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Abstract: Mitochondria undergo structural and functional remodeling to meet the cell demand in
response to the intracellular and extracellular stimulations, playing an essential role in maintaining
normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial
remodeling is a fundamental driving force of complex human diseases, highlighting its crucial
pathophysiological roles and therapeutic potential. In this review, we outlined the progress of
the molecular basis of mitochondrial structural and functional remodeling and their regulatory
network. In particular, we summarized the latest evidence of the fundamental association of impaired
mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms.
We also explored the therapeutic potential related to mitochondrial remodeling and future research
direction. This updated information would improve our knowledge of mitochondrial biology and
cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these
diseases by targeting mitochondria remodeling.
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1. Introduction

Mitochondria is a double-membrane-bound organelle located in the cytoplasm of
most eukaryotic cells. As a central energy station of the cells, mitochondria generate
adenosine triphosphate (ATP) productions via oxidative phosphorylation (OXPHOS) to
maintain the normal cellular metabolic homeostasis and play a critical role in normal cell
functions [1]. Mitochondria also exhibit many different characters through regulating
intracellular calcium (Ca2+) homeostasis, reactive oxygen species (ROS) generation, and
cell death and survival pathway, and thus, control the cell fates under stress [2,3].

As a highly dynamic and responsive organelle, mitochondria can be adapted by both
structural and functional remodeling to meet the cell demand in response to the intracellular
and extracellular stimulations. The structural remodeling of mitochondria includes the
changes in mitochondrial morphology, number, and distribution within the cell through
multiple processes, such as fission, fusion, mitophagy and biogenesis, shape transition, and
positioning. Additionally, mitochondria form a complex interconnected network within
the cell and undergo a functional remodeling in response to diverse cellular pathways,
such as metabolism, intracellular Ca2+ signaling, apoptosis, mitosis, and mitochondrial
DNA replication, to ensure a well-coordinated response to environmental stresses [4].

Unlike other organelles, mitochondria have their own replication mitochondrial DNA
(mt-DNA or mtDNA), which can encode the electron transport chain (ETC) components
and other RNAs [5]. Mutation of mitochondrial genes will cause mitochondrial dysfunction
and monogenic syndromes, such as Leigh’s disease and MELAS syndrome, characterized
by mitochondrial myopathy, encephalopathy lactic acidosis, and stroke-like episodes [6].
Besides, the mitochondrial structure and function are highly regulated by the nuclear-
encoded proteins. It has been shown that mitochondrial remodeling plays an essential
role in the pathogenesis of diverse diseases, including cardiovascular diseases, metabolic
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disorders, neurological diseases [7–9]. Among these pathological conditions, mitochondrial
alterations may be either a primary mechanism due to mutations in mitochondrial genes
or a secondary process caused by the regulating network.

The heart is a high-energy-demanding organ, and its function largely relies on the ATP
produced in mitochondria. Merging evidence demonstrated that mitochondrial dysfunc-
tion is the fundamental driving force of the various cardiac diseases despite the diversity
of the primary causes, highlighting the importance of understanding the mitochondrial
remodeling mechanisms in the heart [10,11]. In this review, we outlined the progress of the
molecular basis in both mitochondrial structural and functional remodeling. In particular,
we summarized the latest evidence of mitochondrial remodeling in developing different
cardiac diseases and highlighted the underlying mechanisms. We also explored the ther-
apeutical potential related to mitochondrial remodeling and associated future research
direction. This updated information would improve our knowledge of mitochondrial
biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies
for treating these diseases by targeting mitochondria remodeling.

2. Mitochondrial Remodeling in Cardiac Diseases

Cardiac diseases have become the primary cause of mortality and morbidity in most
countries. Heart failure (HF) is a well-known typical last stage of different cardiac diseases.
With the extensive studies from basic science to clinical research, the fundamental mecha-
nisms of HF development are still not fully understood [12]. The heart is one of the highest
energy-demanded organs in the human body that its function depends on ATP synthesis
by oxidative metabolism in mitochondria. Thus, cardiomyocytes are uniquely sensitive
to mitochondrial functional alterations. Increasing evidence indicates that, although the
primary cause may be different, one of the central processes linking to various cardiac
diseases is the impairment of mitochondrial structural and functional remodeling. These
abnormal processes are a driving force of cardiac diseases’ pathogenesis, impairing the car-
diomyocyte function and survival, leading to HF development [13]. Here, we summarized
the latest evidence of mitochondrial remodeling and metabolic changes in different cardiac
diseases, emphasizing new potential strategies for the clinical study.

2.1. The Overview of the Molecular Bases in Cardiac Mitochondrial Remodeling

Cardiac mitochondria are a highly mobile organelle that can undergo dynamic al-
terations depending on the cellular demand, which subsequently changes the cellular
capabilities and functions. To better understand the mechanisms involved in cardiac
diseases, we briefly outlined the molecular bases associated with cardiac mitochondrial
structural and functional remodeling.

