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Abstract

The corticotropin-releasing hormone (CRH) family of peptides, including urocortin 
(UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating 
the physiological and behaviour responses to stress indirectly, via the hypothalamic-
pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in 
diverse roles in peripheral organs through direct signalling, including in placental and 
pancreatic islet physiology. CRH has been shown to stimulate insulin release through 
activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the 
physiological significance of this is unknown. We have previously reported that during 
mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting 
that these peptides may play a role in various biological functions associated with 
pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state 
to compensate for the physiological increase in maternal insulin resistance. In the 
current study, we show that mouse pregnancy is associated with increased circulating 
levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling 
in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose 
tolerance was comparable to that displayed with specific CRHR2 blockade and not with 
specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of 
β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive 
responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely 
signal mediating this.

Introduction

The corticotropin-releasing hormone (CRH) peptide family 
comprises CRH and the structurally related urocortin 
peptides (UCN1, UCN2 and UCN3). These neuroendocrine 
peptides are best known for their involvement in 
regulating the physiological and behavioural responses to 
stress, through the cognate G-protein-coupled receptors 
(GPCRs), CRH receptor 1 (CRHR1) and CRH receptor 
2 (CRHR2) (Chen et  al. 1993, Lovenberg et  al. 1995, 
Weninger et  al. 1999, Bakshi et  al. 2002), as part of the 
hypothalamic-pituitary-adrenal (HPA) axis. More recent 

evidence suggests additional, diverse, extra-hypothalamic 
roles for these peptides in peripheral organs (Paschos et al. 
2013, Chatoo et al. 2018, Chatzaki et al. 2019). Thus, CRH 
expression has been reported in the adrenal gland and the 
gastrointestinal tract (Suda et al. 1984); UCN1 is expressed 
in heart, skin and adipose tissue (Kimura et al. 2002, Seres 
et al. 2004, Wierzbicka et al. 2017); and UCN2 and UCN3 
have been detected in peripheral blood cells, skeletal 
muscle, pancreas and gestational tissues such as foetal 
membranes and placental villi (Petraglia et  al. 2010).  
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CRHR1 and CRHR2 are also expressed in a wide range of 
tissues, including cardiac myocytes, the adrenal gland, 
adipose tissue, skeletal muscle and skin (Hillhouse & 
Grammatopoulos 2001), also suggesting physiological 
roles for the CRH peptide family unrelated to the HPA 
axis. However, under normal circumstances, levels of the 
peptides in the peripheral circulation are low (Sasaki et al. 
1987, Ng et  al. 2004), suggesting that the peptides may 
be produced locally to function as autocrine or paracrine 
agents in tissues where the respective receptors are also 
expressed (Zouboulis et  al. 2002, Li et  al. 2013, van der 
Meulen et al. 2015).

There is increasing evidence that the CRH peptide 
family may be involved in peripheral metabolic control 
via direct actions on insulin-secreting β-cells in pancreatic 
islets of Langerhans (Li et al. 2007, Schmid et al. 2011). 
Both CRHR1 and CRHR2 are expressed in rodent (Kanno 
et al. 1999, Schmid et al. 2011) and human islets (Amisten 
et  al. 2013), whilst in vitro administration of exogenous 
CRH stimulates insulin secretion from mouse and human 
islets as well as enhancing proliferation in neonatal rat 
β-cells (Huising et  al. 2010). Similarly, β-cell-derived 
UCN3 has been implicated in the local regulation of both 
insulin and glucagon release (Li et al. 2007). Despite the 
evidence demonstrating direct effects of exogenous CRH 
on islet function, the physiological relevance of this 
interaction is unclear, given the islets would not normally 
be exposed to significant levels of peptides of the CRH 
family. There is some evidence that placentally derived 
CRH and urocortins are involved in various biological 
functions associated with pregnancy (Thomson 2013, 
You et al. 2014). Thus, pregnancy represents one possible 
physiological state in which the effects of the CRH family 
on islet function may play a role.

