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KEYWORDS Abstract Insulin-resistance (IR) is one of the most important precursors of type 2 diabetes
Depression; (T2D). Recent evidence suggests an association of depression with the onset of T2D. Accumu-
DNA methylation; lating evidence shows that depression and T2D share common biological origins, and DNA

methylation examination might reveal the link between lifestyle, disease risk, and potential
Nutraceuticals; therapeutic targets for T2D. Here we hypothesize that integrative mining of IR and depression
Type 2 Diabetes; cohort data will facilitate predictive biomarkers identification for T2D. We utilized a newly
Vitamin D receptor proposed method to extract gene-level information from probe level data on genome-wide
DNA methylation array. We identified a set of genes associated with IR and depression in clin-
ical cohorts. By overlapping the IR-related nutraceutical-gene network with depression net-
works, we identified a common subnetwork centered with Vitamin D Receptor (VDR) gene.
Preliminary clinical validation of gene methylation set in a small cohort of T2D patients and
controls was established using the Sequenome matrix-assisted laser desorption ionization-
time flight mass spectrometry. A set of sites in the promoter regions of VDR showed a signifi-
cant difference between T2D patients and controls. Using a logistic regression model, the
optimal prediction performance of these sites was AUC = 0.902 , and an odds

Insulin resistance;
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ratio = 19.76. Thus, monitoring the methylation status of specific VDR promoter region might
help stratify the high-risk individuals who could potentially benefit from vitamin D dietary sup-
plementation. Our results highlight the link between IR and depression, and the DNA methyl-
ation analysis might facilitate the search for their shared mechanisms in the etiology of T2D.
Copyright © 2020, Chongging Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Introduction

Type 2 Diabetes (T2D) is a global health problem, and ac-
cording to the World Health Organization, diabetes is a
major cause of blindness, kidney failure, heart attacks,
stroke, and lower-limb amputations. In 2016, an estimated
1.6 million deaths were attributed directly to diabetes.'
T2D is a multifactorial disease defined by the interaction
of genetics and lifestyle factors, including malnutrition,
obesity, physical activity, stress, and xenobiotics.? Consid-
ering the urgent need for interventions to prevent T2D,
natural alternatives, such as nutraceuticals that are safe,
without risk, and with fewer regulatory hurdles than drugs
are required for usage. Nutraceuticals have received
considerable attention in recent years for their potential
roles in preventing or treating several chronic diseases.> A
promising strategy to prevent T2D is to identify individuals
with high risk and intervene with a nutraceutical that tar-
gets the corresponding dysregulated gene network. This
strategy offers the potential to identify natural mimetics of
metformin and rapamycin.” The key is to identify the bio-
markers, which (1) can be targeted by nutraceuticals and
(2) epigenetically regulated in the early stage of disease
onset.

Epigenetics was considered as a molecular link between
environmental factors and T2D development.>'® Therefore,
an evaluation of DNA methylation might improve the un-
derstanding of the T2D pathogenesis, contribute to the
development of novel treatments, and offer means to
identify individuals at risk for developing the disease.”
Accordingly, the DNA methylation pattern associated with
T2D in pancreatic islets and adipose tissue was also
detected in leukocytes.® ' A large, prospective,
case—control study showed that differences in peripheral
blood DNA methylation status might predict future T2D
incidence.'! Insulin resistance (IR) is responsible for T2D
development. T2D is a pathological condition wherein cells
fail to respond to insulin, and earlier studies showed that IR
is epigenetically regulated.’” A recent epigenome-wide
association study of peripheral white blood cells identi-
fied epigenetic signatures associated with IR as measured
by the Homeostatic Model Assessment of IR (HOMA-IR)."?