2.1.1. Mitochondrial Structural Remodeling

Although mitochondrial morphologic changes may be less in cardiomyocytes than
many other cell types, evidence indicated that cardiac mitochondria maintain the function
through dynamic altering their size, number, and shape in response to the intercellular
environments. These mitochondrial dynamics are essential for cellular homeostasis in adult
myocytes under physiological conditions. Mitochondria continuously divide by the process
of fission and merge by the process of fusion. They can also undergo a mitochondrial
shape transition (MiST) between rounded and elongated mitochondrial morphologies
independent of fission/fusion. These processes are positively related to mitochondrial
mitophagy and biogenesis. Besides, mitochondrial morphology can be controlled by the
interactions with the cytoskeleton and the endoplasmic reticulum (ER).

Mitochondrial fission is a process that refers to the division of mitochondria at the
inner and outer membranes resulting in a single mitochondrion into two mitochondria.
At the same time, fusion is another essential process for maintaining mitochondrial ho-
mogenates, which contains a fusion of the outer and inner mitochondrial membranes to
create fewer but larger mitochondria. It is known that mitochondrial fission machinery
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is mainly regulated by dynamin-related protein 1 (DRP1), a member of the dynamin su-
perfamily [14]. The fission process begins from the translocation of DRP1 from the cytosol
to the outer mitochondrial membrane (OMM), where DRP1 interacts with a few OMM
proteins, including mitochondrial fission protein 1 (Fis1), the mitochondrial fission factor
(MFF), mitochondrial dynamics proteins of 51 and 49 kDa (MiD51 and MiD49), which
are also known as mitochondrial elongation factors 1 and 2 (MIEF1 and 2) [15], forming a
complex which mediates fission through wrap-around and constricts the mitochondrial
tubule [16]. Some studies have shown that the overexpression of Fis1 induces mitochondrial
fragmentation, while deficiency of Fis1 results in mitochondrial elongation [17]. Recipro-
cally, the silencing MFF increases mitochondrial fusion, whereas its overexpression leads to
mitochondrial fragmentation, which could also be induced by external stimuli, such as by
sarco-/endoplasmic ATPase inhibitors [18–20]. On the other hand, mitochondria fusion is
mediated by several different dynamin-related large GTPases, mainly include mitofusin-1
(MFN1), mitofusin-2 (MFN2), optic atrophy protein-1 (OPA1), and also MIEF1 [21–23].
While MFN1/2 catalyzes the outer membrane fusion, OPA1 regulates the fusion of the in-
ner membrane [24]. In addition, a recent study found that two forms of OPA1 cooperate to
complete fusion of the mitochondrial inner-membrane, as the long-form of OPA1(L-OPA1)
mainly mediates the membrane docking and lipid mixing, the short- form of OPA1 works
together with L-OPA1 for mediating membrane pore opening [24].

Although mitochondrial fission and fusion are essential for the dynamic and structure
change of mitochondria, studies show the MiST can occur independently of the fission and
fusion process. It has been noticed that the MiST is vital to mitochondrial function, e.g.,
the long and tubular mitochondria are more active in producing ATP, while the round and
short mitochondria are more related to cell dividing and pathological conditions [25,26].
Multiple cellular signals may be involved in MiST. Researchers demonstrate that MiST
is associated with the actin polymerization induced by the increased level of cytosolic
Ca2+. This process is governed by the mitochondrial protein mitochondrial Rho GTPase 1
(Miro1), a transmembrane protein consisting of two GTPase domains and two EF-hands,
EF1 and EF2 (helix-loop-helix structural domain found in calcium-binding proteins) [27].
A recent study found that the distinct mechanisms regulating actin polymerization and
depolarization are temporally associated with MiST [28,29]. Moreover, mitochondrial
morphology and dynamics are partially regulated by the ER membrane contact sites
(MCSs). ER MCSs stipulate the position of mitochondrial constriction and fission [30]. It
has also been shown that mitochondrial fusion machinery could accumulate and assemble
at ER MCSs. The hotspots of ER MCSs, where the mitochondrial fission and fusion occur,
enable a rapid response of metabolic change [31].

