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A continental-scale soil evaporation 
dataset derived from Soil Moisture 
Active Passive satellite drying rates
Ronnie Abolafia-Rosenzweig   1 ✉, Andrew M. Badger   2,3, Eric E. Small4 & Ben Livneh   1,5

This manuscript describes an observationally-based dataset of soil evaporation for the conterminous 
U.S. (CONUS), gridded to a 9 km resolution for the time-period of April 2015-March 2019. This product is 
termed E-SMAP (Evaporation-Soil Moisture Active Passive) in which soil evaporation is estimated from 
the surface layer, defined by the SMAP sensing depth of 50 mm, between SMAP overpass intervals that 
are screened on the basis of precipitation and SMAP quality control flags. Soil evaporation is estimated 
using a water balance of the surface soil that we show is largely dominated by SMAP-observed soil 
drying. E-SMAP soil evaporation is on average 0.72 mm day−1, which falls within the range of soil 
evaporation estimates (0.17–0.89 mm day−1) derived from operational land surface models and an 
alternative remote sensing product. E-SMAP is independent from existing soil evaporation estimates 
and therefore has the potential to improve understanding of evapotranspiration partitioning and model 
development.

Background & Summary
Evapotranspiration (ET) connects the surface water and energy budgets1. It is the second largest component of 
the terrestrial water balance after precipitation and is a source of feedback in the climate system2,3. Our ability to 
observe the return-flow of moisture from the land to the atmosphere is limited by sparse in situ observations that 
are not generally representative of regional scales4–6. Remotely sensed ET across a range of data products often 
have similar representations of ET’s seasonality2,7. However, these products show large dissimilarities7, in particu-
lar when water is the limiting factor for ET (e.g. during drought)2,8. In the absence of snow, ET is the sum of three 
components: 1) evaporation from the soil surface (Esoil), 2) transpiration from vegetation (ET), and 3) evaporation 
of intercepted water from vegetation canopies (EC). Partitioning of ET into these three components with mod-
els5,9,10 and remote sensing2 often reveal large disagreements. In this study, we apply the methodology developed 
by Small et al.11 to estimate soil evaporation using soil moisture drying rates observed by the Soil Moisture Active 
Passive (SMAP) satellite. This continental-scale gridded dataset is unique from other datasets and has the poten-
tial to improve the representation of ET partitioning in hydrologic models and climate studies.

Ground-based observational techniques, for example, the eddy covariance12 or Bowen Ratio energy balance 
methods13,14, provide measurements of the total ET flux. However, these ground-based observations only provide 
estimates of Esoil when ET is zero, for example when vegetation experiences seasonal senescence. Ground-based 
measurements can provide estimates of Esoil directly, such as weighing lysimeters15,16, and indirectly, such as the 
heat pulse method17,18. However, such ground-based observations of Esoil are labor intensive, and thus cannot be 
applied at the regional scale or for long-term monitoring15–19.

Land surface models (LSMs) compliment sparse ground-based monitoring of ET by producing spatially and 
temporally continuous estimates of total ET and its components. Yet, simulated fluxes are dependent on imperfect 
model structure and parameters that are difficult to estimate, resulting in large differences in Esoil estimates from 
different LSMs4,5,11. Total ET simulated by LSMs in the Global Land Data Assimilation System (GLDAS20), North 
American Land Data Assimilation System phase 2 (NLDAS-221,22) and experimental NLDAS-Testbed have been 
evaluated through comparison with remotely sensed ET23,24 and networks of eddy covariance flux towers11,25, 
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but there has been no similar effort to evaluate Esoil, ET or Ec as few datasets exist for this purpose4,5. Without 
observationally-based estimates of how ET is partitioned into the component fluxes, it is not possible to improve 
the representation of Esoil, ET or Ec in hydrologic models.

Remote sensing provides a promising tool for estimating latent heat flux and evaluating simulated ET. Remote 
sensing methods that estimate ET largely rely on thermal data as a key input to the evapotranspiration algo-
rithm26–29. However, these algorithms do not provide information about ET partitioning, only the total ET flux. 
Two exceptions being the Global Land Evaporation Amsterdam Model (GLEAM3,30) and the Priestly Taylor Jet 
Propulsion Laboratory (PT-JPL31,32) products, that provide estimates of total ET and its components. These real-
izations use remotely sensed soil moisture to inform estimates of Esoil, but both GLEAM and PT-JPL are strongly 
dependent on models that indirectly estimate ET and its components rather than direct measurements of evapo-
rative flux (e.g. weighing lysimeters).

