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Abstract

The TAM receptors Tyro3, Axl, and Mertk are receptor tyrosine kinases that dampen host innate 

immune responses following engagement with their ligands, Gas6 and Protein S, which recognize 

phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses 

display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor 

activation and down-regulation of antiviral responses. Accordingly, we hypothesized that a 

deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. 

Unexpectedly, mice lacking Mertk and/or Axl but not Tyro3 exhibited greater vulnerability to 

infection with neuroinvasive West Nile and La Crosse viruses. This phenotype was associated with 

increased blood-brain barrier permeability, which enhanced virus entry into and infection of the 
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brain. Activation of Mertk synergized with IFN-β to tighten cell junctions and prevent virus transit 

across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of 

neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in 

clinical development.

INTRODUCTION

The TAM receptors Tyro3, Axl, and Mertk have pleiotropic functions in cancer metastasis, 

angiogenesis, thrombus stabilization, and innate immune regulation
1,2. Axl and/or Mertk are 

expressed on cells involved in immune control and trafficking, including macrophages, 

dendritic cells (DCs), platelets, and endothelial cells
1
. In comparison, Tyro3 expression is 

prominent on central nervous system (CNS) neurons
3
. TAM receptors signal upon 

recognition of their phosphatidylserine-bound ligands, Gas6 and Protein S
4
. The 

consequences of TAM signaling depend on cell type. For example, TAM receptors are 

important for NK cell development
5
, and their inhibition may license NK cells to reject 

metastatic tumors
6
. Axl and Mertk signaling in endothelial cells modulates angiogenesis

7-9, 

whereas their signaling in platelets promotes thrombus stabilization
10

. In DCs, activation of 

Axl down-regulates production and signaling of pro-inflammatory cytokines by interacting 

physically with the R1 subunit of the type I interferon (IFN) receptor (IFNAR1) to promote 

expression of the negative regulators SOCS1 and SOCS3
11

. The TAM receptors also have 

essential roles in clearance of apoptotic cells by macrophages, retinal pigment epithelial 

cells, and other professional phagocytes
12-14

. The TAM ligands Gas6 and Protein S 

physically bridge a TAM receptor expressed on the surface of a phagocyte to 

phosphatidylserine expressed on the surface of the apoptotic cell.

TAM receptors are therapeutic targets in cancer because of their effects on tumor 

angiogenesis, NK cell licensing, tumor cell survival, metastasis, and immune suppression in 

tumor-associated macrophages
6-9. Several antagonists and blocking antibodies are under 

evaluation in clinical trials
15,16

. TAM receptor agonists also may prove useful in the 

treatment of autoimmunity because of their ability to down-regulate cytokine production
17

. 

Less is known about the net effect of TAM receptor blockade during viral infection. In a 

form of apoptotic mimicry, many enveloped viruses incorporate phosphatidylserine into their 

virion membranes
18,19

 and bind Gas6 and Protein S to facilitate recognition by TAM 

receptors and activation of signals that dampen antiviral responses
19

. Studies with influenza 

and respiratory syncytial viruses suggest that Axl blockade by antibodies protects against 

infection and disease pathogenesis
20

. However, an antiviral phenotype after TAM inhibition 

may not be universal, as herpes simplex virus (HSV) infection was more severe in Axl–/– 

mice
21

.

We hypothesized that deletion of TAM receptors might restrict WNV infection and protect 

against pathogenesis for two reasons: (1) cell culture studies indicated that TAM receptors 

can augment flavivirus entry
18

 and create a more permissive innate immune environment for 

replication
19

; and (2) WNV causes significant morbidity in humans after it crosses the 

blood-brain barrier (BBB) and replicates within neurons. Type I IFN signaling strengthens 

the BBB during viral infection by tightening junctions between brain microvascular 
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endothelial cells (BMECs)
22

. Since TAM receptors can negatively regulate type I IFN 

signaling
11,19

, deletion of TAM receptors could enhance both IFN signaling and BBB 

integrity. Unexpectedly, we observed that Axl–/–, Mertk–/–, Axl–/–Mertk–/– but not Tyro3–/– 

mice were more vulnerable to WNV infection. This phenotype was associated with 

markedly impaired BBB integrity during infection. Our results establish a preferential role 

for Mertk in protecting against neuroinvasive viruses, which occurs at least in part through 

its ability to sustain the BBB during infection.

RESULTS

Axl and Mertk but not Tyro3 are required for control of WNV infection in vivo

To evaluate the role of TAM receptors in WNV infection, we infected WT, Tyro3–/–, Axl–/–, 

Mertk–/–, and Axl–/–Mertk–/– C57BL/6 mice with WNV (New York 2000 strain) by 

subcutaneous inoculation (Fig 1a). Unexpectedly, Axl–/–, Mertk–/–, and Axl–/–Mertk–/–, but 

not Tyro3–/– mice were more vulnerable to WNV infection than WT mice, with ~80% 

mortality in Axl–/– or Mertk–/– mice (P < 0.0005) and ~95% mortality in Axl–/–Mertk–/– 

mice (P < 0.0005).

We found that an absence of TAM receptors had a relatively minor effect on viral burden in 

peripheral organs, with increased viremia and viral load observed only at 2 days post-

infection (dpi) in serum (26-fold, P < 0.05) and 4 dpi in the spleen (33-fold, P < 0.05), 

respectively, in the Axl–/–Mertk–/– mice (Fig 1b–c). No significant differences in viral 

burden were observed in serum, spleen, or kidney in Axl–/– or Mertk–/– mice compared to 

WT mice (Fig 1b–d).

Higher levels of WNV infection were apparent in the CNS of Axl–/–, Mertk–/–, and 

Axl–/–Mertk–/– mice compared to WT controls. At 4 dpi, WNV was detected in CNS tissues 

of TAM receptor deficient mice: 2 of 9 Axl–/–, 2 of 10 Mertk–/–, and 3 of 10 Axl–/– Mertk–/– 

mice had brain homogenates that were positive for infectious WNV compared to 0 of 10 WT 

mice (Fig 1e). Analogously, at 6 dpi, 5 of 9 Axl–/–, 4 of 8 Mertk–/–, and 4 of 9 

Axl–/–Mertk–/– mice had detectable WNV in the spinal cord compared to 0 of 10 WT mice 

(Fig 1f). Viral titers also were increased at 8 dpi in the brain (29 to 72-fold increase, P < 

0.05) and spinal cord (7 to 135-fold increase, P < 0.05) of Axl–/–, Mertk–/–, and Axl–/– 

Mertk–/– mice.

