next-best actions on client states

We further measure the reward of each decision action on a client state using a reward predic-

tion module (Fig 6), which is built on a residual network. The above learned client state repre-

sentation vector st and an action aj
t selected from a set of candidate actions A�t that satisfy

Fig 6. Reward prediction for the next-best action on a client’s state. The reward (rating) of an action is predicted by

residual networks corresponding to a client’s state.

https://doi.org/10.1371/journal.pone.0263010.g006
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decision-making policy constraints are input into the reward prediction module. The candi-

date action aj
t is first embedded through an action embedding layer (the same as the action

embedding layer in the personalized client representation module) to aj
t. Further, this embed-

ded action is concatenated with the client state representation vector st as the input of the fol-

lowing three-layer residual network. The last layer of the residual network predicts the reward

rθðCt; a
j
tÞ of each input action aj

t corresponding to the target client state Ct.

The residual network-based reward prediction module shows unique strengths in effi-

ciently modeling large-scale sequential decision-making actions. First, reward prediction is

efficient in processing a large number of states and actions since it learns a common reward

prediction model for different clients. Given a client state representation, it efficiently predicts

the reward values for different actions. Second, modeling complexity can be automatically

controlled since the residual network structure is embedded with a potential bypass from low-

level information to high-level information. When the input data involves hierarchical pat-

terns, the high-level features will be learned for the final prediction. For data with simple pat-

terns, the low-level features will make a direct contribution to the final prediction. This

reduces over-fitting in reward prediction and enables personalized client representation to be

well learned to capture heterogeneous client behaviors, which are embedded in a common

space for further decision-making tasks.

The next-best action recommendation module assesses the learned reward rθ(�, �) associated

with each action in the candidate set A�t for client c at time step t to judge the effectiveness of

taking action for decision-making. Those actions with the top-k (k is a hyperparameter to be

determined by decision makers) highest rewards are recommended as the next-best actions

Â�t � A�t for the client.

Strategies to learn from hierarchical imbalanced action-response

interactions

Real-life data often presents imbalanced distributions [45]. In our case study of five-year debt

collection data, we find it highly imbalanced and hierarchical across the attributes, attribute

values, domain-driven rewards, and reward levels (Table 1). With respect to the actions, their

Table 1. The distribution of rewards to 10 actions specified by debt collection experts.

Action ID Count Count(Reward < 0.5) Count(Reward >= 0.5) Reward Mean Reward Std High-reward Percentage

A1 1,225 1,196 29 0.065 0.145 2.42%

A2 390 349 41 0.132 0.259 11.75%

A3 13,592 12,640 952 0.125 0.221 7.53%

A4 1,020 800 220 0.229 0.34 27.50%

A5 1,384 1,340 44 0.057 0.158 3.28%

A6 62,263 49,473 12,790 0.223 0.333 25.85%

A7 15,403 13,090 2,313 0.186 0.294 17.67%

A8 3,289 3,084 205 0.097 0.205 6.65%

A9 904 643 261 0.311 0.355 40.59%

A10 12,044 10,753 1,291 0.159 0.262 12.01%

Total 93,368 18,146 19.43%

Notes: 10 actions were chosen by the government. Count(Reward < 0.5) measures the number of action occurrences in the five years which have been given a reward

lower than 0.5 by the debt collectors. Count(Reward >= 0.5) refers to the number of action occurrences with a reward larger than 0.5. Reward Mean refers to the mean

of all rewards per action. Reward Std refers to the standard deviation of the rewards per action. High-reward Percentage refers to the percentage of the rewards per

action.

https://doi.org/10.1371/journal.pone.0263010.t001
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frequency distribution is extremely imbalanced, which we call action imbalance. Some com-

monly taken actions may appear thousands of times more than other rarely taken actions.

Regarding the client interactions, the counts of interactions between actions and clients are

imbalanced, resulting in client interaction imbalance. For example, a small fraction of the client

cohort may involve a large proportion of interactions. With regard to the reward of actions,

most of the reward values given by domain experts to actions may be 0, leading to reward
imbalance. Lastly, the action effectiveness is different, where a small number of actions are

very strong and effective, thus they always generate a high reward, resulting in action effective-
ness imbalance.