To address the above issues, we develop a new remote sensing-based dataset of Esoil over the conterminous 
United States (CONUS) from 2015–2019 that essentially uses SMAP as a giant lysimeter with a sensing scale 
equivalent to SMAP’s 9 km x 9 km footprint. This Evaporation-Soil Moisture Active Passive dataset (E-SMAP) is 
the first to use remotely sensed soil drying rates in a mass balance framework to estimate Esoil (Fig. 1), thus provid-
ing unique estimates of Esoil

3,31. We extend the initial work of Small et al.11 that developed and evaluated E-SMAP 
at several in situ observation locations, to provide a continental-scale, 4-year, 9 km soil evaporation dataset. In 
this data descriptor, we first describe calculation of Esoil and a data screening procedure, followed by an exposition 
into the components of soil evaporation. Since there are no ‘true’ observations of continental-scale soil evapora-
tion, the technical evaluation consists of comparisons between E-SMAP and another remote sensing Esoil product 
(GLEAM) as well as two LSM-based datasets from the NLDAS-2.

Methods
Evaporation and the water balance of the surface soil layer.  The procedure used to create E-SMAP 
follows the methodology described in Small et al.11. A brief summary is provided here, along with descriptions of 
alterations made to that approach. Esoil is estimated independently at each SMAP 9 km x 9 km grid cell via a water 
balance of the surface soil control volume (Fig. 1), where:

θ
= − − − +E d

dt
D q E I (1)soil

s
bot Ts

θs is volumetric soil moisture in the surface soil control volume (mm3mm−3), D is the thickness of the control 
volume (mm), qbot (mm day−1) is the flux across the bottom boundary of the control volume, ETs (mm day−1) is 
surface transpiration which is the fraction of total transpiration proportional to the fraction of roots within the 
top 50 mm surface soil layer, and I is infiltration (mm day−1). We define the thickness of the control volume, D, to 
be equivalent to the SMAP sensing depth (50 mm)33, noting that this sensing depth can vary through time with 
soil moisture34. We define qbot as positive when water moves from the control volume to deeper soil and negative 
when water moves from deeper soil to the control volume. Surface transpiration, ETs, is the fraction of total ET, 
proportional to the fraction of roots within the top 50 mm of the soil.

Fig. 1  The water balance framework used to estimate soil evaporation. The E-SMAP approach is analogous to 
using SMAP as a lysimeter with a sensing scale equivalent to SMAP’s 9 km × 9 km footprint. Soil evaporation, 
Esoil, is estimated by Eq. 1 that accounts for fluxes in and out of a control volume (50 mm surface soil layer 
observed by SMAP). The direction of arrows represents the sign convention in Eq. 1 and the size of the arrow 
is proportional to the mean magnitude of each flux over intervals with minimal precipitation where E-SMAP 
records Esoil. The transpiration flux, ETs, only includes water extracted by roots in the surface layer.
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We use SMAP soil moisture time series to estimate Esoil following the assumption that Esoil is typically the larg-
est flux in Eq. 1 excluding times when infiltration is actively occurring due to precipitation or snowmelt11. The 
observed θs time series is used to calculate θd

dt
s  for intervals defined by successive SMAP overpasses35. The remain-

ing terms on the right-hand side of Eq. 1 are estimated using a combination of auxiliary data and models 
described below.

Precipitation screening.  Following Small et al.11, Eq. 1 is not applied to SMAP overpass intervals with 
substantial precipitation, since we seek to minimize uncertainties in the partitioning of incoming precipitation 
between runoff, canopy interception, and infiltration. Therefore, ‘valid intervals’ are defined as successive SMAP 
overpasses with less than 2 mm of precipitation, while those with larger precipitation values are considered 
‘not valid’11. This threshold was selected to reflect SMAP’s accuracy and sensing depth33,36, where 2 mm of infil-
trated water in a 50 mm soil column yields a soil moisture change equal to SMAP’s reported uncertainty (0.04 
mm3mm−3). After screening for precipitation, 66% of SMAP’s overpasses remain valid (Fig. 2a).