Higher levels of CNS infection in the TAM receptor KO animals could suggest that Axl or 

Mertk restrict viral replication preferentially in target cells of the CNS. To test this 

hypothesis, we inoculated WNV intracranially in Axl–/–, Mertk–/–, or Tyro3–/– mice. To 

ensure detection of small differences that might be missed by whole brain analysis, viral 

burden in the cerebral cortex, subcortex, brain stem, and cerebellum was measured at 3, 5, 

and 6 dpi after infection. However, no difference in viral burden in the CNS of Axl–/–, 

Mertk–/–, or Tyro3–/– mice was observed following intracranial inoculation (Fig 1g–i, P > 

0.9). These data suggest that TAM receptors do not restrict WNV replication directly in the 

CNS.
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Effects of TAM receptors on antiviral adaptive immune responses

To assess whether part of the CNS virological phenotype could be attributed to defects in 

adaptive immunity, we measured anti-WNV IgM and IgG levels at 4 and 8 dpi in WT and 

Axl–/–Mertk–/– mice (Supplementary Fig 1a–c). Axl–/–Mertk–/– mice had slightly greater 

anti-WNV IgG titers (2.5-fold, P < 0.005) and slightly lower neutralizing titers at 8 dpi (0.4-

fold, P < 0.005). These small differences were unlikely to explain the prominent lethality 

phenotype observed in Axl–/–Mertk–/– mice after WNV infection.

Axl has been proposed to modulate CD8+ T cell responses by DC efferocytosis and antigen 

cross-presentation
21

. To test whether Axl and Mertk affected T cell responses during WNV 

infection, we measured the levels and antigen specificity of CD8+ T cells from the spleen of 

WNV-infected WT, Axl–/–, Mertk–/– and Axl–/–Mertk–/– mice (Supplementary Fig 1d–n). 

Although we detected similar numbers and percentages of CD4+ and CD8+ T cells in the 

spleens of WT, Axl–/–, Mertk–/– and Axl–/–Mertk–/– mice at 8 dpi, we observed fewer WNV 

tetramer-positive CD8+ T cells in Axl–/– mice (Supplementary Fig 1d–f). After ex vivo 
peptide restimulation of splenocytes, we observed a lower percentage and number of WNV-

specific CD8+ T cells that expressed IFN-γ in Axl–/– but not in Mertk–/– CD8+ T cells 

(Supplementary Fig 1k–l, P < 0.05). There also were fewer WNV-specific CD8+ T cells 

that expressed IFN-γ or TNF-α from Axl–/–Mertk–/– mice (Supplementary Fig 1m–n, P < 

0.05). These data suggest that Axl is required for optimal priming of a CD8+ T cell response 

during WNV infection.

We next assessed leukocyte responses within the brain at 8 dpi. We observed greater 

numbers of leukocytes and antigen-specific CD8+ T cells in the brains of Mertk–/– and 

Axl–/–Mertk–/– mice than WT controls (Supplementary Fig 2a–g, P < 0.05) but no 

statistically significant difference in the number of CD11b+CD45hi macrophages or 

CD11b+CD45lo microglia (Supplementary Fig 2h–i). Greater numbers of infiltrating 

immune cells likely result from the higher viral burden in the CNS, enhanced BBB 

permeability, or both.

BBB integrity during WNV infection requires Axl and Mertk but not Tyro3

Because we observed early accumulation of WNV in the brains of Axl–/–, Mertk–/–, and 

Axl–/–Mertk–/– mice, we assessed whether these mice had altered BBB permeability that 

could impact virus entry into the CNS. We injected sodium fluorescein (molecular weight 

(MW): 376) intraperitoneally into naïve and WNV-infected WT, Tyro3–/–, Axl–/–, Mertk–/–, 

and Axl–/–Mertk–/– mice and measured extravasation into the brain 45 minutes later (Fig 
2a). Even in the absence of infection, naïve Axl–/–Mertk–/– mice had slightly greater BBB 

permeability; in comparison, no statistically significant differences were observed in naïve 

Tyro3–/–, Axl–/–, or Mertk–/– mice, although there was a trend toward enhanced BBB 

permeability in uninfected Mertk–/– mice (Fig 2a, left panel). WNV infection resulted in 

increased sodium fluorescein extravasation into the CNS at 4 dpi (Fig 2a, right panel), as 

reported previously
22

. BBB permeability was greater in WNV-infected Axl–/–, Mertk–/–, and 

Axl–/–Mertk–/–, but not Tyro3–/– mice compared to WT mice at this time point, with 

Mertk–/– and Axl–/–Mertk–/– mice exhibiting the most pronounced phenotypes (Fig 2a, right 
panel). These results suggest that Axl and Mertk are required to maintain BBB integrity 
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during infection and prevent early virus invasion into the CNS, with Mertk having the most 

prominent effect.

As an independent measure of BBB permeability, we used confocal microscopy to assess 

leakage of endogenous IgG (MW: 150,000) into the brain parenchyma following WNV 

infection. Although minimal IgG was detected in the brains of uninfected mice 

corresponding to all genotypes (data not shown), IgG accumulation became apparent at 4 

dpi, with Axl–/–Mertk–/– mice exhibiting greater leakage than WT mice (Fig 2b). Thus, in 

the context of WNV infection, the BBB of Axl–/–Mertk–/– mice was more permeable to 

small molecules and larger proteins.

TAM antagonist disrupts BBB integrity and accelerates WNV infection in the brain

To corroborate the phenotypes observed with TAM receptor KO mice, we treated WT mice 

with a 40 mg/kg dose of BMS-777607, a small molecule inhibitor of c-Met, Ron, Flt-3, and 

TAM receptor signaling
23

, by oral gavage beginning one day prior to WNV infection and 

continuing until 4 dpi. BMS-777607 treatment resulted in enhanced lethality of WT mice 

after WNV infection (Supplementary Fig 3a, P < 0.05) with virus present in the brain at 4 

dpi in 3 of 6 drug-treated mice compared to 0 of 6 control mice (Supplementary Fig 3b). 

BMS-777607 increased BBB permeability in WT but not Axl–/– Mertk–/– mice at 4 dpi 

(Supplementary Fig 3c P < 0.05), nor in drug-treated uninfected animals (Supplementary 
Fig 3d).