Growing evidence shows that depression and T2D share
common biological origins, particularly over activation of
innate immunity leading to a cytokine-mediated inflam-
matory response and potential dysregulation of the hypo-
thalamic—pituitary—adrenal  axis.'  Proinflammatory
cytokines might directly affect the brain, causing depres-
sive symptoms. Our previous analysis of healthy individuals
shows that long term isolation leads to changes in

metabolism and mood state. Glucose metabolism and long-
term depression are two significant dysregulated pathways
in the Mars500 isolation,’ and 180 days isolation'® studies,
thus suggesting a link between change in glucose meta-
bolism and mood state in apparently healthy individuals.

For identifying an early intervention epigenetic
biomarker for T2D, we started with the global nutraceutical
target gene network to investigate the association between
genes involved in IR and depression, from two large clinical
datasets. We choose genes in the center of the overlapped
subnetwork of IR, nutraceutical-gene network, and
depression networks, to design a DNA methylation assay
and analyzed using the Sequenome matrix-assisted laser
desorption ionization-time flight mass spectrometry
(MALDI-TOF MS). We tested the identified epigenetic
biomarker in a small cohort of patients with T2D and con-
trols. Although our results showed the validity of this
biomarker, it requires further studies to establish an early
risk monitor-nutraceutical intervention loop for the pre-
vention of T2D.

Material and methods
Nutraceutical target gene network

The nutraceuticals and their target protein information
were downloaded from the DrugBank database (version 5.1,
https://www.drugbank.ca/drugs), with the filter
"Nutraceutical” category."’

SimPo algorithm for DNA methylation chip data
analysis

A recent study showed a difference between the gene body
and promoter methylation (MeGDP) and gene expression,
and the correlation coefficient is as high as 0.67.® There-
fore, MeGDP could be used as a predictor for gene
expression levels. A higher MeGDP suggests a higher gene
expression value, thus suggesting a higher degree of asso-
ciation with the relevant phenotype. Based on the above
research results, we propose a SimPo (the Statistical Dif-
ference of DNA Methylation between Promoter and Other
regions algorithm) method to calculate the DNA methyl-
ation status of different genes.?”

Using the Illumina HM450K chip methylation data as the
input, the SimPo algorithm calculates the DNA methylation
value of cg-probes, which are located in the TS5200 pro-
moter and outside the TSS200 regions. We used the statis-
tical difference method t-test in SimPo algorithm, and the
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degree of difference (SimPo score) is used to characterize
the DNA methylation of corresponding genes:

-y

SimPo score = ~t(m+n-2)
S+
Where
1
= e (M-S (=18

X : average DNA methylation value of all probes anno-
tated in TSS200 region; y : average DNA methylation value
of all probes annotated outside TSS200 region; m: number
of probes annotated in TSS200 region; n: number of probes
annotated outside TSS200 region; S2: variance of DNA
methylation values of probes annotated in TSS200 region;
S%: variance of DNA methylation values of probes annotated
outside TSS200 region.

Phenotype associated gene identification

IR-related DNA methylation data used in this study contains
the methylation profiling of 474 peripheral white blood
cells (GSE115278, Illumina 450 k bead chip)."*"® Each
sample was annotated for the corresponding HOMA-IR
value. Depression-related DNA methylation data
(GSE125105, Illumina humanity 450 bead chip) analyzed in
this study were obtained from the 699 samples recruited by
Max Planck Institute of Psychiatry (MPIP), including 489
samples with phenotype of depression and 210 controls.?
We used SimPo method to transform probe level data set
into gene level data set. Then we used t-test to identify
phenotype related gene lists in this association study.

Type 2 diabetes patient data

We analyzed the blood samples from a total of 24 patients
with T2D (male: 13, female: 11, age: 33—68) from the First
Affiliated Hospital of PLA General Hospital, and 47 healthy
controls (male: 16, female: 31, age: 40—73) from the
FoShan New RongQi Hospital. All peripheral whole blood
samples were treated with EDTA anticoagulant (Table 1).