Bottom flux (qbot).  We use the Hydrus 1-D model37 to estimate qbot. Model inputs include soil properties 
that are defined using soil texture and top boundary conditions that are set to observed atmospheric boundary 
conditions (Table 1). The model solves the Richards’ equation for saturated and unsaturated conditions. Here, the 
modeled soil column depth was set to 1000 mm, discretized with 101 nodes evenly separated 10 mm apart. Model 
simulations were initialized with a 4 year run (April 1, 2015- March 31, 2019), where the outputs from March 31, 
2019 of this spin-up were used to set initial soil moisture conditions in the Hydrus simulations used to calculate 
qbot for E-SMAP. The exchange of moisture below the 50 mm node represents the flux at the bottom boundary of 
the control volume, qbot. Small et al.11 quantified the uncertainty of qbot caused by soil parameter uncertainties to 
be less than 0.1 mm day−1 during valid intervals (<2 mm of total precipitation).

Transpiration from the surface soil layer (ETs).  We compute transpiration from the surface soil control 
volume for each grid cell based based on the calculation of total transpiration38. Using a modified version of the 
Penman-Monteith potential evapotranspiration (PET) equation39, potential transpiration is calculated accounting 
for fraction of the land surface covered by vegetation based on Enhanced Vegetation Index (EVI)40:
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Fig. 2  Valid E-SMAP intervals and screening procedure. (a) E-SMAP’s spatial domain is shaded by the 
fraction of valid E-SMAP intervals on the basis of minimal precipitation (less than 2 mm). Land surface areas 
screened based on SMAP’s quality flag and Hydrus non-convergence are masked in white. (b) a histogram of 
valid E-SMAP interval durations. (c) an example time series to illustrate E-SMAP’s recording and screening 
procedure during one month over the Little Washita location. SMAP observations (black lines) are all at 6 AM 
local time. E-SMAP soil evaporation is coded at the midpoint of each E-SMAP interval (red dashed lines). 
E-SMAP intervals with more than 2 mm of cumulative precipitation are screened (grey shading). Drying rates 
are calculated from successive 6 AM SMAP observations bounding the E-SMAP interval, and other fluxes on 
the right-hand-side of Eq. 1 are estimated at finer time steps (hourly) and summed over the E-SMAP interval.
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where λE is potential transpiration, s is the slope of the saturated water vapor pressure curve (Pa K−1), A is the net 
radiation (W m−2), ρ is air density (kg m−3), Cp is specific heat capacity of air (1005 J kg−1 K−1), esat-e is vapor 
pressure deficit, ra is aero dynamic resistance (s m−1), γ is the psychometric constant (Pa K−1), and rs is surface 
resistance. Fc is the fraction of total vegetation cover calculated as a function of EVI38 and Fwet is the relative sur-
face wetness38. We then calculate ETs from λE by applying linear restrictions based on the fraction of total roots in 
the surface soil layer following an exponential function for root density41 as well as the surface soil water stress 
using observed soil moisture content from SMAP and soil properties42,43 in Eq. 3

E E rf F( ) (3)Ts SMλ= × ×

where rf is the percent of roots in the top 50 mm of the surface soil column41 and FSM is the soil water stress, cal-
culated following prior literature42,43 using Eq. 4

θ θ
θ θ

=
−
−

F ( )
( ) (4)

SM
i w

cap w

where θi is soil moisture at timestep i, θw is the wilting point of the soil and θcap is the field capacity of the soil.
Input data sources for calculation of ETs can be found in Table 1.

Infiltration (I).  I is assumed to be equivalent to precipitation during valid intervals, and is therefore expected 
to be overestimated since canopy interception is not considered. We do not expect this error source to signifi-
cantly impact Esoil calculated over intervals with little or no precipitation because overestimates in I will largely 
cancel out with overestimates in downwards qbot which are estimated from Hydrus 1-D simulations that receive 
the same precipitation. This assumption may result in underestimation of Esoil during periods when I is driven by 
other sources, such as snowmelt. However, these errors are expected to negligibly impact E-SMAP because SMAP 
already includes screening flags for regions and times with frozen soil and substantial snow coverage (snow frac-
tion exceeding 5%)44.

Data screening.  Data are screened on the basis of precipitation (described above in the Precipitation 
Screening section) as well as through SMAP quality flags. SMAP’s retrieval quality flag is used to screen data that 
is not of “recommended quality”44. Screening on the basis of SMAP’s quality flags resulted in a reduction of nearly 
40% of all SMAP grid cells in the study domain (118,531 to 72,105).