TAM receptor KO mice are vulnerable to La Crosse virus infection

We hypothesized that Mertk–/– mice also might be vulnerable to other viruses that enter the 

brain through a hematogenous route. La Crosse virus (LACV) is a neurotropic 

orthobunyavirus that causes meningoencephalitis, predominantly in children
24

. We observed 

enhanced mortality in Axl–/– or Mertk–/– mice infected with LACV compared to WT mice 

(Fig 3a, 50% versus 9%, P < 0.05). Mertk–/– mice had increased BBB permeability at 4 dpi 

whereas LACV-infected Axl–/– mice did not (Fig 3b). We also found higher levels of viral 

RNA in the brains of Mertk–/– but not Axl–/– mice at 8 dpi (Fig 3c) after LACV infection.

Cytokine and chemokine levels in serum of WNV-infected mice

Elevated levels of some pro-inflammatory cytokines (e.g., TNF-α) open the BBB
25

, whereas 

others (e.g., type I IFN) close the barrier
22

. Because TAM receptors negatively regulate 

cytokine production, we measured their levels in the serum of naïve and WNV-infected mice 

(Supplementary Fig 4). In naïve mice, Axl–/–, Mertk–/–, and Axl–/–Mertk–/– mice had 

higher levels of IL12-p40 although other pro-inflammatory cytokines were similar compared 

to WT animals. At 4 dpi, levels of TNF-α, IL-1β, IL-6, IL-12(p40), RANTES, and KC were 

slightly (~2-to-3 fold, P < 0.05) higher in the serum of Axl–/–, Mertk–/–, and Axl–/–Mertk–/– 

mice (Supplementary Fig 4a–g). Type I IFN levels in serum also were slightly higher at 4 

dpi in Axl–/– and Axl–/–Mertk–/– mice (1.3- to 1.5-fold P < 0.05) but not in Mertk–/– mice (P 
> 0.9) (Supplementary Fig 4h).

We also assessed cytokine levels in the brains of Axl–/–, Mertk–/–, and Axl–/–Mertk–/– mice 

that were inoculated via intracranial injection with WNV (Supplementary Fig 4i) in order 
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to measure cytokine expression levels in the context of equivalent WNV burden in WT and 

TAM receptor-deficient mice (see Fig 1g–i). We found no difference in expression of TNF-

α, IL-1β, IL-6, TGF-β1 and TGF-β3 mRNA among any of the genotypes. Consistent with 

this finding, antibody blockade of TNF-α in vivo did not change the BBB permeability 

defect in Axl–/–Mertk–/– mice during WNV infection (data not shown). The net effect of 

differences in levels of pro-inflammatory cytokines on BBB permeability in TAM receptor-

deficient mice remains unclear.

Axl and Mertk signaling improves BBB integrity in vitro

TAM receptors are present on the surface of mouse BMECs in vivo and in vitro, with higher 

expression of Mertk compared to Axl
26,27

 (Supplementary Fig 5a–c). To explore whether 

TAM receptor signaling modulates endothelial barrier integrity and WNV transit, we used an 

in vitro model of the BBB
22

. Primary mouse BMECs are cultured in the upper chamber of a 

transwell, with primary astrocytes in the lower chamber. Transendothelial electrical 

resistance (TEER) across the BMEC monolayer measures barrier integrity, with higher 

resistance indicating a tighter barrier. TEER was lower across Axl–/–Mertk–/– BMECs (Fig 
4a, P < 0.05) at baseline. In response to WNV infection, and as expected, WT and 

Axl–/–Mertk–/– BMEC barriers exhibited increased TEER compared with mock-infected 

barriers, but Axl–/–Mertk–/– BMEC barriers failed to tighten as much as WT BMECs (Fig 
4a–b, 0.85-fold, P < 0.0001). We observed no difference in WT and Axl–/–Mertk–/– BMEC 

viability (data not shown).

We next evaluated whether changes in TEER in Axl–/–Mertk–/– BMECs impacted transit of 

WNV across the endothelial barrier. We added WNV to the upper chamber and after 6 h 

measured virus that had crossed the BMEC barrier into the lower chamber; this time point 

precedes de novo spread of WNV infection
28

. Consistent with lower TEER, Axl–/–Mertk–/– 

BMECs had higher amounts (9-fold, P < 0.0001) of WNV crossing into the lower chamber 

compared to WT cells (Fig 4c). Higher levels of WNV in the lower chamber could result 

from decreased binding of WNV to BMECs in the absence of Axl and Mertk, since these 

receptors are engaged by WNV at the plasma membrane
18

. However, we found slightly 

higher amounts of WNV associated with BMECs lacking Axl and Mertk expression at 6 h 

after infection (Fig 4d). Thus, Axl and Mertk are not required for binding of WNV to 

BMECs, and TAM receptor signaling sustains the integrity of the endothelial barrier, which 

restricts WNV transit.

The decrease in TEER in response to WNV infection in Axl–/–Mertk–/– BMECs might be 

due to an altered production or response to cytokines (e.g., TNF-α), which independently 

affect the barrier. Indeed, we detected slightly increased levels (1.4- to 2.6-fold P < 0.05) of 

TNF-α, IL-1β, and IFN-γ during WNV infection of BMECs (Fig 4e–f, and data not shown). 

Other cytokine and chemokine levels (e.g., IL-2, IL-3, IL-6, IL-13, KC, MIP1α, RANTES) 

were similar in WT and BMECs (data not shown). Since TNF-α and IL-1β can disrupt BBB 

integrity
22

, we tested whether blockade of these cytokines in vitro during WNV infection 

might differentially alter barrier integrity. Treatment of BMECs with blocking antibodies 

against IL-1β and TNF-α prior to infection minimally increased TEER (1.1 to 1.2-fold, P < 

0.05) in both WT and Axl–/–Mertk–/– BMECs, and this effect was evident only at late time 
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points (Fig 4g). As studies have suggested that TAM receptors can modulate the 

responsiveness of endothelial cells to TNF-α
22

, we treated WT and Axl–/–Mertk–/– BMECs 

with soluble TNF-α; however no difference in TEER was observed (P > 0.9, Fig 4h).

As Axl associates physically with IFNAR1 and modulates type I IFN signaling in DCs
11

, we 

hypothesized that TAM receptors might affect IFNAR signaling in BMECs, which could 

affect BBB tightening after WNV infection. To test this idea, we treated WT or 

Axl–/–Mertk–/– BMECs with IFN-β (IFNAR-dependent) or IFN-λ (IFNAR-independent) and 

measured TEER over 6 hours. Whereas a deficiency of Axl and Mertk did not affect the 

ability of IFN-λ to increase TEER
22,29

, Axl–/–Mertk–/– BMECs were less responsive to IFN-

β treatment in terms of TEER changes (Fig 4i), although IFNAR expression was similar in 

WT and Axl–/–Mertk–/– BMECs (Supplementary Fig 5d). These results suggest that Axl 

and Mertk expression in BMECs is required for the full effect on barrier integrity of IFN-β. 