During pregnancy, maternal insulin resistance 
increases and this is compensated for by increases in 
β-cell mass and enhanced insulin secretory responses 
to elevations in plasma glucose (Xue et  al. 2010, Pasek 
& Gannon 2013, Baeyens et al. 2016). We have recently 
reported an upregulation of Crh, Ucn2 and Ucn3 mRNA 
expression in mouse placenta on gestational day 12 
(Drynda et  al. 2018), which correlates to the initiation 
of β-cell adaptations in rodent pregnancy (Rieck & 
Kaestner 2010). Similarly, in human pregnancy, levels of 
CRH in the peripheral circulation increase as gestation 
progresses (Campbell et al. 1987, Sasaki et al. 1987) and 
CRH immunoreactivity has been reported in human 
placenta (Grino et al. 1987), consistent with a placental 
source for the circulating CRH. In the current study, we 
have therefore investigated a potential role for the CRH 

peptide family in the regulation of glucose homeostasis 
during pregnancy.

Materials and methods

Animals

Female Institute of Cancer Research (ICR) mice (8–12 
weeks of age, Envigo, Bicester, UK) were used for in vivo 
studies. This is a commonly used outbred mouse strain 
with very good reproductive and maternal characteristics. 
All animals were housed under controlled, pathogen free 
conditions (12-h light/dark cycle (07:00–19:00 h lights 
on), temperature 22 ± 2°C) and provided with standard 
chow diet and water ad libitum. For timed pregnancy 
studies, female mice were mated with male ICR mice and 
the presence of vaginal plug assessed daily and denoted 
day 1 of pregnancy if present. Age-matched female mice 
were used for non-pregnant studies, with procedures 
carried out at the same time intervals as described for 
pregnancy studies. All procedures were conducted under 
approval by King’s College London Animal Welfare and 
Ethical Review Board and were undertaken in accordance 
with United Kingdom Home Office Regulations.

Islet isolation and insulin secretion in vitro

For in vitro insulin secretion studies, pancreatic islets were 
isolated from female ICR mice via collagenase digestion of 
the exocrine pancreas, as described previously (Rackham 
et al. 2016). Isolated islets were subsequently maintained 
at 37°C in RPMI (Sigma) supplemented with 10%  
(vol/vol) foetal bovine serum, 2 mmol/L glutamine and  
100 U/mL penicillin/0.1 mg/mL streptomycin for 24 h  
before use. Islets were loaded into a multi-channel, 
temperature-controlled perifusion system, as described 
previously (Liu et al. 2013), and pre-perifused for 1 h with 
physiological salt buffer (Bowe et  al. 2019) containing 
2 mmol/L glucose before being exposed to 20 mmol/L 
glucose in the presence or absence of the CRHR agonists, 
CRH (50 nmol/L, Sigma), stressin I (100 nmol/L, Tocris) 
or UCN2 (100 nmol/L, Sigma) at 37°C. Perifusate samples 
were collected every 2 min and insulin secretion was 
quantified using an in-house insulin RIA (Jones et al. 1988).

In vivo osmotic minipump studies

Osmotic minipumps (ALZET®, Model 1002, Charles 
River) were implanted subcutaneously into pregnant or 
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non-pregnant mice to chronically administer test agents. 
Surgical implantation of osmotic minipumps was carried 
out on day 7 of pregnancy (or equivalent time interval 
for non-pregnant mice) under isoflurane anaesthesia 
(Isothesia®, Henry Schein®). Minipumps were loaded 
with physiological saline, non-specific CRHR antagonist 
(α-helical CRF9–41, 1 mg/ml, Tocris) or receptor-specific 
CRHR antagonists, antalarmin hydrochloride (1 mg/mL, 
Tocris) or antisauvagine-30 (3 mg/mL, Tocris) for CRHR1 
and R2, respectively. Test agents were delivered at a rate 
of 0.25 µL/h for a total period of 11 days. Assessment of 
glucose tolerance and insulin tolerance were conducted 
on gestational days 16 and 18, respectively.

