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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a
poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A
better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving
patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME),
which provides the biological niche for the development of PDAC from its most common precursor
lesions, PanIN (pancreatic intraepithelial neoplasias).

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a
poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor mi-
croenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists
of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosup-
pressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial
cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic
intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous
cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the
composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the
TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or
even halt tumor progression.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant
tumors with a 5-year survival rate of about 10% [1–3]. By 2030, PDAC is expected to
be the second leading cause of cancer-related deaths in the United States. Currently,
the main problem is late diagnosis and consequent poor prognosis with limited therapy
options [4,5]. A hallmark of PDAC is the formation of an immunosuppressive tumor
microenvironment (TME), leading to an evasion of immune surveillance. The TME is an
assembly of desmoplastic stroma within the PDAC tissue, which is largely composed of
cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregu-
latory soluble factors, neuronal network cells, and endothelial cells [6–9] with complex
mutual interactions [10–15]. It is known that PDAC can arise from different precursor
lesions, for example, pancreatic intraepithelial neoplasia (PanIN), intraductal papillary
mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical
flat lesions (AFL) [16]. PanINs are one of the best characterized and most frequent precursor
lesions of PDAC. They consist of microscopic flat or papillary epithelial proliferations,
typically in small pancreatic ducts. Depending on the degree of dysplasia, they display
different amounts of mucin, differential architectural patterns, and variable proliferation
rates [17–21]. In this review, we focused on the composition of the TME in PanINs to gain
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detailed insights into the complex restructuring of the TME at early time points of tumor
progression and to explore the possibilities of acting on the TME to slow down or even
arrest tumor progression.

2. Genetic Profile of PDAC and PanIN

To date, there are a large number of sequencing studies analyzing the alterations of
the genome in PDAC patients. Interestingly, mutations may be responsible for altered
activation of signaling pathways that lead to modified cell composition and further drive
the development of the TME [22]. Results of many studies have shown that PDAC is a
highly heterogeneous disease at the molecular level. Mutations in four different genes were
found to be the main drivers: oncogenic KRAS mutations on one hand, and mutations of the
tumor suppressor genes TP53, CDKN2A, and SMAD4 on the other. Activating KRAS muta-
tions are found in more than 90% of PDAC cases [23]. KRAS activation leads to increased
cell proliferation, differentiation, survival, and migration of cancer cells [24]; upon muta-
tion, the oncogenic RAS proteins are shifted into an active mode, leading to constitutive
stimulation mainly of the mitogen-activated protein (MAP) kinase, Phosphoinositid-3-
kinase (PI3K), and Ras-like guanine nucleotide exchange factors (RALGEF) pathways [25].
Activating KRAS mutations represent the earliest alterations of the genome in PDAC de-
velopment and are present in more than 90% of low-grade PanINs [26]. Furthermore,
in vivo studies in mice have shown that a direct consequence of activating KRAS muta-
tions is the development of PanINs, but also that combination with mutations in tumor
suppressor genes such as TP53, CDKN2A, and SMAD4 is required for PDAC develop-
ment [27–29]. In many tumors including PDAC, active oncogenic KRAS induces a stress
response, leading to oncogene-induced senescence and loss of the p16ink4a protein en-
coded by CDKN2A [30,31]. Furthermore, it has been shown that a hypermethylation of the
CDKN2A promoter with subsequent loss of function of CDKN2A is detectable in PanIN
lesions [32]. Loss of function of CDKN2A results in loss of blockage of entry into the S-phase
of the cell cycle [33]. In general, loss of function of the gene TP53 is known to occur in more
than 75% of tumors and results from missense mutations and loss of heterozygosity [34,35].
Mutation of TP53 results in the inability to express specific genes that can promote cell
cycle arrest or apoptosis in response to DNA damage or cellular stress [36]. In contrast
to the activating KRAS mutations, which occur very early and initiate the development
of PanINs, mutations in TP53 are detectable only rarely in high-grade PanIN lesions [37].
Genetic alterations of SMAD4 are also seldomly found in advanced PanIN lesions and
represent the final step to complete tumor development [37,38]. SMAD4 is responsible for
the transforming growth factor (TGF)-β-dependent effect against proliferation. In a GEM
(genetically engineered mouse) model for PDAC, it was shown that SMAD4 mutations
can lead to increased tumor development [29]. In addition, loss of SMAD4 is associated
with poorer patient survival [39]. In summary, activating KRAS mutations lead to the
development of PanINs at an initial stage. Along with progression to high-grade PanIN,
additional mutations may occur such as those affecting CDKN2A, TP53, and SMAD4, which
are often observed in PDAC. Interestingly, a study revealed that oncogenic mutations such
as those of KRAS are able to induce fibroblasts that, in turn, initiate altered signaling in the
tumor cells, so called reciprocal signaling [22]. In line with this, a recently published study
has shown that CAFs primarily secrete acidic fibroblast growth factor (FGF1), which in turn
leads to MYC-dependent oncogenic activity in tumor cells. Specifically, FGF1 is responsible
for CAF-dependent activation of AKT, leading to further secretion of factors by CAFs
that stimulate activity of the AKT/GSK3β axis and enhance MYC protein stability [40].
Another study by Dey et al. showed that oncogenic KRAS is able to affect host cells by
activation type I cytokine receptors via cytokine secretion from TH2 cells [41]. These studies
demonstrate that there is a link between genetic alterations in tumor cells and the induction
of an altered TME, which subsequently affects tumor development.
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3. Cellular Compartments of the TME
3.1. Cancer-Associated Fibroblasts (CAF)