An additional constraint is the non-convergence of the Hydrus 1-D solver. 9,450 grid cells did not converge 
in Hydrus 1-D with the originally chosen soil parameter sets. To overcome the non-convergence, soil parameters 
at these grid cells were altered one of two ways: (1) parameters associated with the secondary soil classification 
at the grid cell were used or (2) if there was not a secondary soil classification, the NLDAS-2 “other” soil classi-
fication was used. Altering soil parameters resulted in convergence of 8,699 grid cells, while the remaining 751 
points (0.6% of the domain) were ultimately screened from the dataset. Altering soil parameters is expected to 
have minimal impacts on calculations of Esoil because the uncertainty in qbot associated with soil parameters is 
much smaller than the magnitude of Esoil

11. Finally, intervals with negative Esoil or ETs estimates were considered 
physically unrealistic and were also screened, reducing the E-SMAP space-time domain by 31%. The two primary 
reasons for negative Esoil outputs from Eq. 1 are (i) negative biases in SMAP observed drying rates and (ii) under-
estimates in precipitation (e.g. under-catch errors). The implications of this screening procedure as a whole are 
presented in the Technical Evaluation section.

Statistical testing.  Statistical significance of a Pearson correlation reported in the Technical Evaluation sec-
tion is calculated from a right-tailed significance test in MATLAB (https://www.mathworks.com/help/stats/corr.
html). Statistical significance of the differences between medians that are reported in the Technical Evaluation 
section are calculated from paired one-tailed Wilcoxon signed rank tests using the exactRankTests R Library45.

Data Records
A list of data sources used to build E-SMAP are included in Table 1. Each data source is remapped to SMAP’s 9 km 
EASE-Grid with the nearest neighbor approach. As part of the E-SMAP dataset, gridded estimates are posted 
for each component in Eq. 1 on SMAP’s 9 km EASE-Grid from April 2015 through March 2019 during SMAP’s 
valid intervals (Table 2). The spatial domain encompasses 25°N–50°N and 125°W–67°W, covering the entire 
CONUS. The dataset, archived on Mendeley in netCDF format, is intended to support modeling development 
efforts that focus on the partitioning of ET into its components and climate case studies within the period of data 
record (2015–2019) that require independent representation of ET components. The dataset should be cited as: 
Abolafia-Rosenzweig, R., Badger, A., Small, E., Livneh, B. E-SMAP: Evaporation-Soil Moisture Active Passive. 
Mendeley https://doi.org/10.17632/ffw8zbdmpm.2 (2020)46.

E-SMAP is compared with one remote sensing-based and two LSM-based soil evaporation datasets in the 
“Technical Evaluation” (Table 3). The three evaluation datasets were remapped to SMAP’s 9 km EASE-Grid 
using bilinear interpolation from the CDO software47 prior to comparison with E-SMAP. No true ‘validation’ of 
E-SMAP was conducted because no continental-scale and spatially representative observations of Esoil exist. Thus, 
the technical evaluation examines similarities and differences of E-SMAP relative to widely used Esoil datasets 
rather than quantifying the accuracy of E-SMAP. A point scale evaluation of the E-SMAP methodology over 10 
validation sites can be found in Small et al.11.
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Technical Evaluation
Kernel density estimators are used to show the overall tendencies of E-SMAP components in Fig. 3b–g. Esoil is 
largely explained by SMAP drying rates, − θ Dd

dt
s  and is modulated more modestly by other fluxes in Eq. 1 that are 

estimated from auxiliary data and models (qbot, I, and ETs). On average, for most regions, qbot is upwards into the 
surface control volume and largely ‘cancels out’ with ETs. Additionally, qbot, I, and ETs are each approximately four 
to five times smaller than SMAP drying rates. This results in the summation of qbot, I, and ETs to be, on average, 
four times smaller than drying rates observed by SMAP (Fig. 3).

The median ratio between SMAP drying rates and Esoil (Fig. 3a) is used to quantify the central tendency of the 
fraction of the Esoil signal attributable to SMAP drying rates. For example, in the Midwest, this fraction is 0.85, 
thus the summation of components estimated from ancillary data and tools (qbot, I, and ETs) composes 15% of the 
Esoil signal. E-SMAP relies on ancillary data and models more heavily where the ratio of SMAP drying to Esoil is 
substantially less than 1.0. For example, in the Northwest this ratio is approximately 0.77. There is a statistically 
significant correlation (p < 0.01; R2 = 0.91) between mean regional drying rates and the ratio of drying rates 
divided by Esoil, supporting the interpretation that where the SMAP drying rates are relatively large, qbot, I and ETs 
play smaller roles in the Esoil calculation. Overall, Fig. 3 supports that variability of Esoil in E-SMAP is primarily 
explained by SMAP drying rates, with contributions from other estimates ranging from 2% (Northeast) to 23% 
(Northwest).