Assessment of glucose homeostasis

Intraperitoneal glucose tolerance tests (IPGTT) were 
conducted on day 16 of gestation. Mice were fasted from 
09:00 h for 6 h and then administered with glucose  
(2 g/kg, Sigma). Blood sampling was performed by small 
tail prick at time points 0, 15, 30, 60, 90 and 120 min 
following glucose administration to determine blood 
glucose levels using an Accu-Chek glucose metre (Roche 
Diagnostics). Intraperitoneal insulin tolerance tests (IPITT) 
were conducted on day 18 of gestation. Mice were again 
fasted from 09:00 h for 6 h prior to metabolic testing and 
were subsequently administered with insulin (0.75 IU/kg, 
Sigma). Blood sampling was performed by small tail prick 
at time points 0, 15, 30, 45 and 60 min following insulin 
injection to determine blood glucose levels.

Measurements of circulating CRH-related peptides

On day 18, animals were killed by intraperitoneal injection 
of terminal anaesthesia (Euthatal®, Merial Animal Health 
Ltd, Bracknell, UK) and terminal blood samples were 
collected via cardiac puncture into sterile heparin-coated 
tubes. Samples were also collected from control pregnant 
mice on day 16. Samples were centrifuged (1800 g, 20 min, 
4°C) and the subsequent plasma was stored at −20°C for 
later assay of circulating peptide levels using commercially 
available ELISA kits (CRH: CEA835Mu, Cloud-Clone 
Corp, Houston, TX, USA; UCN1: CEA231Mu, Cloud-
Clone Corp; UCN2: MOFI00425, ELISAGenie, London, 
UK; UCN3: CED140Mu, Cloud-Clone Corp) following the 
manufacturers’ instructions.

Quantification of mRNA expression

Isolated female islets from non-pregnant and pregnant 
(day 16) mice were immediately snap frozen in liquid 

nitrogen following purification from the exocrine 
pancreas for subsequent RNA extraction using RNeasy 
Mini Kit (Qiagen) and High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems) for cDNA 
synthesis, as described previously (Drynda et  al. 2018). 
Placenta samples were also collected after termination 
at day 18 of pregnancy and snap frozen. RNA extraction 
and cDNA conversion were conducted as described earlier. 
Islet CRH receptor and placental CRH ligand mRNA 
expression were subsequently quantified by quantitative 
RT PCR (qRT-PCR) using SYBR Green PCR Kit (QuantiTect, 
Qiagen) and a LC96 Light Cycler (Roche Diagnostics). 
QuantiTect primer assays were used for expression 
analysis of genes of interest using glyceraldehyde 
3-phosphate dehydrogenase (Gapdh) as the housekeeping 
gene (Mouse Crh-QT01055789, Ucn1-QT00326879, 
Ucn2-QT01556534, Ucn3-QT00302267, Crhr1-QT00106232, 
Crhr2-QT00151543, Gapdh-QT01658692, Qiagen).

Assessment of β-cell mass

For osmotic minipump studies, bromo-deoxy-uridine 
(BrdU, 1 mg/mL, Sigma) was administered in the 
drinking water from day 14 to day 18 of pregnancy with 
fresh BrdU drinking water being replaced every 2 days. 
After termination at day 18, pancreata were dissected, 
fixed in 4% paraformaldehyde (Sigma) and embedded in 
paraffin wax before being cut into 5 µm thick sections 
using Leica microtome (RM2255). Representative 
sections (3–4 sections per animal), approximately 150 µm  
apart, were co-stained with guinea pig anti-insulin 
antibody (1:200, Dako) to visualise islet β-cells and 
monoclonal mouse anti-BrdU antibody (1:100, Sigma) 
to identify proliferating cells as previously described 
(Bowe et al. 2019). Images were taken on Nikon Eclipse 
TE2000-U fluorescent microscope and quantification of 
BrdU-positive β-cells and β-cell area was performed using 
ImageJ 1.49c software.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
8.0 software. For comparison between two groups, 
unpaired, two-tailed Students t-test was used. For in vivo 
glucose and insulin tolerance tests, two-way repeated-
measures ANOVA was used, followed by Tukey’s multiple 
comparison test to identify the significance between 
multiple groups.
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Results