The maintenance of mitochondrial number is a highly dynamic process that includes
the synthesis of new mitochondrial components (biogenesis) and the removal of dysfunc-
tional or old mitochondria (mitophagy). The increasing of mitochondria requires the
protein expression from both mitochondrial DNA (mtDNA) and nuclear genome and
requires cross-talk between them. Mitochondrial biogenesis is highly regulated by the vast
of genome-encoded transcriptional elements, such as peroxisome proliferator-activated
receptor γ (PPARγ) coactivator 1α (PGC-1α), estrogen-related receptor (ERR), nuclear
respiratory factors (NRFs) [32,33]. Under energy depletion or cell growth, PGC-1α can be
activated, stimulating the increase in mitochondria and oxidative metabolic [34]. Mechanis-
tically, the activation of PGC-1α results in the induction of NRFs and ERR gene expression,
regulating the mitochondrial genome’s transcription, like the mitochondrial transcription
factor A (TFAM) [35]. On the contrast, mitochondrial mitophagy is the primary mechanism
to reduce the mitochondrial number by moving the damaged mitochondria in the cell [36].
The most well-studied mitophagy mechanism is through a pathway involving the PINK1
(PTEN-induced kinase 1), an outer mitochondrial membrane kinase, and Parkin, an E3
ubiquitin ligase [37]. PINK1 is aggregated in the OMM, recruits Parkin translocated from
the cytosol to mitochondria, and promoted ubiquitination [38]. Another signaling pathway
of the NIP3-like protein X (NIX)/Bcl-2 interacting protein 3 (BNIP3) is also involved in the
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selective mitochondrial clearance. In BNIP3/Nix double knockout heart, mitochondrial
morphology and function are notably disturbed [39]. Cardiac mitochondrial biogenesis has
been demonstrated in chronic exercise conditioning, and mitochondrial fission is consid-
ered a component of the normal adaptation to increased energetic demand during exercise
to mitochondrial function [40].

Although the mechanistic details of each process have yet still not been fully under-
stood, recent work has helped define the molecular dynamics and the network of fission,
fusion, shape transition, biogenesis, and mitophagy. These works have been well-reviewed
recently [4,41]. The intersection of these pathways, with varied effects on mitochondrial
morphology, further indicates the morphological complexity of mitochondria. A summary
picture of the mitochondrial dynamic changes is illustrated in Figure 1.
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Figure 1. The Illustration of cardiac mitochondrial structure remodeling and mitochondrial dynamics. The mitochondria
exhibit an adaption through changing mitochondrial morphology and numbers by fusion, fission, mitochondrial shape
transition, and coordinated with mitochondrial biogenesis and mitophagy. Each process is mediated by several factors
and also regulated by the interactions with other mitochondrial morphology changes. MFN1/2: mitofusin-1/2. OPA1:
optic atrophy protein-1. Fis1: fission protein 1. MFF: mitochondrial fission factor. MIEF: mitochondrial elongation factors.
DRP1: dynamin-related protein 1. LC-3: Microtubule-associated protein 1A/1B-light chain 3. NIX: NIP3-like protein
X. BNIP3: Bcl-2 interacting protein 3. PGC1- α: peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α.
ERR: estrogen-related receptor. NRFs: nuclear respiratory factors. TFAM: mitochondrial transcription factor A. PINK1:
PTEN-induced kinase 1.
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2.1.2. Mitochondrial Functional Remodeling

Besides the structural remodeling mentioned above, cardiomyocytes are uniquely
sensitive to mitochondrial functional dynamic alterations due to the high energy require-
ments of rhythmic contraction. For maintaining the metabolic and energy homeostasis,
cardiac mitochondria undergo several types of dynamic functional remodeling, such as the
shift of mitochondrial fuel selection, the modification of calcium (Ca2+) handling, and the
rebalance of ROS production and antioxidant defense. As illustrated in Figure 2, these func-
tional remodeling are regulated by diverse signaling and play critical roles in controlling
cellular programs.
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stress to meet the energy demand under the various conditions through a serial of functional remodeling, such as the
selection of fuel utilization and shift of metabolism, handling the dynamic calcium homeostasis and remaining the balance
between reactive oxygen species (ROS) production and antioxidant defense. Multiple types of signaling are involved in
these functional remodeling in mitochondria. TCA: tricarboxylic acid.OMM: outer mitochondrial membrane. IMM: inner
mitochondrial membrane. ROS: reactive oxygen species. MCU: mitochondrial Ca2+ uniporter. VDAC: Voltage-dependent
anion-selective channel. NCX: Na+/Ca2+ (sodium-calcium ion) exchanger. MAM: mitochondria-associated ER membranes.