The most important structural component and cell population of the TME are the
cancer-associated fibroblasts (CAFs). They are responsible for the stromal reaction includ-
ing the occurrence of dense desmoplastic stroma in PDAC. It is known that the population
of fibroblasts may account for up to 90% of the total tumor mass of pancreatic tumors [42].
In addition, CAFs are able to functionally interact with immune cells in several ways: se-
cretion of soluble immune factors, direct cell–cell contact, mechanical stimuli, or metabolic
crosstalk. Typically, CAFs express markers such as podoplanin (PDPN), α-smooth muscle
actin (α-SMA), stromal cell-derived factor-1α, and fibroblast specific protein-1 [42–44].
In addition, CAFs are known to be activated by transforming growth factor β (TGF-β),
tumor necrosis factor α (TNF-α), platelet-derived growth factor (PDGF) or interleukin
(IL)-1, -6 or -10 [44]. Among these, TGF-β plays a controversial role and may act as a
tumor promoter as well as suppressor by regulating tumor growth, differentiation, and
immune cell functions [45,46]. CAFs can behave as cancer-promoting CAFs (pCAFs) or
cancer-restraining CAFs (rCAFs) [47].

pCAFs: CAFs secrete stromal components such as collagen types I and III, fibronectin,
and proteoglycans, leading to an increase in mechanical pressure in the extracellular matrix
and to an inhibition of vascularization and promotion of cancer cell migration [42]. Further-
more, CAFs are involved in epithelial-to-mesenchymal transition (EMT), cancer invasion,
metastasis, and angiogenesis [48,49]. Recently, three different subpopulations of CAFs have
been identified in PDAC by single cell transcriptomics. These three subpopulations have
distinct localizations and functional characteristics [43,50,51]. In detail, activated fibroblasts
are located in close proximity to cancer cells and are contractile. For this reason, they have
been termed myofibroblastic CAFs (myCAFs). Characteristically, myCAFs respond locally
to high levels of TGF-β secreted by tumor cells. This leads to the induction of SMA and
collagen genes. TGF-β is the best-characterized trigger of myCAFs. By upregulating the
protein βig-h3 in stromal cells, it leads to direct suppression of CD8+ T cell activity and
induces M2 polarization of tumor-associated macrophages (TAMs) [52]. Furthermore,
myCAFs can synthesize collagens and other ECM molecules, contributing to the tumoral
immune landscape and leading to tissue stiffness, decreased immune cell infiltration, and
increased interstitial fluid pressure [8,53]. In detail, depletion of αSMA+ myCAFs leads to
a reduction in Col1 in the tumor stroma in mice. This results in an accelerated development
of PanIN and PDAC formation and decreased survival. This mechanism is facilitated
by upregulation of SOX9 signaling in cancer cells, leading to secretion of the chemokine
CXCL5 with subsequent recruitment of MDSCs and suppression of CD8+ T cells [54]. In a
previous study, depletion of αSMA+ myCAFs in PanIN or PDAC mouse tissue led to the
formation of undifferentiated tumors with poor prognosis [8]. Additionally, human PDAC
tissues with fewer myCAFs display an increased number of immunosuppressive CD4+
FoxP3+ Tregs and these features are associated with poorer survival compared to patients
with higher numbers of myCAFs [8]. The second subpopulation of CAFs are inflammatory
CAFs (iCAFs), which exhibit immunomodulatory functions. Compared to myCAFs, they
are located in stromal areas more distant from tumor cells. Their hallmark is the secretion
of inflammatory cytokines such as IL-6, IL-1, IL-21, and LIF [55]. The transdifferentiation
from CAFs to iCAFs is triggered by TLR4-mediated induction of IL-1β in tumor cells [56].
Interestingly, iCAFs promote polarization of M2 TAMs on one hand, and increase the
number of myeloid-derived suppressor cells (MDSCs) in the tumor on the other, leading to
a decrease in CD8+ cytotoxic T cells [56,57]. The third subpopulation is antigen-presenting
CAFs (apCAFs), which represent a distinct subset of iCAFs. They express characteristic
marker molecules such as MHCII, CD74, and SLPI and are able to activate CD4+ T cells
through a MHCII-dependent manner.

rCAFs: Some studies suggest that the innate function of fibroblasts in every tissue of
the body is the suppression and protection against tumorigenesis [58,59]. The study by
Özdemir et al. showed that α-SMA is a marker for rCAFs, as the depletion of α-SMA+
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cells led to enhanced tumor growth in a PDAC mouse model with an increase in Treg to
promote antitumor immunity [8]. Interestingly, there are few studies on CAFs in PanIN.
A study by Miyai et al. showed that in contrast to PDAC, which displays higher α-SMA
expression, indicating the presence of pCAFs, rCAFs with meflin expression characterize
the PanIN stroma. These findings led to the hypothesis that meflin-positive rCAFs arise
around metaplastic or transformed cells in PanIN and show a decrease in meflin expression
with a concomitant increase in α-SMA expression during cancer progression, resulting
in behavior such as pCAFs [47]. Furthermore, meflin is known to bind to BMP-7, which
counteracts the action of TGF-β preventing fibrosis [60].

Interestingly, in a study by Garcia et al., another fibroblast subpopulation was found to
be present in both PanIN lesions and PDAC tissue. This fibroblast population upregulated
the expression of Gli1 and was found in the progression to PDAC over PanIN lesions [61].
Gli1 is a target of the Sonic Hedgehog (SHH) signaling pathway and is activated in pancre-
atic CAF, thus promoting pancreatic cancer progression. Interestingly, the study by Steele
et al. demonstrated that the SHH signaling pathway is enriched in the myCAF population
in murine and human pancreatic cancer tissue. Furthermore, complete inhibition of Gli1
leads to depletion of the myCAFs and concomitant enrichment of iCAFs, resulting in a
fibroinflammatory stroma [62].

In summary, there are currently only limited studies that have investigated the role of
CAFs in precursor lesions, leading to controversial results.