CRH receptor gene expression profile in pregnancy

Islets isolated from non-pregnant and pregnant (d.16) 
female mice expressed both Crhr1 and Crhr2 mRNAs, 
as shown in Fig. 1. As expected, Crhr1 expression in 
islets was higher than Crhr2 expression, displaying an 
analogous expression pattern for the receptors to that in 
the pituitary, a classical target for CRH. Islet Crhr1 mRNA 
expression was significantly reduced during pregnancy 
compared to non-pregnant levels (Fig. 1A), whereas 
islet Crhr2 mRNA levels were unchanged between non-
pregnant and pregnant animals (Fig. 2B). Thus, islets 
express receptors for the entire CRH family of peptides.

Effects of CRH receptor stimulation on 
insulin secretion

Activating either CRHR1 or CRHR2 enhanced glucose-
induced insulin secretion from isolated mouse islets 
in a dynamic perifusion system, as shown in Fig. 2.  

Exposure to 20 mmol/L glucose initiated a rapid increase 
in insulin secretion, which was further potentiated by 
the addition of CRH (acting as a non-specific CRHR1 
and CRHR2 agonist, Fig. 2A); stressin I (a CRHR1-specific 
agonist, Fig. 2C); or of UCN2 (a CRHR2 specific agonist, 
Fig. 2E). Area under the curve quantification of glucose-
stimulated insulin secretion (30–50 min) confirms 
the significant potentiation of insulin secretion in the 
presence of stimulatory concentrations of glucose, 
induced by all CRH receptor agonists tested (Fig. 2B, D 
and F). CRHR agonists had no significant effect on insulin 
secretion at a sub-stimulatory concentration of glucose 
(data not shown; 2 mmol/L glucose; control, 0.056 ±  
0.010 ng/islet/h vs + 50 nmol/L; CRH, 0.045 ± 0.009 vs +  
100 nmol/L; stressin I, 0.034 ± 0.007 vs + 100 nmol/L; Ucn2, 
0.053 ± 0.008; mean ± s.e.m., n = 9 observations P > 0.999). 
Thus, activation of CRHR1 or CRHR2 potentiates glucose-
stimulated insulin secretion from islet β-cells.

Circulating CRH and urocortin profile 
during pregnancy

qRT-PCR measurements demonstrated that mRNAs for Crh, 
Ucn1, Ucn2 and Ucn3 were all expressed by mouse placenta 
at day 18 at similar levels (Fig. 3A), confirming our previous 
observations (Drynda et  al. 2018). Furthermore, all four 
peptides were detected in the peripheral circulation, with 
UCN2 being the most abundant circulating CRHR agonist 
(Fig. 3B). The circulating levels of CRH, UCN1 and UCN3 
were unchanged between non-pregnant and pregnant 
female mice. However, circulating levels of UCN2 were 
elevated almost two-fold by day 16 of pregnancy when 
compared to age-matched virgin female controls (Fig. 
3B). Thus, the pancreatic islets are likely to be exposed 
to elevated levels of UCN2 during pregnancy, with the 
placenta being the most likely source for the increased 
levels. Therefore, the candidate ligand of the CRH family 
to play a physiological role in the islet adaptation to 
pregnancy appears to be UCN2.

Effect of pharmacologically blocking endogenous CRH 
receptor signalling during pregnancy

The consequences of pharmacological blockade of CRH 
receptor signalling in vivo was assessed in both non-
pregnant and pregnant mice, revealing a pregnancy- 
and receptor-specific phenotype, as shown in Fig. 4. As 
expected, intraperitoneal administration of glucose, 
elevated blood glucose levels within 15 min in both 
pregnant and non-pregnant mice (Fig. 4A and E).  