As the primary site for generating energy, mitochondria determine and select fuel
utilization to meet the cell demand on different conditions. In most cells, glucose and
fatty acids are the primary energy sources for mitochondria, although other fuel resources
may also be used, such as amino acids and ketone. The shift between fuels provides
metabolic flexibility in the cells. It has been shown that the pyruvate dehydrogenase
(PDH) and PDH kinase (PDK) play critical roles in the fuel shift of mitochondria. For
example, in the low energy condition, increased Acyl-CoA may inhibit PDH directly
or via activating PDH kinase, which further phosphorylates and inhibits PDH. Thus,
mitochondria metabolism shifts from glucose oxidation toward fatty acid oxidation. On the
other hand, the dephosphorylates of PDH will restore glucose oxidation. It is also reported
that fatty acid oxidation is regulated by the Malonyl-CoA, a derivation of CoA. Increased
Malonyl-CoA will block fatty acid oxidation by inhibiting carnitine palmitoyltransferases-1
(CPT1), the leading shuttle for the mitochondrial fatty acid transfer [42]. It is also reported
that, under some conditions, the metabolic process involves a competition of glucose and
fatty acids (FAs) for substrate utilization, which is also known as the glucose-FA cycle [43].
It has been shown that fatty acid acts as ligands to activate PPARα, upregulating PDK
expression and phosphorylation, which inactivates PDH to prevent pyruvate from entering
the mitochondria, resulting in suppression of glucose oxidation. Simultaneously, acetyl-
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CoA and NADH produced during FA oxidation can upregulate PDK activity to produce
similar effects [44].

Ca2+ uptake into the mitochondrial matrix is critical to cellular function due to its roles
in producing ATP and in initiating cell death. Ca2+ can directly activate PDH phosphatase
and the dehydrogenases of the tricarboxylic acid (TCA) circle [45]. An increase in mito-
chondrial Ca2+ level at a physiological range promotes TCA circle activity and increases
ATP production [46]. However, excessive mitochondrial Ca2+ level induced by stress has
been founded to be toxic, which results in the loss of the ability of mitochondria to generate
ATP and mitochondrial permeability transition pore (mPTP) opening, leading to cell death.
Mitochondria Ca2+ homeostasis is determined by the dynamic regulation of both mitochon-
drial Ca2+ influx and efflux. It is generally accepted that mitochondria regulate Ca2+ efflux
via the mitochondrial Na+/Ca2+ (sodium–calcium ion) exchanger (NCX) in excitable cells
and via mPTP opening that is usually associated with mitochondrial stress and apoptotic
cell death. In contrast, the influx of mitochondrial Ca2+ is considered to be governed by the
mitochondrial Ca2+ uniporter (MCU) complex [47]. However, the mechanisms involved in
mitochondrial Ca2+ transport remain largely unclear. Serval studies disputed that Ca2+ up-
take in cardiac mitochondria might be limited under the physiological condition due to the
lower expression levels of the uniporter compared to other tissues [48,49]. It showed that
mitochondria regulate Ca2+ homeostasis by communicating with the SR via mitochondria-
associated ER membranes (MAMs) [50–52]. The function of ER-mitochondria interaction
is regulated by several factors located on the MAMs, such as inositol 1,4,5-trisphosphate
(IP3) receptor (IP3Rs), voltage-dependent anion-selective channel 1 (VDAC1), and glucose-
regulated protein 75 (Grp75), plays a critical role in the ER-mitochondrial Ca2+ transfer [53].
Through MAMs, Ca2+ released from ER is captured by mitochondria via VDACs as well
as mitochondrial Ca2+ uniporter (MCU) complex [54]. With the high demand for ATP
production, cells generally increase the contact area between ER and mitochondria, which
in turn increases the release of Ca2+ from the ER and causing Ca2+ to flow into the mito-
chondria [55]. Studies with Duchenne muscular dystrophy (DMD) models also assumed
that the Ca2+ transport systems of cardiac mitochondria could be activated as an adaptation
to stressful conditions or pathological models to compensate for the disruption of the ER.
These activations, including the increased rate of both Ca2+ uptake and efflux, result in
mitochondrial hyperfunction, which may contribute to the adaption to the cellular function
under stress; however, it may also lead to hypertrophy-associated pathologies [56–58].

ROS is the byproduct of OXPHOS and mainly exists as superoxide, including oxygen,
hydroxyl radicals, or peroxidases. Mitochondria is the primary source and target of ROS.
The central part of ROS can be generated during the NADPH oxidase and mitochondrial
electron transport [59]. Under normal conditions, a small amount of ROS is produced
and will quickly undergo dismutation to hydrogen peroxide by superoxide dismutase.
However, under some stress conditions, excessive ROS and superoxide production exceeds
the antioxidant defense ability [60], becoming toxic to the cell.