3.2. Pancreatic Stellate Cells (PSC)

A specific subpopulation of CAFs are pancreatic stellate cells (PSCs) [44,63,64]. They
were identified in 1998 and are a rare cell population in healthy pancreatic tissue [65,66].
Under homeostatic conditions, they are quiescent. Under inflammatory conditions or
during carcinogenesis, they show specific histological and immunophenotypical changes
characterized by star-shaped morphology, increased proliferation, deposition of ECM
proteins, and expression of α-SMA [67]. Numerous studies have shown that PSCs can
promote pancreatic cancer cells by increasing their proliferation and migration during
standard culture conditions. This is mediated by the secretion of growth factors and
cytokines by PSCs such as TGF-β or IL-6 [68]. Accordingly, the co-injection of PSCs
together with tumor cells in an orthotropic mouse model of PDAC leads to increased tumor
size and higher incidence of metastasis [69,70]. Some recently published in vitro studies
have demonstrated that PSCs can differentiate into iCAFs or myCAFs by reprogramming
of their differentiation program, which is dependent on the presence of the signaling
molecules TGF-β and IL-1 [71,72]. Furthermore, in an in vivo KPC mouse model, PSCs
were able to give rise to a minor subset of CAFs in PDAC tissue. This subset of CAFs
was involved in modulating the TME by producing ECM components such as tenascin
or perlecan [73]. A study by Nagathihalli et al. demonstrated that PSCs can actively
secrete IL-6, leading to activation of the STAT3 signaling pathway in PanIN cells. This IL-6
secretion promotes the tumorigenic capacity of PanIN lesions [74]. Interestingly, one study
demonstrated that there were fewer PSCs in early PanIN lesions than in late PanIN lesions
and PDAC tissues [75]. Taken together, PSCs can already be identified in early PanIN
lesions and show tumor-promoting properties by leading to the progression of high-grade
PanIN lesions and, ultimately, to PDAC.

3.3. Immunosuppressive Cells

The innate immune system is the first line of defense against pathogens. In addition,
these cells protect the body from malignant cells. The myeloid lineage includes gran-
ulocytes, macrophages, monocytes, and dendritic cells, and recognizes cancer cells by
triggering antitumor responses and inflammation. Tumor cells can subvert this recog-
nition by developing evasion mechanisms that become drivers of tumor progression in
pancreatic cancer. Interestingly, myeloid cells play a dual role by initiating antitumor
responses and promoting local inflammation, which can lead to chronic cancer-associated
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inflammation [76–79]. In PDAC, the immunosuppressive microenvironment consists of
immunosuppressive tumor-associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Treg), and regulatory B cells (Breg), which are summa-
rized in Table 1 [80–84].

Table 1. Summary of immunosuppressive cells that play a role during the development of PanIN
precursor lesions and their functions.

Immunosuppressive Cells Function in PanIN Lesions

TAMs

M1 Induction of PanIN lesion formation through activation
of oncogenic KRAS

M2 Activation of IRF4 induces fibrosis in PanIN lesions

MDSCs Recruitment of MDSCs through the chemokine Cxcl-5 in
PanIN lesions with subsequent CD8+ T cell suppression

Treg
Present in PanIN lesions, lead to blockage of effector

CD4+ and CD8+ T cells
Secretion of IL-17 enhances PanIN formation

Breg Activated by IL-10 and IL-35, stimulate tumor cell
proliferation in PanIN lesions

Breg: Regulatory B cells, CD: Cluster of differentiation, Cxcl-5: C-X-C motif chemokine 5, IL: Interleukin,
IRF4: Interferon regulatory factor 4, KRAS: Kirsten rat sarcoma, M1: M1 macrophages, M2: M2 macrophages,
MDSCs: Myeloid-derived suppressor cells, PanIN: Pancreatic intraepithelial neoplasm, TAMs: Tumor-associated
macrophages, Treg: Regulatory T cells.

3.3.1. Tumor-Associated Macrophages (TAM)

Macrophages are a heterogeneous population of cells with the majority of macrophages
in healthy and inflamed tissues originating from the bone marrow. Furthermore, there are
tissue-resident macrophages that are specialized populations such as alveolar macrophages
in the lung, microglia in the brain, and Kupffer cells in the liver [85]. These cells can differen-
tiate into tumor-associated macrophages (TAMs) in the presence of cytokines, chemokines,
or growth factors such as GM-CSF, IL-3, CXCL12, CCL2, or other environmental factors
such as local anoxia or high lactic acid concentrations [86,87]. In addition, TAMs can
exhibit different polarization states, termed M1 and M2, during initiation, progression, and
therapeutic intervention. Specifically, M1 macrophages represent cells with anti-neoplastic
activity through the secretion of pro-inflammatory cytokines. In contrast, M2 macrophages
enhance tumor progression and are characterized by the production of anti-inflammatory
substances [88–91]. Many studies have demonstrated an association between patient prog-
nosis and the presence of TAMs. Using PDAC mouse models, TAMs have been shown
to be immunosuppressive and to promote angiogenesis, leading to tumor progression
through the release of cytokines, chemokines, proteases, and growth factors [92–95]. To
date, few studies have been published on the behavior of TAMs in PanIN lesions. The study
by Pylayeva-Gupta was able to link the oncogenic Kras-induced production of GM-CSF
in PanIN lesions to an immunosuppressive potential of Gr1+ CD11b+ myeloid cells [96].
Another study by Bastea et al. using an immunomodulatory agent to downregulate the M2
macrophage transcription factor interferon regulatory factor 4 showed that this resulted
in reduced fibrosis in PanIN lesions and related tumors with concomitant activation of
CD4+ and CD8+ T cells [97]. On the other hand, M1-polarized macrophages are known to
enhance pancreatic cancer development through the contribution of acinar cell metaplasia.
A study in mice showed that depletion of macrophages led to less development of acinar to
ductal metaplasia (ADM) formation [98]. Furthermore, depletion of M1 macrophages leads
to decreased ADM and PanIN formation. Macrophages are attracted by oncogenic KRAS
in pancreatic acinar cells following upregulation of ICAM-1 [94]. A study by Liou et al.
showed that IL-13 plays a critical role in the conversion of inflammatory macrophages into
TAMs [99]. In summary, these studies could demonstrate that inflammatory macrophages
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as well as immunosuppressive M2 macrophages play a major role in the initiation of ADM,
which in turn leads to the development of PanIN lesions (Figure 1).
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3.3.2. Myeloid-Derived Suppressor Cells (MDSC)