Figure 1
Expression of Crhr1 (A) and Crhr2 (B) mRNAs by isolated female islets in 
non-pregnancy (white bar) and pregnancy day 16 (PD.16; black bar). 
Anterior pituitary was used as a positive control (grey bar) and mRNA 
expression levels were quantified to the relative expression of 
housekeeping gene, Gapdh. Crhr1 mRNA expression levels decreased 
significantly during pregnancy (~60%), whereas levels of Crhr2 expression 
were unchanged. Data are presented as mean + s.e.m., n = 5, *P < 0.05; 
Students t-test non-pregnant vs PD.16.
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Chronic pharmacological blockade of total CRHR  
signalling during pregnancy with a non-selective 
antagonist, α-helical CRF9–41, resulted in a mild 
impairment to glucose tolerance, with significantly 
higher blood glucose concentrations at 15 min after 
glucose administration, compared to saline controls (Fig. 
4A). Chronic administration of the CRHR2 antagonist, 
antisauvagine-30, resulted in a similar impairment to 
glucose tolerance in pregnant mice, but not in animals 
treated with the specific CRHR1 antagonist, antalarmin 
hydrochloride (Fig. 4A and B). These data are consistent 
with an endogenous ligand, acting via CRHR2, playing a 
physiological role in maintaining normal glucose tolerance 
during pregnancy. All pregnant mice were insulin resistant 
by day 18 of pregnancy as indicated by the failure to 
respond to exogenous insulin administration and lowering 
of blood glucose; however, none of the CRHR antagonists 
had any detectable effects on insulin sensitivity (Fig. 4C 
and D). Chronic treatment of non-pregnant female mice 
with α-helical CRF9–41 to block total CRHR signalling 
had no significant effect on glucose tolerance or insulin 
sensitivity (Fig. 4E, F, G and H). Given the lack of effect 

of α-helical CRF9–41, receptor-specific antagonists were not 
tested outside of pregnancy. Thus, CRHR2 activation by 
an endogenous ligand is involved in maintaining glucose 
homeostasis specifically during pregnancy.

In addition to effects on whole body glucose 
homeostasis, pregnancy in mice is also associated with 
an increased rate of β-cell proliferation to increase the 
functional β-cell mass (Rieck & Kaestner 2010). This was 
evaluated by BrdU+ β-cell staining (Fig. 5A and B). Chronic 
blockade of total CRHR signalling during pregnancy 
using α-helical CRF9–41, had no significant effects on β-cell 
proliferation, β-cell size or the average insulin+ β-cell 
area, as shown in Fig. 5C, D and E. The effects of CRHR 
activation on glucose homeostasis during pregnancy are 
therefore most likely direct effects on the β-cell to enhance 
insulin secretion rather than to increase the β-cell mass.

Discussion

During pregnancy, the metabolic profile of the mother 
adapts to ensure a sufficient supply of energy for the 

Figure 2
Effect of exogenous CRH (A), CRHR1-specific 
agonist stressin 1 (C) and CRHR2-specific agonist 
UCN2 (E) on dynamic insulin secretion from 
isolated, perifused female mouse islets. Islets 
were exposed to physiological buffer containing 
20 mmol/L glucose only or supplemented with 
agonists between 30 and 50 min. All CRHR 
agonists potentiated glucose-stimulated insulin 
secretion over that seen from control islets, as 
demonstrated by the rate of insulin secretion (A, 
C, E) and area under curve data (B, D, F). Data are 
presented as mean ± s.e.m., n = 3–4 per treatment 
group, AUC 20 mmol/l glucose + agonist, 30–50 
min, *P < 0.05, **P < 0.01, ***P < 0.001; Students 
t-test control vs agonist treatment.
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developing fetus. A progressive increase in maternal 
insulin resistance across pregnancy represents a key 
mechanism for increasing fuel availability to the fetus 
(Freemark 2006, Newbern & Freemark 2011). This insulin 
resistance is compensated for by an increase in the 
maternal functional β-cell mass and enhanced insulin 
secretory responses (Baeyens et  al. 2016). Failure of the 
β-cell to adapt to the maternal metabolic load can lead 
to maternal glucose intolerance and, eventually, to overt 
gestational diabetes (Zhang et al. 2010, Plows et al. 2018). 
In rodent models, the early β-cell adaptations to pregnancy 
involve non-placental signals (Drynda et  al. 2015), but 
as placentation is established and pregnancy progresses, 
the placenta becomes an important endocrine organ, 
secreting numerous hormonal signals, which influence 
maternal and foetal physiology (Jansson 2016). The 
lactogenic hormones, prolactin and placental lactogen, 
are important pregnancy-associated signals, well-
established to act via β-cell prolactin receptors to induce 
β-cell mass expansion and enhance insulin secretion 
(Brelje et  al. 1993, Sorenson et  al. 1993, Vasavada et  al. 
2000, Huang et al. 2009). These effects may be mediated, 
at least in part, by an upregulation of intra-islet serotonin  