Excessive ROS may damage the mitochondrial genome and protein, and mitophagy
will be triggered. Due to mtDNA’s lower repairability, the lack of protective barrier histone-
like protein, and the disability to transfer accumulated •O2− out of the mitochondrial
membrane, mitochondrial can be the significant damage target by ROS [61]. Moreover,
with the accumulation of ROS, it can react with polyunsaturated fatty acids, which may
induce lipid peroxidation. Hydroxyl-alkenes, like 4-hydroxy-2-nonenal (HNE), are the
main product of lipid peroxidation. HNE can react with cysteine sulfhydryl groups, lysine
amino groups, and histidine imidazole groups by forming covalent adducts on proteins. It
also can react with other low-molecular-weight compounds, like glutathione and DAN [62].
Moreover, HNE is considered as the second messenger for the extent of oxidative stress [63].
Besides, mPTP opening can be triggered by HNE, which may lead to an increased release
of mitochondrial cytochrome c and other factors and promote cell death [64] (Figure 3).
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2.2. The Association of Mitochondrial Remodeling in Pathological Cardiac Conditions
2.2.1. Aging-Induced Cardiac Deterioration

A major risk factor for prevalent cardiovascular disease and HF is age. During
aging, cardiac structure and function were progressively deteriorated, leading to increased
susceptibility to heart failure. With aging increased, the heart exhibits a decrease in the
number of myocytes with a concomitant increase in each cardiomyocyte’s size and an
increased accumulation of lipid and areas of fibrosis. Although our understanding of
cardiac aging remains limited, researchers have shown that mitochondrial fission and
fusion processes are altered, and the function of mitophagy is disturbed during aging. All
of these lead to the impaired mitochondrial biogenesis [65]. The impaired mitophagy also
activates the mitochondrion-mediated apoptotic signals, leading to cell apoptosis [66]. The
aging heart exhibits a declined functional remodeling in mitochondria, leading to ROS
accumulation, which results in a reduced tolerance for stress and increases cell loss [67].
Moreover, researchers also consider that the hyper-function of mitochondria is contributed
to aging. During the cell senescence, high ROS level, mitochondrial morphological change,
and elevated metabolic rate are observed [68,69].

A most recent study showed that an exacerbation of the nuclear factor-kappa B (NF-
κB)/nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3)
pathways might be responsible for the declined mitochondrial remodeling in the aging
heart. The results from this study showed that the absence of NLRP3 prevented age-
related mitochondrial dynamic alterations in cardiac muscle with minimal effects in cardiac
autophagy during aging, and mice showed less mitochondrial damage than wild-type
animals [70].

2.2.2. Diabetic Cardiomyopathy (DCM)

Diabetes mellitus (DM) has become one of the most common chronic diseases world-
wide and become the primary etiology for metabolic heart disease [71]. In the United
States, about 25% of people over 65 years old suffered from DM. There are two main
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types of DM, Type 1 DM (or T1D), which is caused by the autoimmune destruction of
the insulin-secreting pancreatic B cells); and Type 2 DM (or T2D), which is resulted from
impaired insulin secretion secondary to systemic insulin resistance [72]. The heart is one of
the significant targets of pathological metabolic change, and DCM is considered one of the
leading causes of death in DM patients [73]. DCM is characterized by left ventricle (LV)
hypertrophy, diastolic dysfunction, and cardiomyocyte rarefaction [74].

Studies have shown that the alterations in cardiac mitochondrial remodeling and
metabolism contribute to the progress of DCM [75,76]. Serval evidence indicates that
mitophagy plays a central role in mitochondrial quality control in diabetic cardiomyopathy,
and dysfunctional mitophagy is associated with lipotoxicity [77]. For example, in a high-fat
diet-induced type 2 DM mouse model, cardiomyocytes show impaired mitophagy and
lipid accumulation [78]. In the streptozotocin (STZ)-induced diabetic cardiomyopathy(DM)
animal model, PINK1 and Parkin protein levels are decreased [79]. Researchers also found
FUN14 domain containing 1 (Fundc1), an outer mitochondrial membrane protein, is as-
sociated with mitophagy and MAM regulation. In diabetic hearts, the suppression of
Fundc1 induced by AMP-activated protein kinase may become a novel therapeutic target
for DCM [80]. In the genetically induced diabetic animals and high-fat diet treated ani-
mal models, studies demonstrate that at the early stage of diabetic cardiac dysfunction,
mitochondrial biogenesis occurs with the activation of PGC-1α expression. Still, the ex-
pression of PGC-1α decreased with the injured mitochondrial function [81,82]. In addition,
deficient Ca2+ handling is also a critical factor for the development of cardiac contractility
dysfunction in the DM. In the T1D and T2D hearts, improved mitochondrial Ca2+ handling
in cardiomyocytes may enhance the metabolic activity, indicating that the regulation of
mitochondrial Ca2+ may provide a novel therapeutic target in DCM [83].

Besides, there is a dramatic alteration in the mitochondrial functional remodeling in
DCM. In the normal heart, 60% of energy is provided from fatty acid oxidation, 40% from
other sources, like glucose, amino acids, and ketone bodies. In the DCM, increased fatty
acid utilization occurs; it shows mitochondrial substrate utilization excessively shifts to
fatty acid oxidation and harms the heart function [84]. Researchers found that the DM’s
systemic insulin resistance may induce the increased fatty acid utilization and then cause
heart dysfunction [85]. The underlying mechanism is considered the over-accumulation
of fatty acid in the heart and the ROS caused by excessive fatty acid oxidation. Thus, the
process of cardiac lipotoxicity and ROS will trigger apoptosis and cell death [86,87].