These hierarchical imbalanced distributions in actions, interactions, rewards and action

effects bring a significant challenge to the personalized recommendation of next-best actions.

Action imbalance makes the model sensitive to those actions with high frequency but insensi-

tive to the rarely appearing actions. This is caused by the model parameters that are trained

predominantly by samples with high-frequency actions in the training phase if the imbalance

is not catered for. The client interaction imbalance also affects the training of CRN. Since the

sequence lengths of past client behaviors and decision actions are both short in most cases, it is

difficult for CRN to effectively capture the long-term dependencies in those few but long his-

torical sequences. Further, reward imbalance induces the reward prediction of the model to be

0. This results in most prediction results being 0, hence the model cannot generate the next-

best actions. In addition, the action effectiveness imbalance also results in the model consis-

tently selecting those highly effective actions (which are usually tough actions) by prediction,

which tends to recommend tough actions at all times for all clients. However, such recommen-

dations mostly violate government service policies and constraints. In addition, the various

imbalances are mixed with each other in the action-response interaction sequences, further

increasing modeling difficulty. Consequently, the imbalanced distributions at different aspects

bring significant but different challenges to personalized next-best action modeling.

Accordingly, we propose several strategies to improve CRN training (Section) and tackle

the challenges brought by the hierarchical imbalances in action-response interactions. The key

idea behind these strategies is to introduce explicit knowledge to regulate the implicit learning

of multiple sequences and their dependencies in CRN (see the section on personalized client

representation). Specifically, the various imbalances are first statistically quantified; then, the

statistic information is used to sample the training data, weight the importance of samples,

and adjust the effect on reward prediction loss. The respective strategies to tackle the imbal-

ance at different aspects are as follows.

• Action imbalance: Setting the weight of client c with action ai as

wi
c ¼

expð1=faiÞ
Pm

j¼1
expð1=fajÞ

; ð13Þ

where faj is the frequency of action aj, and m is the total number of actions. To reflect action

imbalance in the loss function (Eq (3)), the loss value on the client is multiplied by wi
c for

backward gradient propagation.

• Client interaction imbalance: Sampling the training data with probabilities {pi|i = 1, � � �, nc}

for all nc clients in each batch, pi is the sampling probability of the i-th client and is calculated

as

pi ¼
expðliÞ

Pnc
j¼1

expðljÞ
; ð14Þ
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where lj is the length of historical information of the j-th client and nc is the number of

clients.

• Reward imbalance: Setting the weight of the reward r<Ct, at> to action at on client Ct as

wrðr<Ct ;at>
Þ ¼ tanhðr<Ct ;at>

þ 0:1Þ: ð15Þ

The loss value (Eq (3)) of the client with reward r<Ct, at> is multiplied with wr, and only the

top-k largest loss values in a batch are selected for backward gradient propagation.

• Action effectiveness imbalance: Adjusting reward r<Ct, at> in training samples as

r�
<Ct ;at>

¼ r<Ct ;at>
=t2; ð16Þ

where t is the time duration (i.e., the current time step) when action at is assigned.

Results

The pilot settings and characteristics

A backtesting of our personalized next-best action recommendation was conducted on five-

year (2012-2017) debt collection data in a major Australian government agency. A subset of

5-year debt-related data from the government was used, which comprises 61,361 clients, 10

selected debt collection actions, and 66,126 client response-government action sequences in a

total of 111,514 debt transactions. The data comprises attributes about client demographics

and circumstances, the debt amount and duration at each time point associated with a debtor,

a list of optional debt collection actions and their application policy constraints, a sequence of

historical actions taken by the government on a debtor to recover the debt at each time point,

the corresponding client response behavior to each debt collection action, and the time infor-

mation associated with debt cases, responses and actions.

In debt collection, those actions that likely bring about faster and more debt recovery are

deemed as high reward. Debt collection experts rate the reward associated with each action on

the debtor population (rather than individual debtors). Accordingly, we categorize all optional

actions into two categories: (1) the low-reward action group where actions receive reward less

than 0.5, and (2) the high-reward action group where actions receive reward larger than 0.5.