Colocalization of the tight junction (TJ) proteins claudin-5 and ZO-1 is enhanced by type I 

IFN during WNV infection
22

. We observed diminished claudin-5 expression at the cell 

membrane in addition to discontinuities in TJs in Axl–/–Mertk–/– BMECs (Fig 4j). 
Treatment of WT and Axl–/–Mertk–/– BMECs with IFN-β or IFN-λ enhanced ZO-1 and 

claudin-5 colocalization in WT and Axl–/–Mertk–/– BMECs, although discontinuities in TJs 

were still observed in Axl–/–Mertk–/– BMECs. In contrast, treatment with TNF-α disrupted 

TJ in both WT and Axl–/–Mertk–/– BMECs. Diminished TJ integrity, increased virus transit, 

and altered IFN-β responsiveness in Axl–/–Mertk–/– BMECs may explain how endothelial 

cell expression of TAM receptors can enhance BBB integrity during viral infection.

We next tested the effects of Gas6
4
, which binds to and activates both Axl and Mertk, either 

alone or in combination with IFN-β, on TEER in WT BMECs. We observed dose-dependent 

tightening of BMEC monolayers in response to Gas6 (Fig 5a). The combination of Gas6 and 

IFN-β rapidly tightened the barrier, with markedly increased TEER values observed within 

15 min of treatment. Similar increases in TEER values were observed in a human BMEC 

line and with physiologic concentrations of Protein S, which functions as a ligand for Mertk 

and Tyro3 but not Axl
4
 (Supplementary Fig 6a–b). Consistent with its dominant role in 

maintaining BBB integrity in vivo (see Fig 2a and 3b), signaling through Mertk was 

required for the increase in TEER in response to Gas6 (Fig 5d). Whereas Tyro3–/– and 

Axl–/– BMECs responded to Gas6 similarly compared to WT cells (Fig 5b–c), Axl–/– 

BMECs exhibited decreased baseline TEER (Fig 5c). A combined genetic deficiency of 

Axl–/– and Mertk–/– did not increase the barrier defect beyond that observed in Mertk–/– 

BMECs in response to Gas6 and IFN-β (Fig 5d–e).

To investigate further the interaction between TAM receptor and type I IFN signaling, we 

treated Ifnar–/– BMECs with Gas6. Type I IFN signaling was not required for Gas-6-

dependent effects on TEER at 30 and 60 minutes after treatment, although an absence of 

IFNAR diminished the amplitude of the effect at all time points (Supplementary Fig 7a). 

We confirmed these findings with MAR1-5A3
30

, an IFNAR-blocking antibody, which was 

incubated with WT BMECs immediately prior to Gas6 addition (Supplementary Fig 7b). 

Thus, TAM receptor ligands activate Mertk to tighten the junctions of BMEC monolayers in 

a manner that cooperates with but does not require IFNAR signaling, and the effect of Mertk 

on endothelial barrier integrity is amplified when type I IFN signaling occurs concurrently.

Miner et al. Page 7

Nat Med. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We examined how Gas6-dependent TAM receptor signaling affected the activity of Rac1, a 

Rho family GTPase that regulates cytoskeletal dynamics, TJ integrity, and paracellular 

permeability
31

. IFN-β enhances BMEC barrier formation in part by activating Rac1
22

, and 

Mertk signaling promotes Rac1 activation in macrophages in the context of phagocytosis of 

apoptotic debris
32

. We measured GTP-bound, activated Rac1 after treatment with IFN-β, 

Gas6, or IFN-β and Gas6. Notably, Gas6 treatment was sufficient to enhance Rac1 activation 

in BMECs, similar to the effect of IFN-β alone (Fig 5f, 2-fold, P < 0.005). The combination 

of Gas6 and IFN- β led to a further increase in Rac1 activation. Finally, blockade of Rac1 

activation prevented Mertk- or IFN-β-dependent tightening of BMEC barriers (Fig 5g). 

Thus, cytoskeletal reorganization resulting from Gas6-induced activation of Rac1 is likely 

required to sustain TJ integrity and the endothelial barrier.

We evaluated Axl and Mertk expression in cells of the neurovascular unit by confocal 

microscopy (Supplementary Fig 8a–b). In addition to expression on endothelial cells 

(Supplementary Fig 5a–c), we observed co-staining of TAM receptors in S100β+ astrocytes 

and CD11b+ myeloid cells. To evaluate whether TAM receptor expression on astrocytes 

contributed to endothelial barrier integrity, using the in vitro BBB model, we tested whether 

the TEER response to Gas6 stimulation was different with WT versus Axl–/–Mertk–/– 

astrocytes. However, deletion of Axl and Mertk in astrocytes had no effect on TEER (Fig 
6a).

The effect of Mertk expression on BBB permeability occurred both in vitro and in vivo, 

without appreciable effects on viral replication in peripheral organs or on CD8+ T cell 

responses. To confirm that the dominant effect on BBB permeability of Mertk occurred at 

the level of the neurovascular unit and not in peripheral immune cells, we generated Mertk 

bone marrow chimeric mice. To prevent adventitious effects of radiation on the BBB, the 

heads of mice were shielded with lead (Fig 6b). Bone marrow chimeras with Mertk-

deficient radio-resistant non-hematopoietic cells (SJL→Mertk–/–) exhibited the same BBB 

permeability defect on day 4 after WNV infection as Mertk–/– mice whereas the reciprocal 

chimeras (Mertk–/–→SJL) with Mertk-sufficient non-hematopoietic cells did not (Fig 6c). A 

trend towards a parallel effect on viral burden was observed with 7 of 8 SJL→Mertk–/– mice 

having detectable WNV RNA in the brain at 4 dpi compared to 3 of 8 Mertk–/–→SJL mice 

(Fig 6d, P = 0.06). These results are consistent with a model in which Mertk expression on 

radio-resistant cells within the CNS is required for maintenance of BBB integrity.

DISCUSSION

Many enveloped viruses bind to and activate TAM receptors to disable innate immune 

responses and enhance infection
19

. Because we previously observed slightly lower levels of 

WNV replication in Axl–/–Mertk–/– DCs
19

, we hypothesized that TAM receptor-deficient 

mice would be protected against lethal WNV infection. However, we show here that a 

genetic deficiency of Axl and Mertk resulted in the early appearance of WNV into the CNS, 

which resulted in enhanced viral load and mortality. The increased mortality was associated 

with increased BBB permeability and revealed a dominant role for Mertk in maintaining the 

integrity of this key barrier during viral infection. Using an in vitro BBB model, we found 

that Mertk promoted endothelial barrier integrity by maintaining the co-localization of TJ 
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proteins. The barrier-tightening effect of Mertk signaling was cooperative with the response 

to IFN-β.