Moreover, fatty acids can be metabolized into diacylglycerol (DAG) and ceramides.
These intermediates may further aggravate the cardiac insulin resistance [88,89]. In the
rat DCM, the expression of Transcription Factor A (TFAM) and the activities of enzymes
involved in OXPHOS were reduced, along with increased oxidative stress [90].

2.2.3. Hypertrophic Heart Disease and Heart Failure

Cardiac hypertrophy is characterized as a thickening of ventricle walls, mostly the left
ventricular hypertrophy (LVH), such as caused by hypertension, but it can also happen
to the right ventricle (RV) hypertrophy. Concomitant heart failure is usually the final
stage of this cardiac pathological process [91]. Although the underlying mechanism is
complex and far from fully understood, several metabolic signaling pathways are related
to mitochondrial remodeling and have been linked to the development of hypertrophic
heart diseases and heart failure.

First, researchers found that pathological cardiac hypertrophy and left ventricular dys-
function were developed in the early stage in the PINK knockout mice [92]. Additionally,
in human HF, PINK1 protein expression is notably decreased [92]. Since the PINK1/Parkin
pathway plays an essential role in cardiac mitochondria’ quality control, these observations
indicate the involvements of impaired mitophagy in pathological cardiac hypertrophy
and dysfunction.

Secondly, PGC-1a/ERRs, the key transcriptional regulators of mitochondrial metabolism
and biogenesis, have been observed to be decreased in the failing human left ventricular
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tissue [93]. Genetic deletion of PGC-1a in the mice shows cardiac dysfunction under the
stress of pressure overload condition [94]. Adult mice with induced PGC-1α deletion
also displayed lower respiratory capacity and decreased transcripts encoding fatty acid
oxidation (FAO) factors [95]. In addition, cardiac hypertrophy has also been associated
with reduced myocardial fatty acid utilization and shifted to glucose utilization [96,97].
During cardiac hypertrophy, the genes which express PGC-1α/PPAR-driven FAO is down-
regulated [98]. Additionally, FAO rates and β-hydroxy acyl CoA dehydrogenase, a fatty
acid oxidative enzyme, are reduced in the pressure overload cardiac hypertrophy [99]. In
the murine arteriovenous fistula (AVF) model, the volume overload leads to ventricular
dysfunction and mitochondrial ROS production through the decrease of NADH oxidase
super complex activity [100]. Besides the ROS generation, in the failing heart, the relative
contribution of glucose utilization to ATP production increases, but this change is not
matched by an increase in pyruvate oxidation in mitochondria. Ketone bodies might
become a more relevant source of energy in the failing myocardium. However, the free
fatty acid (FFA) uptake is higher than the fatty acid oxidation, resulting in toxic lipid
intermediates accumulation [101].

Third, in the animal model of compensated hypertrophy-induced HF, researchers
have shown the FOXO3a (forkhead box O3a)-BNIP3 (B-cell lymphoma 2/adenovirus
E1B 19kDa interacting protein 3) pathway is upregulated. Increased expression of BNIP3
participants in the mitochondrial fragmentation, Ca2+ overload, and oxidative capacity
decline [102,103].

Fourth, studies showed that the increase in mitochondrial sirtuin-3, a member of the
sirtuins’ family, can attenuate cardiac hypertrophy by decreasing oxidative stress [104].
Recent studies also showed that deficiency of a valosin-containing protein (VCP) in the
heart is associated with the pressure overload-induced pathologic cardiac hypertrophy
and heart failure, likely through a mechanism by the activation of oxidative stress and the
increased ROS production [105,106].

2.2.4. Acute Myocardial Infarction (AMI)

Acute myocardial infarction is a very familiar ischemic heart disease and the primary
cause of high mortality. Myocardial ischemia-reperfusion (IR) is a pathological condition
exemplified by AMI followed by the immediate coronary intervention restoring the blood
supply. IR is characterized by two consequential damages, the first one caused by ischemia
due to the loss of the coronary blood supply to the myocardium, while the second one
caused by the reperfusion due to the restoration of blood supply, also called reperfusion
injury [107]. Cardiac ischemia impaired OXPHOS because of oxygen deprivation, resulting
in ATP depletion, as reperfusion caused excessive ROS production and the mPTP opening,
leading to cell death.