The corresponding reward distribution of 10 selected debt collection actions (annotated for

privacy consideration) is shown in Table 1, where the distribution of actions and their rewards

over the five years is highly imbalanced. The most frequent action is Action 6 (A6) which

appeared 62,263 times, while the least frequent action is Action 2 (A2) which only appeared

390 times. The length distribution of historical action sequences on each debtor is also imbal-

anced. Only 50% of clients had their action sequence length larger than 4. In addition, the

domain-driven rewards given to these debt collection actions are also imbalanced, the mean

reward of all actions is under 0.32, and the highest reward given to all actions equals 1. These

show the need for handling the hierarchical imbalances with our strategies proposed in

Section.

We randomly split the data into training, validation and testing sets in proportions of 70%,

10%, 20% respectively. Due to resource constraints in the pilot, the government only selected a

proportion of debtors from the entire debtor pool to apply the intervention actions recom-

mended by our method. We calculated the average domain-driven reward given by the debt

collectors of the 10% highest predicted reward by our CRN model and reported it as our

modeling performance. This result was agreed by the debt collectors to indicate how much

percentage of debts can be deducted on average if the debt intervention was based on the next-
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best actions recommended by our model. For privacy reasons, we cannot report the govern-

ment information or any details about the debtors and debt collectors in the pilot and cannot

directly report the average debt deduction percentage incurred by our recommendations in

comparison to that driven by the government’s rule-based action selection strategies. Instead,

we report the reward lift and error reduction made by our model recommendations in com-

parison with the domain-driven debt collection rules.

Baseline methods

We test our CRN model against (1) domain-driven rules i.e. the debt collection rules defined

by the debt collection experts, (2) variants of three state-of-the-art deep models with modifica-

tions to cater for the next-best action recommendation: Google’s wide-and-deep (WD) model,

LSTM and GRU-based RNNs, and (3) the combination of wide-and-deep model with RNN

strategies. Specifically, the domain-driven rules were taken by the government, where debt col-

lection actions were taken according to the government’s debt collection policies and con-

straints defined by debt collection experts. Such domain-driven rule-based action-taking

method reflects the best practice in the debt collection business and was taken as best practice,

thus we treat it as the baseline to evaluate the effectiveness and business impact of our model

recommendations. Second, the WD model was shown to achieve state-of-the-art results in rec-

ommendation [46]. It reflects the performance of the state-of-the-art Markov decision process,

and we revise it to learn decision rules based on the current state of a client. Third, the LSTM

and GRU-based RNNs are shown to be effective in learning long-term dependencies. We

embed historical client states into LSTM and GRU to transform a non-Markovian decision

process to a Markovian decision process. They serve as the performance benchmark of the

state-of-the-art Markovian decision process learning. Lastly, we combine the WD RNN with

LSTM and GRU to take advantage of the two advanced deep modeling mechanisms: residual

network (Res) and multiple layers (Multi), to form the best possible non-Markovian decision

process learners: WD_LSTM, WD_GRU, WD_Res_LSTM, WD_Multi_LSTM, WD_Res_-

GRU, WD_Multi_GRU. They reflect the best possible performance we may achieve by hybrid-

izing the state-of-the-art achievements in deep learning.

We empirically evaluate the performance of the proposed personalized next-best action rec-

ommender CRN in terms of the following aspects: (1) Ability to reveal whether our model can

effectively predict an accurate reward value; (2) Business impact to demonstrate whether the

recommended next-best actions can lead to an estimated high reward for business in practice;

and (3) Scalability to reflect whether CRN is scalable for handling a large amount of data.

In our experiments, CRN represents each client’s demographic features (e.g., client type,

address, and industry sector, etc.) to form the initial states of CRU. This solves the cold-start

problem in decision-making by assuming that clients with similar demographic features likely

share similar behaviors. Our model uses the ReLU activation function [47] for nonlinear map-

ping and has a batch-normalization layer after all non-linear layers. All multi-layer perceptron

(MLP) networks in our model have three layers. We train the CRN model using the Adam
algorithm [48] with a batch size of 128.