Our discovery that Axl–/– and Mertk–/– mice were more vulnerable to neuroinvasive WNV 

and LACV infections suggests that although enveloped viruses can usurp TAM receptors, 

these proteins nonetheless can restrict the pathogenesis of some viruses that gain entry into 

the CNS. When WNV was introduced directly in the CNS by intracranial injection in TAM 

receptor-deficient animals, no increase in viral replication in different brain regions was 

observed. Thus, blockade or ablation of TAM receptors may have varying effects on viral 

pathogenesis depending on the balance between virus binding to TAM receptors via Protein 

S and/or Gas6 and the resulting effects on the intracellular antiviral environment and/or 

vascular endothelial barrier integrity. Our data also demonstrate a separate role of Axl in 

modulating T cell immunity, which could impact viral clearance in different tissues 

including the CNS.

Although we did not assay the level of infection in TAM-deficient DCs in vivo, peripheral 

viral burden was similar in WT, Axl–/–, and Mertk–/– animals, suggesting that the earlier and 

greater viral burden in the CNS reflects accelerated virus entry due to impaired BBB 

integrity and that TAM receptor engagement by WNV is not required for infection in vivo. 

However, WNV infection was slightly greater in blood and the spleen of Axl–/–Mertk–/– 

animals, the mechanism for which requires further study. Bone marrow chimera studies 

revealed that the BBB permeability phenotype tracked with a loss of Mertk expression on 

radio-resistant and not radio-sensitive hematopoietic cells. Mertk+ radio-resistant cells in the 

CNS also include microglia
33,34

, which can express Axl upon activation; as such, we do not 

exclude the possibility that the enhanced lethality in WNV-infected Axl–/– mice might 

reflect a role for this TAM receptor in microglia.

IFNAR-dependent signaling was required for optimal endothelial cell barrier integrity after 

treatment with the TAM ligand, Gas6. Studies in myeloid cells have shown that Axl 

associates with and signals through the IFNAR1 subunit
11

, and it is plausible that Mertk 

could function analogously in endothelial cells. Although biochemical corroboration is 

required, Mertk may modulate the barrier tightening effects of IFN-β in endothelial cells 

because of a specific interaction with IFNAR1
11

.

The defects in the stabilization of endothelial TJs in Axl–/–Mertk–/– BMECs are consistent 

with TAM receptor-dependent regulation of cytoskeletal reorganization in other cell types, 

which occur through Rac1
32,35

. We observed Rac1 activation in response to Gas6 in 

endothelial cells, which was amplified with concurrent IFN-β treatment. Our experiments 

are consistent with a model in which TAM receptor (preferentially Mertk) and IFNAR 

signaling together activate Rac1, which leads to tightening of BMEC junctions and 

restriction of virus transit into the CNS (Fig 6e).

Axl–/– mice had impaired CD8+ T cell responses to WNV infection, which could impact 

mortality by affecting CNS viral clearance
36,37

. We did not observe CD8+ T cell defects in 

peripheral or CNS tissues of Mertk–/– mice, suggesting distinct functions of Axl and Mertk 

in modulating adaptive immunity during virus infections. A diminished T cell response in 
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Axl–/– mice is consistent with a prior study of HSV infection 
21

. However, the attenuated 

CD8+ T cell response does not explain the early appearance of WNV in the brain at day 4 in 

Axl–/– mice, since this time point precedes the induction of a WNV-specific CD8+ T cell 

response
38

.

Prior reports have suggested possible functions of TAM receptors in endothelial cells. Mice 

lacking all three TAM receptors (Axl–/–Mertk–/–Tyro3–/– TKO) reportedly have a disrupted 

BBB, although this was attributed in part to autoimmune disease
39

. Exogenous 

administration of Protein S enhanced BBB integrity after ischemic stroke, although this 

phenotype required Tyro3 and not Axl or Mertk
26

. Thus, individual TAM receptors may 

have unique roles in maintaining BBB integrity under different inflammatory conditions. 

Mertk may have a dominant function in maintaining the BBB after viral infection, whereas 

Tyro3, which also is expressed on neurons, may be more important in the context of cerebral 

ischemia. Protein S, which is a ligand for both Tyro3 and Mertk, but not Gas6, is likely to be 

the relevant TAM ligand, as Protein S is abundant in serum where Gas6 is present at lower 

levels
40

.

Our discovery that TAM signaling regulates BBB integrity in the context of viral infections 

has clinical implications, since TAM receptor antagonists are being developed as cancer 

therapies
41

. Mertk blockade could increase the risk of neuroinvasion and pathogenesis of 

certain viruses, including WNV and LACV. Indeed, in studies with a broad-spectrum 

inhibitor of TAM signaling
42

, we observed increased lethality after WNV infection and 

increased BBB permeability. Further experiments are warranted to define the net effects of 

TAM receptor blockade in the context of infection by different families of visceral and 

encephalitic viruses.

ONLINE METHODS

Viruses and cells

The WNV strain (3000.0259) was isolated in New York in 2000 and passaged once in C6/36 

Aedes albopictus cells. Mice were inoculated subcutaneously in the footpad with 102 plaque 

forming units (pfu) of WNV diluted in Hanks balanced salt solution. Viral titers in tissues 

were analyzed by plaque assay using Vero cells, as described previously. The LACV strain 

(original strain) was provided by Andrew Pekosz (Johns Hopkins University, Baltimore, 

Maryland, USA) and passaged twice in Vero cells to produce a virus stock.

Mice

C57BL/6J wild-type (WT) mice were commercially obtained from Jackson Laboratories. 

Axl–/–, Mertk–/–, Axl–/–Mertk–/–, and Tyro3–/– mice have been published
43

 and were 

backcrossed for ten generations. All mice were housed in a pathogen-free mouse facility at 

the Washington University School of Medicine and experiments were performed in 

accordance with federal and University regulations. The protocols were approved by the 

Institutional Animal Care and Use Committee at the Washington University School of 

Medicine (Assurance Number: A3381-01). Mice (8 to 10 week-old, both sexes) were 

inoculated subcutaneously via footpad injection with 102 pfu of WNV or 105 focus-forming 
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units (ffu) of LACV, both diluted in 50 μl of Hanks balanced salt solution (HBSS) 

supplemented with 1% heat-inactivated fetal bovine serum (FBS). For intracranial infection, 

101 pfu of WNV in 20 μl was injected into the right cerebral hemisphere.