In general, myeloid-derived suppressor cells (MDSCs) form a heterogeneous immature
myeloid cell population that is divided into two groups: granulocytic or polymorphonu-
clear (PMN-MDSC) and monocytic (M-MDSC) myeloid cells. PMN-MDSCs share the
same phenotypic and morphologic characteristics as neutrophils, in contrast to M-MDSCs,
which share these characteristics with monocytes. In TME, it has been shown that MDSCs
revealed a strong increase, with PMN-MDSCs representing the majority of cells of all
MDSC at more than 80% [100–102]. A correlation between clinical cancer stage and MDSC
levels was observed in PDAC [103–105]. A mouse model suggests that tumor cells produce
GM-CSF to stimulate recruitment and differentiation of MDSCs [96,106]. Furthermore,
overexpression of the receptor RAGE was found in human PDAC, leading to an increase
in the frequency of MDSCs and promoting carcinogenesis [107]. Proliferation of MDSCs
in TME is driven by increased CD200 expression [108]. Another hallmark of MDSCs in
pancreatic tumors is their suppressive nature for CD4+ and CD8+ T cells through direct
cell–cell contact of MDSCs and lymphocytes [109] and stimulation of immunosuppressive
regulatory T cells (Treg) through secretion of TGF-β and IFN-γ [110,111]. Little is known
about the role of MDCSs in PanIN lesions, however, in agreement with the findings in
PDAC, infiltrating MDSCs have been identified in early PanIN precursor lesions, not only
in PDAC [112]. Interestingly, in a mouse study by Lesina et al., depletion of RelA in the
pancreas was shown to lead to more rapid conversion of PanIN to PDAC by inducing
MDSCs and blocking M1 macrophages [113]. This suggests that the RelA/CXCL1/CXCR2
axis is an important mechanism for tumor surveillance in PDAC. In the same lineage
of senescence, Shimazaki et al. found in a secretome analysis of the PanIN and PDAC
cell lines that complement factor B had an impact on the development of PDAC and is
expressed in the TME, leading to accumulation of MDSCs [114]. Another study in mouse
allografts found that immunosuppressive cell infiltration including MDSCs along with M2
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macrophages leads to the formation of an immunosuppressive tumor microenvironment
in precursor lesions as well as in PDAC tissues [115]. Furthermore, loss of type I collagen
leads to Cxcl5-dependent recruitment of MDSCs with subsequent CD8+ T cell suppression
during the course of development from PanIN to PDAC [54]. Taken together, little is known
about the role of MDSCs in PanIN. However, there are some studies showing that MDSCs
play a similar role in PanIN lesions as in the TME of PDAC tissues.

3.3.3. Regulatory T Cells (Treg)

To date, the antitumor immune response is known to be downregulated in the com-
plex pancreatic TME, with T cells in particular being exhausted in function [116]. An
important mechanism for the balance between pro- and anti-tumor microenvironment is
the regulation of CD4+ and CD8+ T cell populations. In particular, naïve CD4+ T cells are
able to differentiate into Th1, Th2, Th17, Th22, and regulatory T cells (Treg). This mech-
anism is important for enhancing the effector T cell response. Furthermore, the immune
system response is reflected by the ratio of Treg/Th17 [117,118]. The Treg subset is very
important in maintaining self-tolerance by preventing excessive activation of T cells. This
mechanism is a well-known defense strategy against autoimmunity. Interestingly, this
defense strategy correlates with cancer progression [119,120]. Under normal conditions,
secretion of inhibitory cytokines such as IL-10 or TGF-β by FoxP3+ Treg mediates sup-
pression of effector T cells in the TME and results in anti-inflammatory properties and
exhibits plasticity [121–124]. Notably, the pancreatic TME is composed of 25% Treg, which
contributes to immunosuppression. In an in vivo mouse model, Tan et al. were able to
correlate tumor regression with the disruption of Treg [125]. Another study demonstrated
that depletion of Treg or blocking the TGF-β signaling pathway in a tumor mouse model
of melanoma led to the prevention of immunosuppression of tumor-infiltrating CD8+
cells [126]. In contrast, the role of Th17 cells is still controversial. Th17 cells have been
detected in human tumors and secrete IL-17, a potent cytokine for inducing inflammation
by stimulating IL-6, TNF, chemokines, and matrix metalloproteases [117,127,128]. The
presence of IL-17 and Th17 correlates with shorter overall survival, and higher amounts
were found in tumor samples at a higher tumor stage [129,130]. These immunosuppressive
cells are known to be present in precursor lesions of PDAC, particularly PanIN lesions, and
lead to blockage of the antitumor activity of effector CD4+ and CD8+ T cells. This suggests
that immunosuppressive cells play an important role in pancreatic tumorigenesis [112]. A
study by Vizio et al. demonstrated that, on one hand, neutralization of IL-17 prevented the
formation of PanIN and, on the other hand, forced IL-17 expression induced the develop-
ment of PanIN into PDAC. Moreover, recruitment of Th17 to the TME was dependent on
oncogenic KRAS expression in early PanIN lesions. In addition, autonomous expression
of the IL-17 receptor was detected [131]. In this regard, there are two studies showing
that infiltrating Th17 cells secrete the cytokine IL-17A, which leads to the development of
PanIN via activation of the STAT3 signaling pathway. Specifically, pancreatic cells are able
to express the IL17RA receptor after oncogenic KRAS activation, leading to downstream
induction of REG3β. REG3β activates a signaling pathway dependent on gp130-, JAK2-,
and STAT3-pathway that promotes cell growth. Furthermore, the formation of PanIN has
been shown to be dependent on REG3β expression [132,133]. A mouse study by Keenan
et al. demonstrated in KPC mice that depletion of Treg led to a decreased formation of
early PanIN lesions [134]. In this direction, another study showed that SFRP4 expression
increased in PanIN and PDAC tissue compared to normal tissue, and in addition, a positive
correlation between Treg cell count and SFRP4 expression was found [135]. Thus, it is
evident that Tregs are already present and active in PanIN precursor lesions and contribute
to the development of PDAC (Figure 1).