Recommendation of next-best actions for each client

We applied the recommended next-best actions for five-year debt collection. As shown in

Table 2, our reward prediction module achieves 2.1942 total average reward lift (total_avg)

and 2.4954 action average reward lift (action_avg) in comparison with 2.1089 (total_avg) and

2.2049 (action_avg) by Google’s best-performing WD model, leading to a 4.04% and 13.18%

improvement, respectively in recommending 10 next-best actions that satisfy the policy
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constraints for debt collection. By applying a hierarchical imbalanced training strategy (dis-

cussed in the Method section) on the CRN for reward prediction, our method achieves a

reward lift of 2.5569 (total_avg) and 3.4599 (action_avg), which is 21.24% and 56.92% better

than the total average and action average reward lift made by the WD model.

In the pilot, those actions with an estimated reward larger than 0.5 were applied as an inter-

vention with their debtors for faster, less costly and more debt collection. By comparing the

domain-driven reward given by the debt collectors, we evaluate the precision of CRN-recom-

mended actions in terms of calculating the percentage of domain-driven high-reward actions

that CRN also predicts as high-reward ones. The results in Table 3 show that CRN results in

2.6465 (total_avg) and 3.2799 (action_avg) lift, which is 5.38% and 11.74% better than the best-

Table 2. Average reward lift for 10 actions recommended by 11 deep models over the review measured by domain-driven debt collection rules.

Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total_Avg Action_Avg

CRN_IMB 5 4 3.0534 2.8752 6.8 2.1415 2.6984 3.3567 1.6772 2.9969 2.5569 3.4599

CRN 2.1957 3.5383 2.2068 2.6616 3.216 2.074 2.326 2.6277 1.7654 2.3425 2.1942 2.4954

WD 2.604 1.5992 2.0979 2.2798 3.2239 1.9824 2.2629 2.6967 0.9899 2.312 2.1089 2.2049

LSTM 0.9722 1.0987 0.9391 0.974 1.1272 1.0159 0.897 1.1097 1.1024 1.0847 1.0013 1.0321

WD_LSTM 2.0471 1.2731 1.9709 2.4755 2.2217 1.8129 2.0816 2.1909 1.1405 2.105 1.9198 1.9319

WD_Res_LSTM 1.7247 0.8219 1.7007 1.9816 2.4985 1.8164 1.9851 2.0921 0.8285 1.967 1.8488 1.7416

WD_Multi_LSTM 1.684 1.0468 1.6591 1.774 1.6924 1.7083 1.671 2.1678 1.2222 1.8098 1.7161 1.6435

GRU 0.5783 0.0865 0.9852 1.1201 1.5022 0.9154 0.861 0.9463 1.0347 1.0416 0.9345 0.9071

WD_GRU 1.0049 0.6397 1.3454 1.7369 2.1271 1.6489 1.6049 2.1562 0.665 1.6602 1.611 1.4589

WD_Res_GRU 1.4488 1.1333 1.7364 1.3479 2.2259 1.6932 1.7091 1.9582 1.2507 1.8869 1.7248 1.6391

WD_Multi_GRU 1.6329 1.8399 1.9114 1.7949 1.8781 1.8206 2.0276 1.7613 1.0508 2.2347 1.8959 1.7952

Δ_IMB 92.01% 117.40% 45.55% 16.15% 110.92% 8.03% 19.25% 24.47% 34.10% 29.62% 21.24% 56.92%

Δ -15.68% 92.31% 5.19% 7.52% -0.25% 4.62% 2.79% -2.56% 41.15% 1.32% 4.04% 13.18%

Notes: A1 to A10 are 10 actions (Table 1) selected from five-year debt collection data. CRN and CRN_IMB are our methods, WD, LSTM, WD_LSTM, WD_Res_LSTM,

WD_Multi_LSTM, GRU, WD_GRU, WD_Res_GRU and WD_Multi_GRU are baseline deep models. Δ_IMB and Δ refer to the improvement percentage made by

CRN_IMB and CRN in comparison with the best competitors, respectively.

https://doi.org/10.1371/journal.pone.0263010.t002

Table 3. Precision lift of 10 actions recommended by 11 deep models over that by domain-driven debt collection rules.

Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total_Avg Action_Avg

CRN_IMB 5.0000 5.0000 2.9824 2.4213 5.4400 2.2071 2.7393 3.2107 1.6772 3.1382 2.5833 3.3816

CRN 4.1667 4.0000 3.6215 2.5726 5.4400 2.2123 2.7666 3.5026 1.5482 2.9686 2.6465 3.2799

WD 4.1667 2.0000 2.9469 2.5726 4.7600 2.1127 2.7121 3.9404 1.0321 3.1099 2.5114 2.9353

LSTM 0.8333 1.0000 0.7456 0.9080 1.3600 1.0406 0.7632 1.3135 1.1611 1.1026 0.9814 1.0228

WD_LSTM 2.5000 1.0000 2.9469 2.7239 3.4000 1.9345 2.4531 3.5026 1.2902 2.7424 2.2886 2.4494

WD_Res_LSTM 2.5000 1.0000 2.4498 2.1186 4.0800 1.9135 2.2623 2.7729 1.0321 2.6576 2.1589 2.2787

WD_Multi_LSTM 1.6667 2.0000 1.2090 1.2143 1.1667 1.1041 1.1988 1.4211 1.0000 1.1702 1.1561 1.3145

GRU 0.0000 1.0000 0.9941 0.9080 2.0400 0.8729 0.7496 1.0216 1.0321 0.8482 0.8785 0.9466

WD_GRU 0.8333 0.0000 1.6687 1.6646 3.4000 1.7982 1.7444 2.9188 0.6451 2.1487 1.8392 1.6822

WD_Res_GRU 0.8333 1.0000 2.5918 1.3200 2.7200 1.8087 1.8262 2.7729 1.2902 2.4031 1.9885 1.8608

WD_Multi_GRU 2.5000 2.0000 2.8049 0.9673 2.7200 1.9161 2.3577 2.4810 1.2902 3.0251 2.2346 2.3062

Δ_IMB 20.00% 150.00% 1.20% -11.11% 14.29% 4.47% 1.00% -18.52% 30.00% 0.91% 2.86% 15.20%

Δ 0.00% 100.00% 22.89% -5.55% 14.29% 4.71% 2.01% -11.11% 20.00% -4.54% 5.38% 11.74%

Notes: Δ_IMB and Δ refer to the improvement percentage of our CRN_IMB and CRN models in comparison with the best competitors, respectively.

https://doi.org/10.1371/journal.pone.0263010.t003
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performing WD model. CRN_IMB further shows that CRN improves action_avg to 3.3816,

which is 15.20% better than the WD model. Our method largely improves the precision for

those actions rarely applied in business (e.g., A2 which only appeared 100 times in five years),

which are shown to be more effective for some debtors.

We evaluate CRN effectiveness w.r.t. the mean squared error (MSE, Table 4) of recommen-

dations of next-best actions for five-year debt collection, which measures the difference

between the domain-driven reward given by debt collection experts and the reward predicted

by CRN for each action in the 10 action candidates. CRN recommendations achieve the best

overall MSE results, i.e., total_avg at 0.0777 and action_avg of 0.0613, and CRN makes a 3.24%

and 7.26% improvement over the best-performing WD model in terms of total_avg and actio-
n_avg, respectively.

We further test our CRN model to show it can efficiently model large-scale client-decision-

maker interactions, as shown in Fig 7. In our test environment (Section), CRN converges

within 20 epochs, and the mean computational cost in each epoch is around 2 minutes in our

testing environment. These empirical results show that CRN can be applied to large-scale

interaction data and problems.

Discussion

Personalized decision-making reflects a deep understanding of each customer’s circumstances

and precision interventions on the customer (client) for optimal objectives. This is challenging

when dynamic, interactive and sequential decision-making processes are involved. In this

work, personalized deep learning is proposed to learn and recommend next-best actions for

each customer in the above context. We model the client-decision-maker interactions and

their decision-making context related to client circumstances and behaviors and decision-

maker actions and constraints. The proposed reinforced coupled recurrent network (CRN)

provides a general neural multi-sequence interaction learning solution to formalize multi-

party interactions with real-life evolving, long-term dependent states and behaviors of

Table 4. The reward mean squared error (MSE) per action between the reward made by the domain-driven debt collection rules and that recommended by 10 deep

models.

Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total_Avg Action_Avg

CRN 0.0266 0.055 0.0462 0.094 0.0222 0.0937 0.0733 0.0384 0.1077 0.056 0.0777 0.0613

WD 0.0271 0.0631 0.0491 0.1038 0.0263 0.0963 0.076 0.0384 0.1245 0.0565 0.0803 0.0661

LSTM 0.1219 0.1315 0.1129 0.1411 0.1286 0.131 0.1201 0.1216 0.1256 0.1166 0.1253 0.1251

WD_LSTM 0.2361 0.2395 0.2167 0.2188 0.2539 0.2163 0.2146 0.2352 0.1757 0.2108 0.2165 0.2218

WD_Res_LSTM 0.2188 0.2333 0.2187 0.2128 0.2363 0.2091 0.2078 0.2192 0.1776 0.2099 0.2108 0.2143

WD_Multi_LSTM 0.2429 0.2485 0.2203 0.2215 0.2616 0.2177 0.2161 0.2417 0.177 0.212 0.2185 0.2259

GRU 0.1011 0.1139 0.0957 0.1324 0.1035 0.1215 0.1076 0.103 0.1243 0.1021 0.1134 0.1105

WD_GRU 0.2299 0.2368 0.2211 0.2174 0.2417 0.213 0.2106 0.2261 0.1798 0.2174 0.2149 0.2194

WD_Res_GRU 0.2301 0.2384 0.2245 0.2168 0.2493 0.2142 0.2119 0.2304 0.1777 0.2156 0.2162 0.2209

WD_Multi_GRU 0.228 0.2354 0.2196 0.2195 0.2443 0.2157 0.2131 0.2279 0.1795 0.2136 0.2162 0.2197

Δ 1.85% 12.84% 5.91% 9.44% 15.59% 2.70% 3.55% 0.00% 13.35% 0.88% 3.24% 7.26%

Notes: A1 to A10 are 10 actions (Table 1) selected from five-year debt collection data. CRN is our method, WD, LSTM, WD_LSTM, WD_Res_LSTM,

WD_Multi_LSTM, GRU, WD_GRU, WD_Res_GRU and WD_Multi_GRU are the baseline deep models. Δ refers to the improvement percentage of CRN compared

with the best-performing method. A lower MSE indicates better CRN performance. action_avg shows the unweighted average MSE and total_avg is the weighted

average MSE of each method. The weighted average is calculated in terms of the number of actions.

https://doi.org/10.1371/journal.pone.0263010.t004
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customers and intervention actions by decision-makers for automated personalized decision-

making. The CRN incorporated with coupled recurrent units (CRU) effectively and efficiently

models and recommends next-best actions for each client-oriented dynamic, personalized and

sequential decision-making. CRU (1) reveals the complex long-term dependencies between

client states, between decision actions, and between client responses and decision-maker inter-

ventions, and (2) involves and determines the client and decision-maker’s historical informa-

tion relevant to their responses and actions. In this way, we are able to model the complex

multi-sequence interactions and coupling relationships between customer states and behaviors

and decision-maker’s actions and constraints for dynamic and personalized decision-making.

This involves characterizing and coupling the roles, relationships and dynamics of clients and

decision-makers in past, present and future decision-making processes.

Our multi-sequence interaction learning method shows the potential of effectively model-

ing multi-aspect sequential, interactive and long-term dependencies, learning sequential his-

torical information about a client’s circumstances and sequential behavior responses to

decision actions, and capturing the dynamic sequential interactions between client responses

and decision actions. Our method, thus, goes beyond the usual way of assuming such deci-

sion-making processes as Markovian or convertible to Markovian [21, 27–29, 49], which often

only captures short-term dependencies in a single sequence and incurs a high computational

Fig 7. CRN convergence w.r.t. loss value on the validation debt collection data. The X-axis refers to the number of epochs, and the Y-axis refers to the

loss value of the CRN objective function (Eq (3)).

https://doi.org/10.1371/journal.pone.0263010.g007
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cost and a high rate of meaningless recommendations. Our method captures the above diverse

multi-sequence-coupled and long-term dependencies while also controlling the computational

cost. This explains why our method outperforms the wide-and-deep model, which utilizes the

Markovian decision process.