Measurement of viral burden

At specified time points after WNV and LACV infection, serum was obtained by 

intracardiac heart puncture, followed by intracardiac perfusion (20 ml of PBS), and organ 

recovery. Organs were weighed, homogenized using a bead-beater apparatus, and WNV was 

titrated by plaque assay on Vero cells
44

. Brains from LACV- and WNV-infected mice were 

harvested at day 8 after infection and the total RNA was extracted using the RNeasy kit 

(Qiagen). For LACV, viral load in the brain was determined by qRT-PCR. Briefly, all 

reactions were assembled in a final volume of 25 μl with 300 ng of RNA, 10 μM forward 

and reverse primers (LACV: Forward 5’-CCTTGCTGCAGTTAGGATCTTCTT-3’, Reverse 

5’- CCACTCTCCAAATTTAGG-GTTAGC-3’; GAPDH: Forward 5’-

AATGGTGAAGGTCGGTGTG-3’, Reverse: 5’-GTG 

GAGTCATACTGGAACATGTAG-3’), 5 μM probe (LACV: 5’-5’-/56-FAM/ 

AGGCCAAGGCTGCTCTCTCGCGTA-/36-TAMSp/-3'; GAPDH: 5’-/56-FAM/

TGCAAATGG/ZEN/CAGCCCTGGTG/3IABkFQ/-3’) and 12.5 μl of TaqMan master mix 

(Applied Biosystems) using the following cycling condition: 48°C for 30 min, 95°C for 10 

min, followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. Quantitation of WNV RNA 

was performed as previously described
45

. The levels of viral RNA were expressed on a log10 

scale as genomes equivalents/g after comparison with a standard curve produced using serial 

ten-fold dilutions of WNV or LACV RNA.

Quantification of type I IFN activity

Levels of type I IFN were determined using an EMCV cytopathic effect bioassay performed 

in L929 cells as described previously
46

. Serum samples were treated with citrate buffer (40 

mM citric acid, 10 mM KCl, 135 mM NaCl [pH 3.0]) for 10 minutes and neutralized with 

medium containing 45 mM HEPES pH 8.0. The amount of type I IFN per ml of serum was 

calculated from a standard curve using IFN-β (PBL Assay Science). The specificity of the 

antiviral activity was confirmed by pre-incubating L929 cells for 2 hours with 25 μg/ml of 

the IFNAR-blocking MAb MAR1-5A3 or an isotype control MAb GIR-208
30

.

Cytokine bioplex assay

WT and Axl–/–, Mertk–/–, and Axl–/–Mertk–/– mice were infected with WNV, and at 

specified times blood was collected and serum was prepared. The BioPlex Pro Assay was 

performed according to the manufacturer's protocol (BioRad). The cytokine screen included 

IL-1α, IL-1β, IL-2, IL-3 IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, 

Eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1 MIP-1α, MIP-1β, RANTES (CCL5), and 

TNF-α.

BBB permeability measurements

Mice were infected with 102 pfu of WNV or diluent (mock) and BBB permeability was 

assessed after 4 days. Sodium fluorescein (100 mg/ml) was administered via an 
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intraperitoneal route in 100 μl. After 45 minutes, blood was collected by cardiac puncture 

into EDTA-coated tubes. Mice were perfused and CNS tissues were harvested, homogenized 

into PBS, clarified by centrifugation, precipitated in 1% trichloroacetic acid, and neutralized 

with borate buffer (Sigma-Aldrich). Fluorescence emission at 485 and 528 nm was 

determined using a microplate reader Synergy™ H1 and Gen5™ software (BioTek 

Instruments, Inc.). Fluorescein concentration was calculated from a standard curve and 

tissue fluorescence values were normalized to the plasma fluorescence values from the same 

mouse.

Endogenous mouse IgG was detected in brain sections using an AlexaFluor-488 anti-mouse 

IgG antibody. Nuclei were stained with Topro-3. Images were acquired with a laser scanning 

confocal microscope (Zeiss LSM 510 META) and analyzed with LSM image browser 

software (Zeiss).

Drug treatment studies

The small molecular receptor inhibitor BMS-777607 (Selleckchem) was dissolved in DMSO 

at a stock concentration of 52 mg/ml. Mice received either 1 mg BMS-777607 dissolved in 

50 μl DMSO or 50 μl DMSO vehicle control by oral gavage beginning one day prior to 

infection and continuing through day 4 after infection.

B cell and antibody responses

The levels of WNV-specific IgM and IgG were determined using an ELISA against purified 

WNV E protein, as described previously
47

. Plaque reduction neutralization assays on 

BHK21-15 cells were performed after mixing serial dilutions of serum with a fixed amount 

(102 pfu) of WNV as previously described
48

.

Cellular immune responses

WT and TAM receptor-deficient mice were infected in the footpad with 102 pfu of WNV 

and at 8 days after infection, spleens and brains were harvested after extensive cardiac 

perfusion with PBS. Splenocytes were dispersed into single cell suspensions with a cell 

strainer. Brains were digested collagenase and leukocytes were isolated as previously 

described
49

. Intracellular IFN-γ or TNF-α staining was performed after ex vivo 
restimulation with a Db-restricted NS4B immunodominant peptide using 1 μM of peptide 

and 5 μg/ml of brefeldin A (Sigma) as described
50

. Cells were stained with the following 

antibodies and processed by multi-color flow cytometry on an LSR II flow cytometer 

(Becton Dickinson): CD3 (Becton Dickinson, clone 145-2C11), CD4 (Biolegend, clone 

RM4-5), CD8β (Biolegend, clone YT5156.7.7), CD19 (Invitrogen, clone 6D5), CD45 

(Biolegend, clone 30-F11), CD11b (Becton Dickinson, clone M1/70), IFN-γ (Becton 

Dickinson, clone XMG1.2), TNF-α (Biolegend, clone MP6-XT22). Flow cytometry data 

were analyzed using FlowJo software (Treestar).

Transwell cultures and TEER measurements

WT and TAM receptor-deficient BMECs and WT HCMEC/D3 cells were grown until fully 

polarized in transwell cultures
22

. BMECs were grown above astrocyte cultures, whereas 

HCMEC/D3s were grown without astrocytes. TEER was measured via chopstick electrode 
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with an EVOM voltmeter (World Precision Instruments). Resistance values are reported as 

Ω/cm2, with the resistance value for transwell inserts with no cells subtracted as background. 