MassARRAY analysis

We identified the sequence of 500 bp up- and down-stream
from the CpG position in promoter region of VDR gene (probe
¢g02522757 and cg13556224 annotated position in HM450K
chip) by UCSC genome browser (http://genome.ucsc.edu/),

Table 1 Clinicopathological characteristics of the sam-
ples (n = 71).
Variable T2D Patients  Control

(n = 24) (n = 47)
Male/Female 13/11 16/31
Age 50.8 + 9.5 58.8 + 10.4
Fasting blood glucose (FBG) 9.13 + 2.24 5.28 + 0.52
2hPBG 14.53 +4.21 7.03 +1.35
HbA1c 8.19 + 1.64 5.57 +0.32

Table 2 Sequence of MassARRAY primer relative to
amplicon-cg02522757 and amplicon-cg13556224.

Amplicons
amplicon-cg02522757 10F aaatccaatcctctcttaccaaaa
T7R ttttaatttgtgggattaggttgag

amplicon-cg13556224 10F tttcaccttatccctctaaaccata
T7R tattttttgagatttggaattgtgg

Primer Sequence (5 -> 3')

and designed two primer sets for the methylation analysis of
the amplicon-cg02522757 and amplicon-cg13556224 region
by EpiDesigner software (http://epidesigner.com; Table 2).
Quantitative DNA methylation analysis of the above two
amplicons was carried out by the MassARRAY platform
(SEQUENOM) following the manufacturer’s protocols. Briefly,
DNA was treated with sodium bisulfite, PCR amplified and
subjected to bisulfite reactions. The DNA methylation status
of the samples was tested quantitatively by MALDI-TOF MS.
Finally, 18 CpG units in the amplicon-cg02522757 region, and
4CpG units in amplicon-cg13556224 region (one to two CpG
sites per unit) were generated by the EpiTyper v1.0.5 soft-
ware (Supplementary Material).

Results

Insulin-resistance and depression related DNA
methylation remodeling genes

We used the t-test to measure the significant differences in
DNA methylation beta value distribution between the pro-
moter (TS5200) and other regions, and used SimPo score to
summarize this difference. SimPo score reflects the specific
DNA methylation remodeling in the promoter regions and
might correlate with a select gene expression profile. The
IR analysis identified 15 genes that demonstrated a signifi-
cant SimPo score in insulin-resistant vs. healthy individuals
(t-test p-value < 0.05) (Fig. 1, Table 3). Additionally, we
tested the SimPo score difference of the above 15 genes in
the depression cohort. The results showed that CTNS, VDR,
RARA, NQO2, and SGPL1 also showed significant differences
between individuals with depression and healthy controls
(t-test p-value < 0.05) (Fig. 1, Table 3). Next, the potential
nutraceuticals were queried for the related protein in the
DrugBank database. The results identified all the above
genes with nutraceuticals that could remodel the gene
functions.

Overlapping nutraceutical-gene networks in insulin
resistance and depression

To identify the common DNA methylation remodeling
modules in IR and depression, we generated the
nutraceutical-gene graphs for IR and depression analyses
and their overlaps (Fig. 2). The criteria for the identified
genes included phenotype association (IR or depression)
with a t-test p-value < 0.05, and links added in the Drug-
Bank database for all the associated nutraceuticals. Edges
in red demonstrated the nutraceutical-gene interactions
for IR analysis (Fig. 2A), and blue for the T2D analysis
(Fig. 2B). Edges in purple demonstrated the same
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Figure 1  List of genes with significant differences in SimPo-Score between insulin-resistant and healthy individuals.
Table 3  Genes identified by SimPo score to reflect the DNA methylation remodeling in insulin resistance and depression.
No. Gene p-value (IR vs. Ctrl) p-value (Depression vs. Ctrl) Nutraceutical targeting the protein
1 CTNS 0.000155 0.002457 Cystine
2 P4HTM 0.000427 0.357627 Ascorbic acid
3 VDR 0.000935 0.010636 Calcitriol, Calcifediol, Ergocalciferol,
Cholecalciferol, Alfacalcidol, Vitamin D
4 AADAT 0.000955 0.355463 Pyridoxal Phosphate, Glutamic Acid
5 BCAT2 0.00112 0.87388 Pyridoxal Phosphate, Glutamic
Acid, L-Leucine, L-Isoleucine
6 PDCD6 0.001821 0.357192 Calcium
7 RARA 0.002744 0.012328 Tretinoin
8 GRID1 0.003623 0.059968 Glutamic Acid
9 NQO2 0.004228 4.65E-07 NADH, Menadione, Melatonin
10 SGPL1 0.006147 0.005774 Pyridoxal Phosphate
11 PPIH 0.008855 0.331482 Proline
12 GSTO2 0.012418 0.29847 Glutathione
13 ADK 0.012601 0.079088 Adenosine phosphate
14 AHR 0.027996 0.951787 Ginseng
15 GRM8 0.039308 0.460064 Glutamic Acid