(Kim et al. 2010, Ohara-Imaizumi et al. 2013). However, 
the mouse placenta expresses approximately 80 different 
ligands for which β-cells express the cognate GPCRs 
(Drynda et al. 2018), and it is unlikely that the lactogenic 
hormones are the only signals involved in regulating islet 
adaptations. These placental ligands include a number 
of peptides more usually associated with hypothalamic 
neuroendocrine functions. We have recently identified 
kisspeptin as an important placental signal regulating 
β-cell function during pregnancy (Bowe et al. 2019). The 
current study extends these observations to implicate 
another classical hypothalamic neuroendocrine  
system, the CRH peptide family, in placental control of 
β-cell function.

The expression profile of CRH receptors in mouse 
islets is consistent with previous reports confirming the 
expression of both Crhr1 and Crhr2 using mouse (Huising 
et al. 2011) or human (Amisten et al. 2013) islets. These 
observations suggest that islet cells have an innate 
capacity to recognise and respond to circulating CRH and 
the urocortin peptides. The decreased expression levels of 
Crhr1 during pregnancy is also suggestive of a shift in the 
receptor ratio to potentially direct Crhr2 signalling under 
the influence of placental signals. Accordingly, our in vitro 
measurements of insulin secretion from isolated islets, 
demonstrated that activation of either CRHR1 or CRHR2 
significantly potentiates glucose-stimulated insulin 
secretion (GSIS). Similar to other β-cell GPCRs, activation 
of CRHR1 and CRHR2 only enhanced insulin secretion in 
the presence of a stimulatory concentration of glucose, 
suggesting that the physiological function of receptor 
activation is to module the extent of the insulin secretory 
response to elevated glucose concentrations, rather 
than to initiate secretion. Our dynamic measurements 
of insulin secretion from isolated islets correspond with 
studies using mouse or human islets in static incubations 
(O’Carroll et  al. 2008, Huising et  al. 2010) and imply 
that increased levels of CRHR agonists will result in an 
enhanced glucose-induced insulin secretory response. 
However, whilst previous studies have suggested a role 
for the CRH family in regulating islet function, the 
physiological purpose of this effect was unclear.

Placental expression and secretion of CRHR agonists 
is contentious. Earlier studies detected CRH mRNA and 
immunoreactivity in placentae from humans and non-
human primates (Sasaki et  al. 1987, Frim et  al. 1988, 
Robinson et al. 1989), but failed to detect it in non-primate 
species including lemur, guinea pig and rat (Robinson 
et  al. 1989). In human pregnancy, levels of CRH in the 
peripheral circulation increase as gestation progresses  

