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With the evolution of biotechnology and the introduction of the high throughput sequencing, researchers
have the ability to produce and analyze vast amounts of genomics data. Since genomics produce big data,
most of the bioinformatics algorithms are based on machine learning methodologies, and lately deep
learning, to identify patterns, make predictions and model the progression or treatment of a disease.
Advances in deep learning created an unprecedented momentum in biomedical informatics and have
given rise to new bioinformatics and computational biology research areas. It is evident that deep learn-
ing models can provide higher accuracies in specific tasks of genomics than the state of the art method-
ologies. Given the growing trend on the application of deep learning architectures in genomics research,
in this mini review we outline the most prominent models, we highlight possible pitfalls and discuss
future directions. We foresee deep learning accelerating changes in the area of genomics, especially for
multi-scale and multimodal data analysis for precision medicine.
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1. Introduction

Bioinformatics has been successful to a significant extent, due
to the radical influence from machine learning (ML) methodolo-
gies. Most of the well-known computational tools used by biolo-
gists have been addressed by the ML community. Nevertheless,
current advances in the -omics era pose new insights for high
impact collaboration and new challenges in the research commu-
nity of ML. Methodologies and problems falling in the ML cate-
gories of classification, clustering and regression [1] have been
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proven useful for solving biological research questions such as
gene signatures, functional genomics, gene-phenotype associations
and gene interactions [2-4].

With the massive generation of data, the era known as ‘big’
data, deep learning (DL) approaches appeared as a discipline of
ML that are considered to be more efficient and effective when
we deal with big amounts of data [5]. These models have proven
to achieve prediction accuracies at higher level than ever. The main
limitation of ML compared to DL is that these methods cannot han-
dle efficiently natural data in their raw form [6]. DL has also proven
to provide models with higher accuracy that are efficient at discov-
ering patterns in high-dimensional data making them applicable to
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a variety of domains. Like ML, DL models require training data and
in the case of DL, the amount of training data is more demanding
and drastically affect the predicting value of the trained model.
The minimums vary with the complexity of the problem, but tens
to hundreds of thousands of instances is a good place to start.

DL models are considered the state of the art predictive models
for big datasets only the last decade, even though they first theo-
rized in the 1980 s [7], a concept based on the perceptron model
and the notion of neurons [8]. The hard requirements of DL models
for large amounts of training data and substantial computing
power, placed them unrealistic or limited until the introduction
of special hardware such as the high-performance GPUs with par-
allel architecture. Nowadays deep learning architectures, also
known as deep neural networks (DNNs), have been applied to
many fields including speech recognition, natural language pro-
cessing, vision and social networks analysis. The term “deep” in
DL refers to the number of layers through which the data is trans-
formed. Traditional neural networks only contain two to three hid-
den layers, while DL networks can have as many as two hundred
layers. Nevertheless, DL networks require special hardware and
massive parallelism to be effective [9]. In order to overcome
resources demand and hardware limitations, the DL models use
pipeline parallelism that can scale up the training phase. In the fol-
lowing we introduce the main DL architectures.

1.1. Deep learning architectures

Artificial Neural Networks (ANN) were inspired by the neurons
and their network that constitute human brains [10]. The ANN con-
stitutes of a set of fully-connected nodes (neurons) modelling the
stimuli propagation of brain synapses -fire or not- across the neu-
ral network. Such DL architectures are used for feature selection,
classification, dimensionality reduction or as a submodule of a dee-
per architecture such as the convolutional neural networks.

Convolutional Neural Network (CNN) is an architecture of deep
neural networks, most commonly applied to analyze visual ima-
gery and was originally designed as a fully-automated image anal-
ysis network for classifying handcrafted characters [11]. CNNs are
based on the multilayer perceptrons method and represent fully
connected networks where each node/neuron in one layer is (fully)
connected to all nodes of the following layer. ANN is a collection of
connected and tunable units which can pass a signal from a unit to
another. Contrary, CNNs have layers of convolution units that
receive input from units of the previous layer and altogether pro-
duce a proximity. The fundamental principle of this deep architec-
ture is to massively compute and combine feature maps inferring
non-linear relationships between the input signal and the targeted
output [12]. CNN is popular for feature extraction, selection, reduc-
tion mainly for the classification of image datasets.

Recurrent Neural Networks (RNN) exhibit similar functionality
with the regular feedforward Neural Networks (FNN) [13] where
connections between nodes form a directed graph along a tempo-
ral sequence [14]. This allows RNNs to exhibit temporal dynamic
behavior and in addition, integrate internal memory. This short-
term memory allows recurrent networks to remember information
from the previously analyzed states, a perfect fit for sequential sig-
nal analysis and predictive models. One of the strengths of RNNs is
the idea that models are able to connect information from a previ-
ous task to the present task.

Long short-term memory (LSTM) is a variation of the RNNs [15]
capable of learning long-term dependencies and actually are
designed to avoid the long-term dependency problem. In its core,
a LSTM unit has a cell/node, a gate for the input, a gate for the out-
put and a forget gate. The node takes into account values over
specific time intervals while the input/output gates regulate the
flow of information.

Generative Adversarial Networks (GANS) is a more recent archi-
tecture that uses two neural networks pitting one against the other
[16]. One network generates synthetic realistic data while the sec-
ond evaluates the authenticity of the data (if it belongs to the real
training dataset or not). GANs proved to improve the classification
accuracy in many domains including genomics [17].