P1: SimPo-score-based t-test p-value for insulin resistance vs. healthy individual.
P2: SimPo-score-based t-test p-value for depression vs. healthy individual.

nutraceutical-gene interactions appear in both analyses
(Fig. 2C). A subnetwork centered with the VDR gene which
links to six nutraceuticals was highlighted.

Sequenome time-of-flight mass spectrometry

We further studied at the base-pair resolution the DNA
methylation patterns in the genomic regions of VDR gene by

MALDI-TOF MS test. Using annotation of two probes
€g02522757 (TSS200 regions) and cg13556224 (TSS1500 re-
gions) of VDR, we designed a MALDI-TOF MS method to
measure methylation level in a small clinical cohort, which
includes patients diagnosed with T2D and matched
controls.

In the amplicon-cg02522757 regions, we identified six
units with significant differences in DNA methylation values
between patients with T2D vs. healthy controls (Fig. 3). In
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Figure 2 The insulin-resistance and depression-related nutraceutical-gene network. All the genes with a SimPo score t-test
P < 0.05 were plotted. The triangles represent nutraceuticals, and the circles represent genes. All edges (gray or colored) mean
nutraceutical-gene interactions annotated in the DrugBank database. (A) The IR-related nutraceutical-gene networks (red edges).
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Figure 3  Methylation level change of six units in amplicon-cg02522757 between patients with T2D and healthy controls.
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the amplicon-cg13556224 region, one site showed signifi-
cant difference (P < 0.05, data not shown).

Type 2 diabetes risk prediction model

We constructed a risk prediction model to classify patients
with T2D vs. normal controls using the available methyl-
ation data from six units in the amplicon-cg02522757 and
one unit in amplicon-cg13556224 region. A Logistic
Regression model was constructed, and the performance
was validated by Leave One Out Cross Validation (LOOCV).

First, a prediction model based on six units in amplicon-
cg02522757 was constructed. The optimal prediction per-
formance was AUC = 0.893 (odds ratio = 15.2). The
sensitivity of the model was 0.884, when the specificity was
0.889 (Fig. 4A). Then, we updated the model with the
additional input of one unit in the amplicon-cg13556224.
The optimal predictive performance achieved was
AUC = 0.902 (odds ratio = 19.76), and the sensitivity
of the model was 0.837 when the specificity was 0.944
(Fig. 4B). The results showed the potential predictive
ability of the VDR methylation level for T2D risk.

Discussion

A previous study suggested that longitudinal research is
needed to identify risk factors and mechanisms for depres-
sion in patients with diabetes, particularly in early stages.'
Our preliminary results presented here demonstrated that IR
and depression share a common nutraceutical-gene network
module, and the center genes in this subnetwork could

A MODEL-1 (Amplicon_cg02522757)
AUC = 0.893 OR = 15.2

Specificity =0.889 Sensitivity = 0.884

1.0

0.8

Sensitivity

0.4

0.2

T : T T T T T
0.0 0.2 0.4 06 08 1.0

1-Specificity

predict the risk of T2D. This observation highlights a po-
tential approach to prevent the onset of T2D by identify
high-risk individuals and intervene with nutraceutical, which
targets the core genes. For example, if the VDR status could
be monitored routinely, the individual with a high risk for
T2D could test their vitamin D level regularly and take
nutraceuticals to target the VDR protein as a potential pre-
ventative method. Considering that the single gene test
based on MALDI-TOF MS is considerably cheaper than Illu-
mina DNA methylation microarray, this interactive
detection-prevention measure could be adopted in the
clinic. Thus, larger prospective studies are needed to
confirm these findings in future studies.