We seek to understand the implications of data screening on the magnitude of Esoil to evaluate the represent-
ativeness of the screened E-SMAP product on climatological conditions. We compare a screened version of each 

Data type Source Citation

Soil moisture SMAP Enhanced L3 radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 1 (https://
nsidc.org/data/smap/smap-data.html) O’Neill et al.48

Meteorological forcing 
(precipitation, surface 
pressure, temperature, 
specific humidity)

NLDAS-2 (https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/NLDAS_FORB0125_H.002/) Xia et al.21; Xia et al.22; 
NCEP/EMC49

Enhanced vegetation index MOD13 A2 (https://e4ftl01.cr.usgs.gov/MOLT/) Didan et al.40

Vegetation classification UMD Land Cover Classification from AVHRR (https://data.mint.isi.edu/files/raw-data/land-use/
USGS_LCI/GLCF%3A%20AVHRR%20Global%20Land%20Cover%20Classification.pdf)

Hansen et al.50; 
Hansen et al.51

Soil properties

Texture type: NLDAS-2
(Miller and White, 1998; https://ldas.gsfc.nasa.gov/nldas/soils)
Parameters: NCAR (https://ral.ucar.edu/sites/default/files/public/product-tool/noah-
multiparameterization-land-surface-model-noah-mp-lsm/SOILPARM.TBL_.txt)
Van Genuchten parameters: USDA (https://www.ars.usda.gov/ARSUserFiles/80420525/
EnvironmentalTransport/CalcPTFFiles/PTF_Manual.version_3.0.pdf)
Saturated Hydraulic Conductivity (Chen and Dudhia, 2001).

Miller and White52;
Chen and Dudhia53

Table 1.  Data sources used to build the E-SMAP dataset.

Variable name Units

Soil Evaporation (Esoil) mm day−1

Soil Moisture Flux 
θ( )Dd s
dt

mm day−1

Bottom flux (qbot) mm day−1

Transpiration from the Surface Soil (ETs) mm day−1

Infiltration (I) mm day−1

Duration of E-SMAP Interval days

Scale Factor NA

Table 2.  List of publicly available variables included in the E-SMAP dataset. Esoil represents the average soil 
evaporation over valid E-SMAP intervals and is reported for E-SMAP calculations as well as evaluation datasets 
(GLEAM, Noah and Mosaic) temporally matched to E-SMAP’s screened intervals. Other reported variables 
represent the average flux over valid E-SMAP intervals as well. All fluxes are reported at the mid-date in 
E-SMAP intervals.

Dataset
Spatial 
resolution

Temporal 
resolution Period of record Reference and location of data retrieval

Remote sensing

GLEAM 0.25° daily 1980–2018 Miralles et al.3 & Martens et al.30 (https://www.gleam.eu/)

LSM

NLDAS-2 Noah 
and Mosaic models 0.25° hourly 1979-Present Xia et al.21; Xia et al.22; NCEP/EMC (2009)49 (https://disc.

gsfc.nasa.gov/datasets?keywords=NLDAS&page=1)

Table 3.  Data sources used in evaluating the E-SMAP dataset.
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evaluation product, matching E-SMAP’s temporal sampling produced from screening, with corresponding tem-
porally continuous estimates (Fig. 4). All evaluation datasets show that E-SMAP screening results in a statistically 
significant increase (p < 0.01) in the central tendency of mean monthly Esoil (Fig. 4) and Esoil/ET (not shown). 
Evaluation products’ Esoil averaged over valid E-SMAP intervals are larger than corresponding continuous esti-
mates, on average, by 9%, 10% and 2%, while Esoil/ET is larger by 3%, 17% and 8% for GLEAM, Mosaic and Noah, 
respectively. Figure 4d shows the interquartile range for the ratio of Esoil from screened time series relative to con-
tinuous time series is 1.05–1.12, 1.06–1.14, and 1.00–1.05 for GLEAM, Mosaic and Noah, respectively.