3.3.4. Regulatory B Cells (Breg)

Regulatory B cells (Breg) are a very newly defined and therefore not well-characterized
cell population. In 2002, Mizoguchi et al. were able to designate B cells that contribute
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to immune tolerance and suppression of inflammation as Breg [136]. Furthermore, in
some later studies, this Breg population was defined as a cell population that regulates
disease development through various mechanisms such as the production of IL-10, IL-35,
and IL-21 [137–139]. Interestingly, unlike T cells, any B cell subset has been described to
differentiate into Breg. Only a stimulus of TLR ligands and anti-CD40 is required [140]. In
addition, a study by Kalampokis et al. described that functional Breg can be induced by
CD40 ligands, LPS, or CpG oligonucleotide stimulation [141]. In general, Breg are known
to suppress immune responses against tumors, ultimately contributing to carcinogenesis.
Specifically, some studies have shown that Breg produce IL-10 and TGF-β to suppress the
antitumor effect of immune cells [142–144]. In addition, Olkhanud et al. demonstrated that
Breg can promote the conversion of naïve T cells into Tregs by secreting TGF-β. Conversely,
it is also possible that tumor cells are able to induce the conversion of normal B cells to Breg
by inhibiting the antitumor immune process [145]. With regard to pancreatic neoplasms,
one study investigated the role of B cells in PanIN and PDAC. B cells were found both in
PanIN lesions and PDAC tissues of human and KPC mice and IL-35 was described as a
major B-cell derived interleukin inducing tumor cell proliferation [84]. Consistent with this
study, a recent study by Takhashi et al. found that IL-1β is a trigger for Breg activation
through the IL-35 axis in a mouse model of PDAC and in human PDAC tissue [146].
Interestingly, a study by Das et al. demonstrated that treatment with Bruton’s tyrosine
kinase (BTK) inhibitor of cytokine-induced B cells led to a decreased differentiation of Breg
and production of IL-10 as well as IL-35. This BTK signaling pathway was also found in
PanIN with an increase in cytotoxic T cells as well as tumor cell proliferation and PanIN
growth. This implies that BKT is responsible for the regulation of Breg differentiation [147].
In summary, current knowledge suggests that Breg can also lead to an immunosuppressive
tumor environment that promotes tumor growth. Furthermore, these milieu changes also
play a significant role in early precursor lesions of PDAC.

3.4. Neuronal Cells

Neuronal cells are a further important component of the TME [148–150]. Perineural
invasion is a frequent feature in PDAC [151]. In the TME, nerves contribute to the de-
velopment of the vascular network that supplies oxygen and nutrients to the TME and
removes excess metabolites [148]. Moreover, PSCs have been shown to express various
neuronal proteins such as neurotrophins, which suggests the existence of crosstalk between
stromal cells and neuronal cells [152]. Regarding the density of nerve fibers in PDAC, data
are controversial: on one hand, one study showed that there was a correlation between
low nerve fiber density and poorer survival [153]. Conversely, a study by Zhang et al.
showed a correlation between increased nerve fiber density with tumor budding and poor
survival [154]. Interestingly, a study by Saloman et al. demonstrated in their in vivo model
that denervation in early stages of carcinogenesis such as PanIN lesions led to slower tumor
progression and significantly prolonged survival [155]. Consistent with this, a study by
Sinha et al. also showed that neurons promote proliferation of PanIN lesions by activating
the STAT3 signaling pathway and that denervation in turn leads to loss of STAT3 and
reduced PanIN formation [156]. In conclusion, neuronal cells play an active role in PDAC
development.

4. Extracellular Matrix (ECM)

The extracellular matrix (ECM) is a three-dimensional non-cellular network composed
of various molecules, which on one hand provide physical scaffolds and, on the other, can
regulate processes such as growth, migration, differentiation, and homeostasis [157,158].
The ECM consists of various molecules, which interact with each other and are summa-
rized in Table 2 [159]. The most investigated components of the ECM are structural and
matricellular proteins such as Periostin (POSTN) and Tenascin (TNC). One of the hallmarks
of PDAC is desmoplasia (cancer-associated fibrosis), which is histologically characterized
by an abundance of ECM molecules [160–162], some of which are briefly reviewed here.
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Table 2. Main components of the ECM with their specific function and examples.

Components of ECM Function Examples

Proteoglycans

Most important structural and
functional biomacromolecules,
which can interact with growth
factors, cytokines, cell surface

receptors and other ECM molecules

Heparan sulfate
proteoglycans

Collagens

Fibrous proteins, which represent
30% of the total mass of proteins in
humans; synthesized and secreted

in the ECM by fibroblasts

Collagen I, Collagen III,
Collagen V

Elastin Large, very stable ECM structures
enabling tissue recoil Topoelastin

Fibronectin

Expressed by various cell types in
the ECM and responsible for

development in vertebrates; can
interact with integrin receptors

Cellular fibronectin,
plasma fibronectin

Laminin Plays role in early embryonic
development and organogenesis Laminin 2, Laminin 5