In this study, we focused on constructing a bio-
informatical analysis pipeline and performed a preliminar-
ily validation to prove the feasibility of our strategy. The
criterion we chose to select candidate gene was as follows.
First, we selected genes based on the nutraceutical-gene
network analysis (Fig. 2C). We considered a gene as can-
didates not only for its phenotype association, but also for
its nutraceutical preventing worth. Thus, we mapped the IR
and depression association genes in the gene-nutraceutical
connectivity network, and integrate the gene-phenotype
and gene-nutraceutical information by overlapping the
nutraceutical-gene network for IR and depression (Fig. 2C).
Second, by searching the hub in the IR-depression over-
lapped network, we selected genes with the most con-
nected nutraceuticals, which means the gene was more
valuable for further clinical studies both in T2D risk moni-
toring and potential nutraceutical preventative applica-
tions. Thus, we focused on VDR gene for the latter clinical
cohort validation.

B MODEL-2 (Amplicon_cg02522757 + Amplicon_cg13556224)
AUC =0.902 OR =19.76
S 7 Specificity =0.944 Sensitivity = 0.837
Q
o
2
s
’5
[=
Q
(2]
<
o
N ]
o
o
o

T : T T T T T
0.0 0.2 0.4 06 08 1.0

1-Specificity

Figure 4 T2D prediction model validation based on methylation level of amplicon-cg02522757 and amplicon-cg13556224 region
in VDR. (A) ROC of T2D predictive model-1 based on amplicon-cg02522757 (AUC = 0.893, and OR = 15.2). (B) ROC of T2D predictive
model-2 based on the amplicon-cg02522757 and amplicon-cg13556224 (AUC = 0.902, and OR = 19.76).
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A recent study identified VDR as a critical modulator of
inflammation and B-cell survival.?’ p-cell dysfunction due
to inflammatory stress and IR is the primary cause of dis-
ease progression in patients with T2D. Vitamin D via VDR
exerts a direct effect on the expression of several hundred
target genes, implying numerous effects on the epi-
genome.?! It was hypothesized that vitamin D modulates
the epigenome of immune cells during antigen perturbation
and other immunological challenges, thus suggesting the
importance of optimal vitamin D levels for effective
epigenetic programming, in particular in the innate im-
mune system.”” Some studies showed that the pB-cells
contain high levels of the vitamin D receptor; however, its
role in maintaining the B-cell maturity is unclear. Further
research is required to establish a link between B-cells and
VDRs.?® Vitamin D increases glucose-stimulated insulin
secretion from insulin-producing beta cells (INS1E).?* Mod-
erate swimming exercise improved these consequences
through modulation of vitamin D status. Future studies
should be designed to investigate the effect of the combi-
nation of vitamin D intake with exercise in diabetic
patients.?

One of the limitations of our method is, the DNA
methylation microarray includes a limited number of
probes in the key genomic regions of promoters. We will
extend this method to identify a higher number of epige-
netically regulated genes by exploring other high-
throughput methods. Initially, an 850 k chip upgrade will
provide more information on the DNA methylation regula-
tion of the promoter and body region of genes. Since the
price of second-generation sequencing is decreasing grad-
ually, the base-pair resolution of NGS data on DNA
methylation will empower the method to reveal more
informative genes in T2D. Secondly, for the statistical
analysis, our method is dependent on the t-test statistic of
two distributions, one is the methylation distribution of
promoter region probes, another is the methylation distri-
bution of other region probes. More sensitive bioinformatics
could be developed to identify more epigenetic regulated
genes in the etiology of T2D.
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