Screening based on negative E-SMAP Esoil results in higher monthly Esoil in all evaluation datasets, whereas 
precipitation screening results in higher Esoil in GLEAM and Mosaic but lower Esoil from Noah. Precipitation 
screening results from GLEAM and Mosaic contradict the hypothesis that Esoil is higher over rainy intervals. 
Therefore, these results may indicate that Noah more accurately represents Esoil relative to GLEAM and Mosaic. 
However, further analysis into this disagreement is outside the scope of this data descriptor. Regardless, the effect 
of precipitation screening in reducing Noah Esoil is outweighed by increases corresponding with negativity screen-
ing. In sum, all evaluation products show higher Esoil after following the E-SMAP screening procedure. Thus, on 

Fig. 3  E-SMAP Esoil relies more heavily on observed drying rates than ancillary data and models. (a) Median 
SMAP drying rates divided by Esoil over the E-SMAP domain. Kernel density estimators for each water balance 
component in Eq. 1 for the (b) Northwest, (c) Midwest, (d) Northeast, (e) Southwest, (f) Great Plains and (g) 
Southeast. Data presented in panels a–g are representative of all time steps for each region in the E-SMAP data 
set.
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average, the E-SMAP product is expected to represent a modest, but significantly higher, monthly Esoil and Esoil/ET 
than temporally continuous estimates, notwithstanding large spatial and temporal variability noted in Fig. 4. We 
therefore include temporally static, gridded scaling factors with the E-SMAP dataset—calculated as the ratio of 
mean monthly continuous Esoil time series divided by mean monthly screened time series from evaluation data-
sets—that may be multiplied with E-SMAP’s final Esoil to estimate average temporally continuous Esoil over the 
4-year E-SMAP period. Key to the application of these scaling factors is the assumption that Esoil estimated from 
Eq. 1 is affected by scaling factors similar to evaluation products.

Esoil from E-SMAP falls within the range of the evaluation products (Fig. 5). Comparing mean values of Esoil, 
E-SMAP is on average 0.72 mm day−1, which is larger than GLEAM (0.17 mm day−1) and Noah (0.5 mm day−1) 
but smaller than Mosaic (0.89 mm day−1). E-SMAP Esoil has a lower R2 with GLEAM, Mosaic and Noah (0.16, 
0.13 and 0.15, respectively; not shown) than correlations between the GLEAM and the LSM evaluation datasets 

Fig. 4  Impact of E-SMAP screening on the magnitude of Esoil. The ratio of mean monthly Esoil for valid intervals 
(after screening) divided by continuous estimates from (a) GLEAM, (b) Mosaic, and (c) Noah. (d) Box plot of 
mean monthly Valid Esoil/Continuous Esoil, where each whisker is the length of the interquartile range.

Fig. 5  Esoil from E-SMAP is greater than Noah and GLEAM but smaller than Mosaic. (a) Mean E-SMAP Esoil 
over the domain. (b) Kernel density estimators of mean Esoil from all locations calculated for E-SMAP, Mosaic, 
Noah and GLEAM. Vertical dashed lines represent median values. Spatial differences are expressed in mm 
day−1 between E-SMAP and (c) GLEAM, (d) Mosaic and (e) Noah.
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(R2 = 0.48 and 0.52 with Mosaic and Noah, respectively), which may be reflective of E-SMAP’s independence 
from these datasets. Reduced correlations are also partially attributable to the SMAP drying rates themselves, 
which are expected to be unbiased but contain random noise that may exceed the magnitude of Esoil in some 
cases32. This noisiness would correspond with a noisy Esoil estimate with reduced correlation relative to evaluation 
datasets, but with more stable averages over seasonal or longer time periods. Overall, Esoil from E-SMAP is com-
parable with Esoil from the evaluation datasets but caution should be exercised with individual data points because 
the effect of random noise within SMAP drying rates.

Usage Notes
Moisture flux estimates in the E-SMAP dataset represent the average flux over the valid SMAP interval and are 
reported at the mid-date of respective intervals. The E-SMAP dataset may be used to estimate soil evaporation 
over a time period of months or years. However, soil evaporation estimates at individual time steps should be used 
with caution because unbiased uncertainty in observed drying rates from the SMAP satellite will introduce noise 
into shorter-interval estimates.

Code availability
All scripts are accessible here: https://github.com/RAbolafiaRosenzweig/ESMAP. R code was used for the 
calculations of each component in Eq. 1 and gridding outputs from individual pixels to the E-SMAP grid. 
MATLAB was used to produce the final data product and conduct the technical validation. Further, processing 
of the data in network Common Data Form (netCDF) format was done for remapping and aggregating using the 
open source Climate Data Operators (CDO) and netCDF Operator (NCO) utilities. Hydrus-1D simulations were 
performed with publicly available model code (https://github.com/bilke/hydrus).
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