Matricellular Proteins

Can facilitate cell-cell and cell-ECM
interactions; promote cell adhesion
and cell migration; show moderate

expression in adult tissue, but
increase under

pathological conditions

Periostin, Tenascin

4.1. Proteoglycans

Proteoglycans are involved in altering the ECM during tumor formation through post-
translational glycosylation [163]. In PDAC, the pancreatic TME is known to overproduce
hyaluronic acid (HA). Interestingly, this overproduction begins early in carcinogenesis,
and is present already in PanIN lesions [53]. A subgroup of proteoglycans are the heparan
sulfate proteoglycans (HSPGs) associated with the cell surface or pericellular matrix. In
this group transmembrane molecules, for example, glypicans as well as molecules that are
secreted directly into the ECM such as perlecan exist [164]. Glypicans are located on the cell
surface and anchored there with a C-terminal glycosylphosphatidylinositol-moiety [165].
In PDAC, Glypican-1 (GPC1) is highly expressed by cancer cells and CAF [166]. Further-
more, high GPC1 levels are associated with poorer differentiation and larger tumors [167].
Interestingly, there are some studies that have detected GPC1 in cancer cell exome sequenc-
ing studies [168]. In addition, GPC1 can be used as a marker for detecting early stages
of pancreatic cancer such as PanIN [169]. One of the most important molecules of the
basement membrane is perlecan. So far, perlecan has been shown to be a key molecule
in the pro-metastatic environment. CAFs that are present in the stroma of metastases are
known to be able to secrete high amounts of perlecan to attract cancer cells [164,170]. To
date, there have been no studies addressing the role of perlecan in precursor lesions such
as PanIN.

4.2. Collagen

The best-characterized structural ECM molecule in PDAC is collagen. To date, 28 dif-
ferent collagen types have been described [171]. Collagens can be divided into basement
membrane collagens that include collagen IV, XV, and laminin [172], and interstitial colla-
gens that include collagen I, III, and V [173]. Collagen I is known to be responsible for the
desmoplastic reaction in PDAC [174–177]. With disruption of the normal architecture of
the basement membrane, the exposure of PDAC cells to increasing amounts of interstitial
collagen leads to the induction of protumorigenic effects. At the same time, high amounts
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of collagen I are associated with reduced patient survival [176,178,179]. Following the
interstitial collagens, we demonstrated that collagen V is expressed by PSC and led to
paracrine invasion and proliferation of the cancer cells and was also responsible for an
enhanced metastatic potential. Moreover, collagen V was demonstrated to be highly ex-
pressed in PanINs [180]. Another important collagen associated with PDAC is collagen XV.
Overexpression of collagen XV results in decreased migration of PDAC cells when cultured
in collagen-rich matrices and is lost during pancreatic tumorigenesis [181]. On the other
hand, it has been observed that the presence of collagen IV, which belongs to the same
group as collagen XV and is an essential component of the basement membrane, correlates
with dramatically decreased survival after resection of PDAC [182]. Furthermore, high
expression of collagen IV in the stroma of PDAC leads to increased proliferation and migra-
tion of PDAC cells, moreover, these PDAC cells produce collagen IV themselves to protect
themselves from apoptosis induced by serum deprivation. Not surprisingly, high levels of
collagen IV in the serum may be associated with rapid relapse after surgery and poorer
survival [183]. Collagen VI is highly expressed during PDAC development and is known
to promote metastatic colonization, particularly in a hyperglycemic context [184,185]. In
a study by Tian et al. [184], a comparison of normal pancreatic tissue, PanIN, and PDAC
samples from mice and humans, was shown. During the progression of PDAC, at all levels
of tumorigenesis, collagens are the most important group of proteins, accounting for more
than 90% of ECM proteins at all stages. During this progression from normal pancreas to
PDAC, fibrillary collagens such as COL1A1, 1A2, and 1A3 account for 90% of the total
collagen mass. Interestingly, the above-mentioned study also showed that the complexity
of the ECM increases during the progression of PDAC. In addition, 136 proteins were
discovered to be overrepresented in the PanIN and PDAC samples compared with normal
pancreas tissue, called the early PDAC progression signature. In summary, this implies that
collagens are one of the most important molecules in ECM and are leading contributors to
the development of fibrosis. Interestingly, the increased collagen accumulation can also be
seen in the PanINs (Figure 2).

4.3. Periostin (POSTN)

Periostin (POSTN) is a matricellular multimodular protein composed of several sub-
units. In detail, it is composed of a signal peptide, a small cysteine-rich module, four
fascilin-like domains, and a hydrophilic C-terminal region. These subunits have different
functions. The signal peptide is necessary for secretion, while the small cysteine-rich mod-
ule plays an important role in the formation of cysteine-disulfide bonds to form multimers.
Fascilin-like domains are required for interaction with integrins, and the C-terminal region
is responsible for interaction with other ECM molecules such as collagens or Tenascin
C [186–188]. In normal tissues, POSTN is expressed in the periosteum and during em-
bryonic development and body growth [189,190]. In addition, POSTN is expressed in
connective tissues rich in collagen and in tissues subjected to mechanical stress such as
the periosteum as well as during embryogenic development and body growth [191–193].
Through its ability to interact with cells via its FAS domains and with other ECM molecules
via the N-terminal domain and C-terminal region, POSTN is able to act as a pro-survival
protein in various cellular contexts [194–196]. Moreover, POSTN is known to play a key
role in the cross-linking of collagen in the ECM [197,198]. In PDAC tissues, POSTN expres-
sion is strongly upregulated in cancer epithelial cells, PSCs, and stroma, and is associated
with poor prognosis and worse tumor differentiation grade [184,199–201]. Furthermore,
knockdown of POSTN in PSCs leads to a reduction in proliferation and metastasis of pan-
creatic cancer cells [202]. In the study by Erkan et al., POSTN was shown to be expressed
at the invasive front of the tumor [203]. In a recent study by Yan et al., angiopoietin-like
4 was found to induce the formation of ductal cysts and was further responsible for si-
lencing acinar genes and activating ductal genes, which is a hallmark of ADM and PanIN
formation. Interestingly, POSTN acts as a downstream regulator of angiopoietin-like 4,
and decreased ADM and PanIN formation in an angiopoietin-like 4-dependent manner in
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previous studies [204]. These studies demonstrate that an increase in POSTN expression is
already present in PanIN and plays an important role in the onward progression to PDAC
(Figure 2).
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4.4. Fibronectin (FN)