We also show the potential of personalized decision-making by selecting actions for each

client at each time point based on a deep representation of individual-level decision-making

processes over time. CRN embeds the CRU-captured historical information and the current

client state as a compact representation to learn decision rules, i.e., the dependencies between

the current reward and historical states and actions. All these happen in a personalized and

optimal manner, i.e., resulting in recommending next-best actions for each client at each time

point per the then context.

This study also goes beyond non-Markovian decision process-based decision-making

modeling [15, 16, 50], which models historical information by assuming a non-Markovian

process but overlooks the sequential and multi-party interactions between stakeholders and

between their behaviors. More research is required to further explore hierarchical, heteroge-

neous, time-varying and role-dependent couplings and interactions between multi-parties,

between their behavior sequences, and between customer preferences and decision-making

expectations. Multi-party interaction processes and dynamics also involve other challenges to

be modeled, e.g., the imbalance in action distribution which may follow a Beta rather than a

normal process in some applications, and hierarchical dependencies from attribute values to

objects (e.g., clients), and the heterogeneities between customers.

The recent advancements in RNNs with long short-term memory (LSTM) [51] and GRU

has widely been applied to model the sequential decision processes [33]. They learn a represen-

tation for historical states and use the representation to inform decision-making to capture the

dependencies between historical states and the current action. However, our method addition-

ally captures the long-term interactions between actions and states and between actions and

also incorporates the historical behaviors of clients into the current client states.

In addition, the recent work on sequential recommendation (such as next-item, next-basket

and next-song [4, 35, 36] recommendation) and interactive recommendation [52] also

involves contextual information. They typically apply neural networks and the attention mech-

anism [53] to model contextual information related to the current object. Such methods can-

not make next-best action recommendation since they do not involve decision processes, the

impact evaluation of next actions, or dynamic environments, etc.

Further, interactive personalized decision-making needs to dynamically evaluate and opti-

mize the reward of each decision action and recommend the next-best action in relation to a

customer’s current states, future rewards to actions, the customer’s future responses, and deci-

sion objectives. We model the effect of each action on each client by considering a client’s cur-

rent context, past long-term behaviors, and decision feedback (effectiveness) on past actions

measured by domain-driven rewards. This creates a way to involve domain knowledge, histor-

ical experience, and client and action-specific circumstances into a real-life complex decision-

making process and interaction learning.

Lastly, the pilot study on next-best actions for debt collection shows that modeling person-

alized, dynamic, sequential and interactive decision-making processes is often associated with

diverse computational challenges. They include hierarchical imbalanced data distributions,

multi-party interactions, and sequential, evolving, long-term and multi-sequence couplings

and dependencies. Our neural interaction learning method paves a computational way to

effectively and efficiently make personalized recommendations on next-best actions for a large

number of clients in enterprise decision-making.
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Conclusion

Multi-party interactions involve multiple coupled sequences, e.g. of each party’s states, behav-

iors and contexts. Personalized decision-making needs to not only model these coupled

sequences and the couplings both within and between these sequences but also the couplings

between parties, e.g., between a decision-maker and its clients. The automated learning of

next-best actions to be taken on each customer at each time is essential for personalized and

automated decision-making in any applications involving customer services and communica-

tions. Learning personalized next-best actions has to further model the multi-party interac-

tions for each customer and his decision-maker and learn heterogeneous dynamic multi-

sequence couplings. These issues go beyond classic decision theories, Markovian decision pro-

cess theories, and sequential modeling and recommendation. User modeling, sequential

modeling, behavior informatics, recommender systems and personalized decision-making

should be integrated to address the challenges and complexities in learning automated deci-

sion-making with personalized next-best action recommendation and in dynamic, interactive

and evolving personalized decision-making processes.
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