TEER measurements were collected at 6 h following infection with WNV at MOI 0.01 or 

treatment with murine IFN-λ3 (100 ng/ml), murine or human IFN-β (10 ng/ml) (PBL Assay 

Science); mock wells were treated with culture medium. To block IFN-α/β signaling, BMEC 

cultures were treated with 25 μg/ml of the blocking MAb MAR1-5A3 for one hour prior to 

infection. A non-binding MAb (GIR-208) was used as an isotype control. To measure virus 

transit across the endothelial barrier, WNV was added to the upper chamber of the transwell 

at an MOI of 0.01. After 6 h, virus in the lower chamber was measured by qRT-PCR. 

Recombinant full-length Gas6 was generated in HEK293 EBNA cells as previously 

described
4
. Human Protein S was purchased from Haematologic Technologies 

(HCPS-0090).

Rac1 studies

Rac1 immunoprecipitation experiments were performed with an activated Rac1 agarose bead 

kit (Cell BioLabs, Inc.) according to the manufacturer's instructions. Purified, GTP-bound 

protein and unpurified BMEC protein lysates were separated via gel electrophoresis on 10% 

bis-Tris gels (Life Technologies) and transferred onto iBlot nitrocellulose transfer 

membranes (Life Technologies) according to standard protocols. To test the effects of Rac1 

inhibition on TEER in BMECs, the Rac1 inhibitor Z62954982 (Cayman Chemical) was 

added at a concentration of 1 mM.

TAM receptor expression

Freshly isolated BMECs were stained with anti-Mertk (R&D Systems AF591) or anti-Axl 

(R&D Systems AF854) antibodies followed by a polyclonal secondary antibody. A control 

goat polyclonal antibody and Axl–/–Mertk–/– BMECs were used to assess the specificity of 

staining. Brain sections were stained with antibodies against Mertk (R&D Systems, AF591), 

Axl (R&D Systems, AF854), s100-β (Abcam, ab41548), CD31 (Becton Dickinson, 550274), 

or CD11b (Becton Dickinson, ab8878).

Bone marrow chimeric mice

Six week-old B6.SJL-Ptprc (CD45.1 SJL, Jackson Laboratories) and CD45.2 Mertk–/– mice 

were anesthetized with ketamine and positioned within lead shielding to limit exposure of 

the brain to radiation
51

. Mice were then placed into a pie container within a cesium 

irradiator so that the head was shielded from the radiation source and then irradiated with a 

dose of 8 Gy. Six hours after irradiation, 107 bone marrow-derived leukocytes of a given 

genotype were injected intravenously in 100 μl of PBS. Seven weeks after bone marrow 

transplantation, reconstitution was confirmed by flow cytometry with greater than 95% of B 

cells, 90% of neutrophils, and ~75% of T cells of donor origin.

Power calculation and data generation

To determine mouse group sizes for individual experiments, power analysis was performed 

using the following values: probability of type I error = 0.05, power = 80%, 5-fold 

hypothetical difference in mean, and population variance. This analysis indicated that 
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minimum sample sizes of 8 animals for virological or immunological studies were required 

to detect an approximately 10-fold level of difference. Studies were performed in an 

unblended manner, and randomization was not used. No animals, samples, or data points 

were excluded from any analysis.

Data analysis

All data was analyzed using Prism software (GraphPad4, San Diego, CA). Kaplan-Meier 

survival curves were analyzed by the log rank test. Differences in viral burden, cytokine 

levels, and cell numbers were analyzed by the Mann-Whitney test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mortality and viral burden in WT and TAM receptor-deficient mice after 
subcutaneous or intracranial infection with WNV
Mice were infected with 102 plaque forming units (pfu) of WNV via a subcutaneous route 

(a–f) or 101 pfu via an intracranial route (g–i). a. Survival analysis of WT, Axl–/–, Mertk–/–, 

Tyro3–/– and Axl–/–Mertk–/– mice after subcutaneous WNV infection. Mice were monitored 

for 28 days for morbidity and mortality. The survival curves were constructed using data 

from three to five independent experiments. The survival differences between WT and 

Axl–/–, Mertk–/–, and Axl–/–Mertk–/– mice were statistically significant by the log-rank test 

(****, P < 0.0001). The numbers of animals were n = 49 for WT, n = 29 for Axl–/–, n = 24 

for Mertk–/–, n = 17 for Tyro3–/–, and n = 48 for Axl–/–Mertk–/–. (b–f) Viral burden was 

measured by plaque assay from serum, spleen, kidney, brain, and spinal cord. Symbols 

represent individual mice pooled from several independent experiments; bars indicate the 

mean of 6 to 10 mice per group. Dotted lines represent the limit of sensitivity of the assay. 
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(g–i) Viral replication in the cerebral cortex, cerebellum, and brain stem was measured by 

plaque assay at days 3, 5, and 6 after infection. Bars indicate the mean of 5 or 6 mice per 

group from two independent experiments. Dotted lines represent the limit of sensitivity of 

the assay. *, P < 0.05; **, P < 0.005; ***, P < 0.0005; **** P < 0.0001 by the Mann-

Whitney test.
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Figure 2. BBB permeability in WT and TAM receptor-deficient mice
(a) WT, Axl–/–, Mertk–/–, Tyro3–/– and Axl–/–Mertk–/– mice were infected via a 

subcutaneous route with 102 pfu of WNV or diluent (mock). BBB permeability was assessed 

at 4 days after infection by measuring the accumulation of sodium fluorescein in CNS 

tissues following intraperitoneal administration. Tissue fluorescence was normalized to the 

plasma fluorescence from the same animal. Symbols represent individual animals from two 

independent experiments. ****, P < 0.0001; *, P < 0.05 (ANOVA with Tukey multiple 

comparisons test). (b) WT and Axl–/–Mertk–/– mice were infected via a subcutaneous route 

with 102 pfu of WNV or diluent (mock). Mice were perfused and brain sections were stained 

with anti-mouse IgG to detect endogenous antibody leakage into the CNS parenchyma. IgG 

staining is shown in green, nuclei are shown in blue. Representative images were taken at 

40X magnification. Scale bar equals 100 μm. Levels of IgG staining were quantified from 2 

fields from 4 independent mice per group. *, P < 0.05 (Mann-Whitney test).
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Figure 3. Vulnerability, viral burden, and BBB permeability in WT, Axl–/–, and Mertk–/– mice 
after infection with LACV
8-week-old mice were infected with 105 focus forming units (ffu) of LACV via a 

subcutaneous route. (a) Survival analysis of WT, Axl–/–, and Mertk–/– mice after LACV 

infection. The survival curves were constructed using data from three independent 

experiments and the differences between WT and Mertk–/– or WT and Axl–/– mice were 

statistically significant (P < 0.05) as judged by the log-rank test; n = 23 for WT, n = 18 for 