Figure 3
Expression of CRH and urocortins mRNAs in mouse placenta on day 18 of 
pregnancy (PD.18) (A) and circulating concentrations of CRH peptides 
during mouse pregnancy (PD.16) (B). Expression levels were quantified to 
the relative expression of housekeeping gene Gapdh. Crh, Ucn1, Ucn2 and 
Ucn3 mRNAs were all expressed by mouse placenta. Plasma levels of CRH, 
UCN1 and UCN3 were similar in pregnant and non-pregnant mice. 
However, plasma UCN2 was significantly elevated during pregnancy. Data 
presented as mean + s.e.m., n = 6, ***P < 0.001; two-way ANOVA followed 
by Tukey’s multiple comparisons test.
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Figure 4
Effects of chronic administration of CRHR 
antagonists on glucose homeostasis during 
pregnancy (A, B, C and D) and non-pregnancy (E, 
F, G and H). Pregnant mice (PD.16) treated with 
either α-helical CRF9–41 or AS-30 (antisauvagine-30) 
displayed a significant impairment in glucose 
tolerance 15 min after glucose loading (2 g/kg) 
when comparison to control mice administered 
saline (solid black line with solid circles). No 
difference in glucose tolerance was seen in mice 
administered AH (antalarmin hydrochloride). AUC 
from 0 to 30 min for each treatment group is 
displayed in panel B. No change in overall insulin 
sensitivity was observed between all treatment 
groups (C). AUC from 0 to 60 min for each 
treatment group is displayed in panel D, 
(n = 7–19). In non-pregnant mice chronic 
administration of α-helical CRF9–41 had no 
significant effects on glucose tolerance (E) or 
insulin sensitivity (G). AUC for glucose tolerance 
0–30 min and insulin sensitivity 0–60 min are 
displayed in panel F and H respectively, (n = 5–6). 
Data are presented as mean ± s.e.m., # (control vs 
α-helical CRF9–41)/* (control vs AS-30): 15 min 
P < 0.05; two-way repeated measures ANOVA 
followed by Tukey’s multiple comparisons test.

Figure 5
Effect of chronic administration of a non-selective 
CRHR antagonist (α-helical CRF9–41) on β-cell 
morphology during pregnancy. Representative 
images of immunostaining for the measurement 
of β-cell proliferation in control (A) and α-helical 
CRF9–41 (B) islets showing insulin staining (red) and 
BrdU staining (green). Mice administered BrdU 
from days 14–18 of pregnancy displayed no 
significant differences in the percentage of 
BrdU-labelled β-cells between control and 
α-helical CRF9–41 treated mice (C). Average β-cell 
size (D) and average β-cell islet area (E) were also 
unchanged between control and antagonist 
treatments. Data presented showing 
quantification (3–4 sections/animal analysed) for 
individual animals with bar showing mean, n = 8–9 
animals per treatment group. Scale bar 50 μm.
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(Campbell et  al. 1987, Sasaki et  al. 1987). It has thus 
been suggested that the physiological purpose of this 
increase is in regulating parturition through modulation 
of signals controlling myometrium contractility and 
inflammation (McLean et  al. 1995, Thomson 2013, You 
et  al. 2014). Contrary to human pregnancy, placental 
CRH in rodents is not thought to have a significant 
role in initiating parturition, with evidence of a more 
influential role in facilitating implantation particularly 
during murine pregnancy (Athanassakis et  al. 1999). 
Increased expression of UCN2 mRNA and protein has 
been reported in both human and mouse gestational 
tissues (including foetal membranes, myometrium and 
placenta) (Voltolini et  al. 2015), although conflicting 
reports suggest no significant change in circulating levels 
of UCN1, UCN2 or UCN3 during human pregnancy 
(Pepels et al. 2010). In the current study we detected the 
expression of mRNAs for all members of the CRH family 
in mouse placenta. Circulating levels of CRH, UCN1 and 
UCN3 were unchanged in pregnant and non-pregnant 
mice, suggesting that these ligands are not released by the 
mouse placenta at significant levels, however circulating 
levels of UCN2 were significantly increased during 
gestation. The circulating concentrations of UCN2 which 
we detected during pregnancy are close to the reported 
EC50 values for CRHR2 (Hauger et al. 2003, Dautzenberg 
et al. 2004, Patel et al. 2012) and are consistent with β-cell 
CRHR2 activation in response to pregnancy signals. These 
observations are also consistent with the placenta being 
the source of the increased circulating UCN2 during mouse 
pregnancy, analogous to the increases in placentally 
derived kisspeptin in the circulation during mouse and 
human pregnancy (Dhillo et  al. 2006, Mark et  al. 2013, 
Bowe et al. 2019) and suggest that it may potentially play 
a physiological role during pregnancy. However, it cannot 
be ruled out that the pregnancy-associated UCN2 derives 
from an alternative peripheral source, such as skin or 
skeletal muscle where it is also highly expressed (Chen 
et al. 2004).