Studies have shown that several alterations in mitochondrial structural remodeling
are involved in the IR damage. For example, it has been shown that IR injury may cause
mitochondrial morphology to change due to the alteration of intracellular arrangement
and expression of cytoskeletal proteins, such as the intracellular arrangement of β tubulin
II, a cytoskeletal protein localized in mitochondria [108]. Additionally, there has been
an alteration of mitophagy in heart ischemia/reperfusion (I/R) injury. Studies show ap-
propriate mitophagy is a cardioprotective response [109], and loss of PINK1 results in an
impaired mitophagy and increase infarct size after I/R [110]. On the other hand, the mito-
chondrial protein FUN14 domain containing 1 (FUNDC1) is also linked with mitophagy
as its overexpression induced an enhanced mitochondrial degradation [111]. In the is-
chemic heart, upregulated CK2α deactivates FUNDC1 leading to decreased mitochondrial
receptor-mediated mitophagy [112]. It is found that sodium thiosulfate preconditioning
(SIPC) treatment can increase the expression of PGC-1α mRNA, which also increases mito-
chondrial copy number [113]. Researchers also found DJ-1 plays a cardiac protective role in
the IR injury through regulating DRP1 SUMOylation and attenuating undue mitochondrial
fission [114].
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In addition, IR injury also causes essential alterations in mitochondrial functional
remodeling. For example, IR injury will cause ROS production, disturbing ATP concen-
tration by influencing ion channels, calcium-release channels, and sarco-ER. Due to the
impairment of the ATPase-dependent ion transportation, mitochondrial calcium levels are
increased during ischemia [115,116]. During ischemia, total tissue Ca2+ does not change,
whereas mitochondrial Ca2+ increases, suggesting a redistribution of intracellular Ca2+

rather than the massive net accumulation during reperfusion after prolonged ischemia.
Although the route by which Ca2+ enters the cytoplasm is controversial, it appears that Ca2+

channels are not involved [117]. Uncontrolled Ca2+ entry might occur through leaks or
membrane defects caused by the accumulation of toxic metabolites (e.g., lysophospholipids,
oxyradicals) and mechanical factors [117,118]. Alternatively, Ca2+ overload could result
from the impairment of specific pathways utilized for Ca2+ uptake and extrusion [118].
One possible mechanism is Ca2+ entry through the Na+/ Ca2+ exchanger, which is far from
its normal equilibrium due to a rise in the intracellular Na+ concentration after a period of
ischemia. Another suggested mechanism is inhibition of the by acidosis during ischemia
followed by reactivation on reperfusion, causing an efflux of H+ and an influx of Na+,

which, in turn, stimulates Ca2+ entry on the Na+/Ca2+ exchanger [119]. Besides, studies
also showed that overexpression of VCP in the heart protects IR-induced infarction [120].
It is shown that overexpressing VCP increased post-translational protein degradation of
the mitochondrial Ca2+ uptake protein 1 (MICU1), an activator of the mitochondria Ca2+
uniporter (MCU), resulting in reduced mitochondrial calcium uptake, subsequently pre-
venting mPTP opening and ATP depletion under the Ca2+ challenge [121]. Whatever the
entry route, the rise in intracellular Ca2+ is accompanied by an increase in mitochondrial
Ca2+, which impairs oxidative phosphorylation. The relationship between mitochondrial
calcium transport and ATP synthesis previously described may be a key factor for cell
survival during postischemic reperfusion [122,123]. With the increased ROS, the opening
of mPTP is also a critical mechanism that may cause the dysfunction of mitochondrial
membrane potential, disturbing ATP generation and leading to ischemia-reperfusion injury
and cell death.

Furthermore, Bax/Bak-mediated mitochondrial outer membrane permeabilization
(MOMP) can lead to caspase-dependent apoptosis or caspase-independent cell death
due to the loss of mitochondrial function. Due to this pivotal role in deciding cell fate,
deregulation of MOMP impacts many diseases and represents a fruitful site for therapeutic
intervention [124]. Necrosis plays an essential role during IR injury. Myocardial necrosis is
the process of cell death with rapid disruption of cellular membrane potential, which leads
to cell swell, cytolysis, and inflammation [125]. The opening of mPTP is the key factor
for necrosis in the cardiac I/R injury [126]. Researchers found the apoptosis repressor
with caspase recruitment domain (ARC) can prevent myocardial necrosis by inhibiting
the opening of mitochondrial mPTP [127]. This finding may provide a novel strategy for
cardiac protection.

3. Conclusion, Clinical Potential, and Future Perspective

Mitochondria is the critical “energy engine” exhibiting essential structural and func-
tional remodeling to adapt to the cell demand under the physiological condition. Dysreg-
ulation of mitochondrial remodeling is associated with various cardiac diseases and HF,
including abnormal mitochondrial fission and fusion, defective mitochondrial mitophagy
and biogenesis, disproportional fuel utilization and metabolic shift, aberrant mitochondrial
Ca2+ handling, and excessive ROS productions. These impairments result in a deficiency
of ATP production, mPTP opening, and activation of apoptotic signaling, leading to car-
diomyocyte death and dysfunction. An overview of mitochondrial structure and functional
remodeling in cardiac diseases is illustrated in Figure 4.
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mitochondrial permeability transition pore.