Fibronectin (FN) is a glycoprotein that forms fibrils and is embedded in the extracel-
lular matrix in all tissues. Its unique feature is that FN is composed of different domains,
which allows this protein to interact with a variety of other molecules such as other ECM
proteins or cell surface receptors [205]. The function of FN is mainly described as in-
volvement in migration, cell adhesion, differentiation, and growth, which is an interesting
hallmark of tumor development [206–209]. FN is known to be produced mainly by fi-
broblasts and to a lesser extent by cancer cells [210]. Moreover, cell–ECM interactions
important for wound healing, tissue homeostasis, and development are supported by
FN [211]. In contrast, the adhesion of FN to pancreatic cancer cells leads to the formation of
a permissive environment that provides space for undisturbed proliferation of tumor cells.
In this niche, tumor cells are protected from apoptosis, which helps tumor cells become
chemoresistant [212]. Accordingly, there are studies showing that the expression of FN in
cancer cells clinically correlates with poor prognosis and metastasis [213–216]. On the other
hand, FN also shows tumor suppressive functions as FN loss of expression is correlated
with malignant transformation [217,218]. In addition, FN is a widely used biomarker that
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can be detected at high levels in plasma, serum, or urine, indicating late, metastatic stages
of cancer [219,220]. An example is the high expression of FN in circulating pancreatic
tumor cells, which are known to have a high metastatic potential that is enhanced by the
WNT pathway [221]. In general, the role of FN expression is controversial regarding its
prognostic significance. However, studies by Leppänen et al. and Hu et al. demonstrated
that FN expression is increased in PDAC tumor tissue compared with normal tissue, but
is not associated with patient survival [222,223]. In contrast, studies by Hiroshima et al.
and Javle et al. showed poor survival for patients with high FN expression associated with
expression of p-ERK or ITGA3 [224,225]. For precursor lesions such as PanIN, a study by
Dawson et al. demonstrated in a KPC mouse model that mice developed more PanIN
lesions after a high-fat diet, which is, in turn, associated with increased FN expression [226].
Overall, FN expression is increased in PDAC tumor tissue, but the impact on overall
survival is still controversial. In addition, the effects on precursor lesions such as PanIN
have not been studied in sufficient depth.

4.5. Tenascin C (TNC)

The Tenascin family consists of four members, Tenascin C (TNC) being the best-
characterized member and consisting of six monomers. These monomers are linked at their
N-termini by disulfide bonds and form a hexamer. Thereby, each of the monomers showed
different linearly arranged structural motifs with eight to 15 fibronectin repeats [227,228].
TNC is frequently expressed in embryonic tissue and in some adult tissue such as stem cell
niches, but is mainly expressed de novo under pathophysiological conditions, especially
during wound healing and tumor progression [229,230]. TNC is known to regulate the
interactions between epithelial and stromal compartments. Both TNC and POSTN are
members of the core matrisome, which is involved in the creation of the so-called metastatic
niche of human neoplasms such as colorectal cancers, brain, and breast tumors [231–233].
Together, TNC and POSTN are able to form matrix networks, which leads to a synergistic
metastasis reaction through the Wnt signaling pathway [186,229]. Furthermore, mouse
studies using TNC-null mice and wild-type mice showed that TNC is involved in enhanc-
ing inflammatory responses [234,235]. In a mouse model for rheumatoid arthritis, TNC
was responsible for activation of the toll-like receptor-4 (TLR4) pathway in macrophages
and fibroblast, leading to the secretion of proinflammatory cytokines, and TNC has been
shown to interact with immune cells and play a role in immunomodulatory effects [236].
Furthermore, TNC is known to be upregulated by TLR4 stimuli, which can be stored,
leading to an autocrine loop in macrophages to trigger acute inflammation [237]. In addi-
tion, TNC can interact with various integrins through binding, which regulates adhesion,
migration, and cell activation [238,239]. For PDAC tissues, TNC is known to reside in
the tumor stroma and not in the tumor cells or normal pancreatic tissue, and the major
source of TNC are PSCs [240]. One study showed that in PDAC, poor prognosis with
high loco-regional recurrence rate correlated with a high perineural TNC expression [241].
Another recent study found TNC in the exosomal compartment, which is also associated
with local invasion and metastasis [242]. A study by Leppänen et al. found high TNC
expression in early-stage PDAC (T1-T2 tumors), which was associated with poor prognosis
for patients [222]. An in vitro study by Paron et al. demonstrated that endogenous TNC
promotes cell growth and migration in PDAC cell lines [243]. Interestingly, a very recent
study by Barrera et al. showed that fibroblasts isolated and cultured from PDAC patients
had higher expression of TNC with increased stromal activation. In contrast, depletion of
TNC led to higher proliferation and migration of tumor cells, indicating an inhibitory effect
of TNC on pancreatic tumor cells [244]. For early neoplastic lesions such as PanIN lesions,
the study by Yoneura et al. demonstrated that the presence of TNC in PanIN and PDAC
cells led to a morphological change to the mesenchymal phenotype in vitro [233]. We
showed that the expression of TNC and of its binding partner annexin II on the cell surface
is mainly present in PDAC tissue, but, interestingly, it shows an increasing progression
from low-grade to high-grade PanIN and to cancer [240]. Furthermore, we could show
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that TGF-β1 is responsible for the TNC expression in PSCs. Another study by Zhang et al.
showed that the RING-finger-containing protein RNF13 correlates with TNC expression
and RNF13 is overexpressed in tumor samples. Interestingly, RNF13 expression was de-
tected at an early stage in PanIN lesions [245]. Thus, TNC also appears to be detectable
at the early stage of PanINs and to contribute to PDAC development at this time point
(Figure 2).