Mertk–/–, n = 11 for Axl–/– mice. (b) BBB permeability was measured 4 days after infection 

by sodium fluorescein assay as described in legend to Figure 2. *, P < 0.05 (Mann-Whitney 

test). (c) Viral burden in the brain as measured by qRT-PCR and plotted as genome 

equivalents. n = 12 for WT, n = 12 for Mertk–/–, and n = 12 for Axl–/– mice. ***, P < 0.005 

(Mann-Whitney test).
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Figure 4. Analysis of barrier integrity in brain microvascular endothelial cells from 
Axl–/–Mertk–/– mice
BMECs were prepared from WT or Axl–/–Mertk–/– mice and cultured on transwell inserts 

with astrocytes prepared from WT mice. (a) BMECs were infected with WNV at an MOI of 

0.01 and TEER was measured at two-hour intervals. (b) The relative changes in TEER over 

6 h in WT and Axl–/–Mertk–/– BMECs. (c) Virus crossing into the lower chamber of 

transwells with WT and Axl–/–Mertk–/– BMECs measured by qRT-PCR and expressed as 

pfu equivalents/ml. (d) Measurement of WNV associated with WT and Axl–/–Mertk–/– 
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BMECs. Six hours after the addition WNV (MOI of 0.01), BMECs were rinsed six times 

and RNA was isolated and analyzed by qRT-PCR. (e-f) Cytokine levels in mock-infected 

and WNV-infected BMEC media were measured by Luminex assay. (g) WT and 

Axl–/–Mertk–/– BMECs infected with WNV at a MOI of 0.01 were pre-treated with blocking 

antibodies to IL-1β and/or TNF-α and TEER was measured every 2 hours after infection for 

6h. Results represent mean ± SEM of 9 samples from two independent experiments. ****, P 
< 0.0001; ***, P < 0.0005; **, P < 0.005, *, P < 0.05 (2-way ANOVA). (h) and (i) Cells 

were treated for 6 h with 100 ng/ml of TNF-α, 10 IU/ml murine IFN-β, or 100 ng/ml of 

murine IFN-λ3 for 6 h followed by TEER measurements. (j) BMECs were prepared from 

WT and Axl–/–Mertk–/– mice and grown on chamber slides. Cells were co-stained for the TJ 

proteins ZO-1 (green) and claudin-5 (red); nuclei are shown in blue. Images were taken by 

confocal microscopy at 63X magnification. White arrows indicate diminished colocalization 

of ZO-1 and claudin-5. Yellow arrows indicate TJ discontinuities. Scale bar equals 25 μm. 

Right panel indicates the colocalization of claudin-5 and ZO-1. Values on the y-axis 

(correlation coefficient) represent the probability of an individual pixel staining positive for 

both markers if it stains positive for either. Results are representative of two or three 

independent experiments.
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Figure 5. Mertk signaling tightens BMEC barriers and functions synergistically with IFN-β
BMECs were prepared from WT, Axl–/–, Mertk–/–, Tyro3–/–, Axl–/–Mertk–/– and Ifnar1–/– 

mice and cultured on transwell inserts with astrocytes prepared from WT mice. (a) Dose-

dependent tightening of BMEC barrier integrity as measured by TEER in response to 

treatment with Gas6, IFN-β, or Gas6 + IFN-β. (b–e) TEER measurements after treatment of 

(b) Tyro3–/–, (c) Axl–/–, (d) Mertk–/– or (e) Axl–/– Mertk–/– BMEC monolayers with Gas6 

(left panels) or IFN-β with or without Gas6 (right panels). (f) Rac1 activation as judged by 

immunoprecipitation after treatment of WT BMECs with Gas6, IFN-β, or Gas6 plus IFN-β. 
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The dose of Gas6 was 10 nM and the dose of IFN-β was 10 IU/ml. (g) TEER measurements 

after treatment of WT or Mertk–/– BMECs with Gas6, IFN-β, or Gas6 + IFN-β Gas6. Each 

group also was treated with the Rac1 inhibitor Z62954982 or with vehicle control. Results in 

this Figure are pooled from at least two independent experiments with 4 to 6 technical 

replicates. ****, P < 0.0001; ***, P < 0.0005; **, P < 0.005, *, P < 0.05 (2-way ANOVA).
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Figure 6. Enhanced BBB permeability occurs independently of Mertk expression on astrocytes 
and radiosensitive cells
(a) Dose-dependent tightening of WT and Axl–/–Mertk–/– BMEC barrier integrity (grown 

over WT or Axl–/–Mertk–/– astrocytes) as measured by TEER in response to treatment with 

Gas6, IFN-β, or Gas6 + IFN-β. (b) (Top) Scheme of head shielding of mice to prevent 

radiation damage to the BBB. (Bottom) Representative flow cytometry plots showing the 

reconstitution efficiency of CD19+ and CD3+ cells in Mertk–/– and SJL mice after bone 

marrow transplantation. (c) Sodium fluorescein measurement of BBB permeability in 

SJL→Mertk–/– and Mertk–/–→SJL as well as control SJL→SJL and Mertk–/–→Mertk–/– 
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bone marrow chimeric mice 4 days after subcutaneous infection with 102 pfu of WNV; **, P 
< 0.005 (unpaired t test). (d) Measurement of WNV RNA in the brain by qRT-PCR on day 4 

after infection; P = 0.06 (Mann-Whitney test). n = 8 for SJL→Mertk–/–, n = 8 for 

Mertk–/–→SJL, n = 5 for SJL→SJL, n = 5 for Mertk–/–→Mertk–/– mice. (e) Model of 

cooperative IFNAR and TAM receptor signaling to activate Rac1, tighten the BBB, and 

prevent virus entry into the CNS. Signaling through Mertk and to a lesser extent Axl (via 

ligands Gas6 and Protein S) and IFNAR (via IFN-α/β) activate Rac1 within minutes, which 

leads to actin remodeling and stabilization of endothelial cell TJs. The question mark 

between TAM receptors and IFNAR indicates the uncertain mechanism by which IFN 

signaling modulates Mertk- and Axl-induced barrier tightening. Although experimental 

validation is required, a physical interaction between TAM receptors and IFNAR, as has 

been observed in DCs
11

, could explain the observed phenotype.
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