Many clinical potentials have been observed by targeting these pathological mito-
chondrial remodeling. A recent study showed that treatment with melatonin(N-acetyl-5-
methoxytryptamine, aMT) recovered aging-induced alteration of mitochondrial dynamics
and cardiac autophagy. Melatonin supplementation also had an anti-apoptotic action in
addition to restoring Nrf2-antioxidant capacity and improving mitochondria ultrastructure
altered by aging [70]. Besides, mitochondria transplantation is considered an effective
treatment for preserving the contractility of ventricular hypertrophy. Studies show that
the localized intramyocardial injection of autologous mitochondria can protect the right
ventricular hypertrophy by decreasing apoptotic cardiomyocytes’ loss [128]. Nowadays,
in ischemia-reperfusion injury, mitochondrial transplantation is becoming a novel ther-
apy. The delivery of mitochondria through the coronary arteries resulted in their rapid
integration and widespread distribution throughout the heart, replaced damaged mito-
chondria, and increased myocardial function [129,130]. Besides, the development of novel
methods for mitochondria monitoring under physiological or pathological conditions is
essential. Researchers recently developed more localization-specific with low toxicity fluo-
rescent dyes and probes from the γaryl-substituted pentamethine family for mitochondrial
morphology, dynamic, and structure studies [131,132].

On the other hand, researchers have been attracted to explore new therapeutical
potentials by targeting the signaling pathways associated with mitochondrial functional
remodeling. For example, researchers found the growth differentiation factor 11 (GDF11), a
member of the TGF-β superfamily, can enhance the communication of SR and mitochondria
and increase mitochondrial Ca2+ uptake in the cardiomyocyte hypertrophy [133], indicating
a future target for the drug therapy. ROS production also becomes a critical therapeutic
target. In recent years, several mitochondria-targeted antioxidants are made to reduce
mitochondrial oxidative damage, especially the antioxidant compounds incorporating
ubiquinone (MitoQ) or vitamin E (MitoVit E). Experiments show it can protect against
mitochondrial dysfunction in heart failure induced by pressure overload [134]. Researchers
show that SS31, an antioxidant located in the inner mitochondrial membrane, can decrease
mitochondrial ROS production by eliminating ROS/oxygen-free radicals and protecting
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the myocardium from IR injury [135–137]. Researchers also show cyclosporin A (CsA),
which can inhibit the opening of mitochondrial mPTP, is a novel therapeutic drug for
myocardial IR injury [138]. VCP is also considered a crucial therapeutic target due to
its various effects in mitochondrial respiration, calcium hemostatic, mPTP opening, and
ROS production, as well as its critical protective roles in cardiac stress [106,120,121]. Since
cardiac energy metabolism remodeling is a vital element in heart disease pathogenesis,
pharmacological agents to modulate metabolic remodeling are also becoming a promising
therapeutic strategy for the treatment of cardiac disease [97].

Although many studies have established the association between pathological mi-
tochondrial remodeling and various cardiac diseases’ pathogenesis and revealed some
clinical therapeutic potential, the fundamental mechanisms involved remain largely un-
known. Future research needs to focus on the molecular mechanisms involved in regulating
mitochondrial structural remodeling in the heart, such as the genes and proteins involved
in the rapid dynamic regulations in reorganizing fission and fusion and the signaling
promoting mitophagy and biogenesis under stress. These processes involved both nuclear-
encoded genes (such as proteome) and mtDNA; thus, understanding the cross-talk between
the mtDNA and nuclear genome would be particularly important. Besides, metabolic
remodeling plays an essential role in the pathogenesis of metabolic cardiomyopathy. It is
also involved in many other cardiac diseases, such as hypertrophic heart disease, ischemic
heart diseases. More research needs to determine the common mechanism controlling
the mitochondrial fuel selection and the shift of metabolism in the heart and explore the
strategies to restore substrate availability and ATP production. Furthermore, mitochondrial
calcium hemostasis is crucial for mitochondrial ATP production and also mPTP opening.
One challenge in the mechanistic study may result from rapid changes in the relative
ion channels’ structure and function during heart beating. Since mitochondrial calcium
hemostasis regulation is spatiotemporal dependent, better models and techniques need
to be developed to tracing these fast and dynamic alterations. Moreover, exploring the
strategy to maintain the balance of ROS and antioxidants would improve the therapeutic
approach in heart failure. Although the understanding of mitochondrial dysfunction in
cardiovascular diseases has been increased notably in recent years, a more effective drug
target is still in its early stages. Future investigations are still needed for transferring new
findings to potential therapeutic approaches.
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