Irrespective of its source, our in vivo studies suggest a 
role for circulating UCN2 in the regulation of β-cell insulin 
secretory responses during mouse pregnancy. Thus, 
pharmacological blockade of CRHR2 impaired glucose 
tolerance in pregnant mice, but a similar impairment was 
not observed with CRHR1 blockade, nor in non-pregnant 
females. The lack of effect of in vivo CRHR blockade on 
insulin resistance during pregnancy suggests that the 
impaired glucose tolerance reflects a β-cell targeted effect, 
consistent with our in vitro observations of enhanced 
insulin secretion in response to CRHR2 activation.  

Most placental hormones involved in β-cell adaptations to 
pregnancy exert dual effects to acutely increase the rate of 
insulin secretion from individual β-cells, and chronically 
to induce expansion of the functional β-cell pool. These 
compensatory mechanisms ensure that the mother can 
sustain a robust insulin secretory response to elevated 
plasma glucose, especially in the prevailing insulin 
resistant environment. Under normal circumstances 
the rate of β-cell proliferation is very low, but chronic 
exposure to lactogenic hormones (Brelje et  al. 1993, 
Huang et  al. 2009, Baeyens et  al. 2016) or to kisspeptin 
(Bowe et al. 2019) during gestation increases the rate of 
β-cell proliferation, and so increases the functional β-cell 
mass both in vitro and in vivo. In the current study, chronic 
blockade of total CRH receptors during pregnancy had 
no significant effects on β-cell size or proliferation, or on 
the overall β-cell mass. This provides further evidence 
that the impairment to glucose tolerance in vivo during 
pregnancy is due to an endogenous ligand, specifically 
targeting CRHR2, enhancing β-cell insulin secretion. The 
physiological significance of these differences in modes of 
action of placental factors is uncertain, but there may be 
therapeutic advantages in the ability of UCN2 to enhance 
glucose-induced insulin secretion without targeting the 
clinical challenges of manipulating β-cell proliferation.

The variability of maternal glycaemia throughout 
pregnancy can range from normal/mild glucose 
intolerance, to severe in the case of gestational diabetes. 
The pharmacological blockade of CRHR2 signalling 
during pregnancy appears to reveal a transient and mild 
glucose intolerance in comparison to the more profound 
defect in glucose tolerance displayed by mutant PRLR 
mice (Huang et  al. 2009). Given the importance of 
maintaining appropriate maternal glycaemic control 
during pregnancy, it is perhaps not surprising that 
there are multiple control mechanisms that ensure an 
integrated β-cell insulin secretory response. Therefore, the 
mild phenotype displayed may have been compensated 
by complementary signals to prevent major disruptions 
to glucose homeostasis.

In summary, we have demonstrated that CRHR2 
signalling is involved in β-cell adaptive responses to 
pregnancy in the mouse, with endogenous placental UCN2 
being the likely signal mediating this adaptation. Unlike 
other identified placental signals, the effects of UCN2 
appear to be confined to amplifying glucose-induced 
insulin secretion without concomitant alterations in the 
β-cell mass. Blocking the endogenous CRHR2 agonist 
during gestation induces a mild glucose intolerance rather 
than overt gestational diabetes suggesting that UCN2 may 
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act in concert with other placental signals to fine-tune 
the compensatory β-cell adaptations to maternal insulin 
resistance during pregnancy. Deciphering the interplay 
between these different signals will lead to a more 
comprehensive understanding of the pathophysiology 
of gestational diabetes and may offer novel diagnostic or 
therapeutic strategies.
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