5. Vascularization

Vascularization is a process in which capillary blood vessels grow or new vessels
are formed. A hallmark during cancer development is the so-called angiogenic switch,
in which a proangiogenic status is induced [246–248]. Interestingly, a study by Abdollahi
et al. investigated angiogenesis by transcriptional analysis and demonstrated that there
is an increasing gradient of angiogenic activation from normal pancreas tissue through
precursor lesions to PDAC [249]. In addition, other studies have shown that tumor cells
and associated endothelia express components of the VEGF pathway [250,251]. In contrast,
there are studies showing that PDAC samples have lower microvessel density compared
to the normal pancreas [252,253]. Other studies investigating the use of therapies against
vascular mechanisms have failed. For example, the study by Kindler et al. showed that
a monoclonal antibody against VEGFA did not improve survival in advanced pancreatic
cancer [254]. Inhibition of the VEGF receptor also had no positive effect on patient sur-
vival [255]. Interestingly, a study by Zinczuk et al. demonstrated that the expression of
carcinoembryonic antigen (CEA)-related cell adhesion molecules (CECAM) 1, CECAM 5,
and CECAM 6, which are associated with angiogenesis, is upregulated in PanIN lesions
and have been identified as an early marker in pancreatic carcinogenesis as it increases
during development [256]. In addition, a study by Criscimanna et al. demonstrated that
hypoxia plays an important role in PanIN lesions. They demonstrated that hypoxia in-
ducible factor (HIF) 2α is expressed in early PanIN lesions and that HIF2α modulates
Wnt-signaling during PanIN development [257]. Furthermore, the angiogenesis promoting
molecule urocortin was shown to be more highly expressed in early PanIN lesions and
well-differentiated PDAC [258]. Another study showed that neuropeptide Y receptor 2 (Y2)
is significantly upregulated in both PanIN lesions and PDAC tissues und is thought to be
responsible for modulating angiogenesis [259]. In summary, features of angiogenesis can
be identified at early time points in PanINs and are present throughout the course of PDAC
development. Thus, angiogenesis starts in the early phases of tumor formation before the
invasive tumor is formed.

6. TME Targeting Strategies

TME targeting strategies in PDAC have been developed in the past years [260,261]. For
example, matrix metalloproteinases (MMPs) have been used to suppress the development
of the PDAC TME [262–264]. However, targeting MMPs has not been as successful as
expected, possibly due to the complexity of the TME. Therefore, a number of alternative
targets such as signaling pathways and specific cell populations are the subject of current
studies. One controversially discussed target is the SHH pathway, as it is known to be a
pro-tumoral signaling pathway that regulates crosstalk between stromal and tumor cells.
In GEMMs, a study by Olive et al. demonstrated that the use of SHH inhibitors against
smoothened (SMO) leads to the depletion of pancreatic tumor stroma and additional
treatment with gemcitabine results in an increased number of apoptotic tumor cells and
prolonged patient survival [252]. On the other hand, a recent study has shown that
deletion of SMO in fibroblasts led to increased proliferation of tumor cells and proteasomal
degradation of the tumor suppressor PTEN and was associated with poorer survival in
PDAC patients [265].

Another strategy to influence the TME is stromal reprogramming. Stromal reprogram-
ming aims to modulate the ECM structure (e.g., its density) to transform activated CAFs
to a quiescent stage, or to normalize tumor vascularization. In the last five years, only a
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few studies have attempted to reprogram the stroma. A study by Laklai et al. found that a
loss-of-function mutation in TGF-β signaling increased STAT3 activation with subsequent
epithelial tension and contractility. In a next step, they demonstrated that stromal stiffening
can be partially reversed by depletion or inhibition of STAT3 [266]. Furthermore, other
studies have shown in mouse experiments that inhibition of STAT3 leads to remodeling of
the stroma by decreasing the number of activated CAFs, leading to an improvement in the
response to gemcitabine therapy [267,268].

Since the TME is characterized by tremendous infiltration of immune cells, reprogram-
ming of cancer-inducing immune cells would be another promising target. As described
above, TAMs and Treg are leaders in tumor development in PDAC. Therefore, targeting
these immune cells may be a hopeful strategy. There are studies showing that inhibition of
the recruitment axis of myeloid cells by the combination of chemokine receptor blockage
and chemotherapy (CCR2 inhibitor/FOLFILINOX) leads to a decrease in infiltrating TAMs
and Treg with an additional increase in CD4+ and CD8+ cells [269]. Furthermore, this
combination prolonged the survival of mice bearing orthotopic KPC tumors [93].

To date, there have been few studies addressing TME targeting in PanIN lesions. A
recent mouse study demonstrated that inhibition of Bruton’s tyrosine kinase with tirabruti-
nib resulted in an impaired Breg population with increased cytotoxic T cells and attenuated
PanIN growth [147]. In another study, treatment with the immunomodulator pomalido-
mide was shown to lead to an absence of TAMs and a subsequent increase in CD4+ and
CD8+ T cells, resulting in reduced fibrosis in PanIN lesions [97].

7. Conclusions

The TME is a complex network composed of many different components. Current
knowledge suggests that a modified TME is already present around PDAC precursors,
possibly playing a role in PDAC development. In the initial stage, mutations such as the
activating KRAS mutation seem to play a key role. These alterations are already found
in early precursor lesions such as PanIN, following inactivation of tumor suppressor
genes such as CDKN2A, TP53m or SMAD4, which in turn contribute to an enhancement
of the tumor stroma. Activated stromal cells such as PSC have already been described
in low-grade PanIN, and their number increases during progression to PDAC. PSC are,
at least partially, the source of collagens and of matricellular proteins such as POSTN
and TNC, which exert important functions by affecting epithelial cell and immune cell
properties. Immunosuppressive cells such as M2 macrophages, MDSCs, Treg, and Breg are
important for tumor development because they promote evasion mechanisms that allow
tumor progression. Immune cells are already present in the stroma of PanIN lesions and
increase their number and effectiveness during development into PDAC.

In summary, relevant pro-tumorigenic changes in the microenvironment occurs very
early in the process of PDAC progression. Further research should be directed to func-
tionally investigate TME components in PDAC precursors to exploit their possible role as
therapeutic targets to prevent progression to invasive cancer.
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