Autoencoders (AE) learn a representation (encoder) for the data
by training the network to ignore signal “noise” [18] and are one of
the well-known DL models for unsupervised learning. Neural nets
typically use simple non-linearities in which a non-linear function
is applied to the scalar output of a linear filter. Capsules use a much
more complicated non-linearity, where a set of neurons model a
part of the input by activating a small subset of its properties
[19]. The CapsuleNet [20] consists of independent sets of capsules
instead of kernels. This architecture is one of the newest in the DL
models and have yet to be tested extensively from the research
community. Fig. 1 sketches the architectures of the most common
DL models.

Apart from the DL architectures, there are also methodologies
that can combine DL or ML models to enhance the predictive accu-
racy. One such methodology is the multi model fusion, a meta-
analysis of diverse models built on different data aiming at a single
objective [21]. Decision fusion combines the outcome of multiple
classifiers into a singular final prediction forming a meta-
estimator by utilizing statistical methods to amplify the individual
classifiers. Sequential fusion models also do exist, such as the DanQ
which employs CNN and then RNN for the quantification of the
function of DNA sequences [22]. Both lead to an improved accumu-
lated predictive power and can resolve uncertainties or disagree-
ments among singular analyses.

Another methodology that has proven to improve accuracy is
transfer learning. The idea behind transfer learning is that data
from a different domain can be the starting point for training a pre-
dictive model. So a model trained with widely available dataset,
e.g. natural images, can be transferred to a target model that will
perform similar tasks but in a different domain, e.g. medical imag-
ing, that lack the volume of training data. In transfer learning two
major methodologies can be followed namely off-the-self models
and fine-tuned models. There are several available pre-trained
models, especially in the domain of imaging such as the VGG-
16!, Inception [23], DenseNet [24], Mask R-CNN [25], employed by
many authors claiming mixed results for the off-the-self method
while with fine-tuning being the most promising due to its supple-
mentary adaptation to the targeted model [26-28]. The research
community supports the DL modelling with open access frameworks
for DL, such as PyTorch, TensorFlow, Theano and Caffe making the
implementation process easier and faster [9].

1.2. Genomics data analysis

A multiplicity of machine learning approaches [3,29-31] have
been suggested and evaluated in order to identify important data
for stratification/classification of different patient groups (e.g. with
respect to therapy response, probability of serious adverse events or
outcome prediction). Such methodologies can select features that
characterize classes, identify groups with similar feature space, clas-
sify cases or mixed data such as the Montesinos-Lépez et al [32].
These methods have been applied in the context of genomics
multi-level classification, especially for cancer research [33-35].

Furthermore, in the literature we can find precision medicine
approaches that take advantage of genomic and clinical data along
with the power of DL for prognostic prediction [36]. A representa-
tive paradigm for precision medicine is the precision oncology [37],

1 http://www.robots.ox.ac.uk/~vegg/research/very deep/
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Fig. 1. Architecture of the main deep learning models.

founded and enabled by revolutionary post-genomics advances,
that is confronted with the generation of heterogenous multi-
scale genomic profiles (multi—-omics) [38]. The -omics research
area produces big volumes of data mainly due to the evolution that
has taken place in the field of genomics and the advances of
biotechnology. Indicative examples include the high-throughput
platforms that measure the expression of thousands of genes or
non-coding transcripts (e.g., miRNAs), the genotyping platforms
and next generation sequencing (NGS) technologies and related
genome-wide association studies (GWAS) that produce quantita-
tive gene expression profiles (e.g., RNA-seq), identify large number
of gene variants (SNPs, Indels) as well as other genome alterations
(e.g., copy number variations CNVs) for different populations.

2. Materials & methods

The manuscript does not aim to provide a systematic literature
review of deep learning methodologies for genomics but rather
captures the current trends in the area. Towards this direction,
studies focusing on radiogenomics where deep learning architec-
tures used only for the image analysis [39] and then combined
with genomics analysis using statistics or traditional machine
learning methodologies were excluded. Also studies where deep
learning used only for data augmentation and synthetic data gen-
eration paired with genomics or other analysis, were excluded as
well.

In the literature we can find a few approaches of DL models
applied in gene expression data. DeepTarget [40] and deepMirGene
[41] use RNN and LSTM models respectively to perform miRNA and
target prediction using expression data. The algorithms proved
that can predict microRNA target with higher accuracy than the
non-deep learning state of the art model called TargetScan [42].
Apart from the higher accuracies, the proposed methods have a
major advantage over existing alternatives in that no hand-
crafted feature set is needed.

Urda et al [43] provide a first approximation of how to use a
multi-layer feed-forward artificial neural network to analyze
RNA-Seq gene expression data. Their model outperforms LASSO
in analyzing RNA-Seq gene expression profiles data. Gupta et al
[44] demonstrated the empirical effectiveness of using deep net-
works as a pre-processing step for clustering of gene expression
data. Authors employed Deep Belief Networks with AE for learning

a low-dimensional representation of expression profiles, an unsu-
pervised learning approach for gene selection. The DL model used
as a pre-processing step for clustering the yeast expression
microarrays into modules that simulate the cell cycle processes
and the results indicate that this method outperforms the principal
component analysis algorithm. Chen et al [45] used also AE on
yeast cDNA microarray data in order to learn the encoding system
of yeast transcriptomic machinery. Results indicate that such a
methodology can be used to partially recover the organization of
transcriptomic machinery.

Shallow denoising AE, a special case of AE where the model
feeds the input data with noise, have been evaluated for their use-
fulness in the domain of genomics. Tan et al [46] applied analysis
using denoising autoencoders of gene expression (ADAGE) on a
publicly available gene expression data compendium for pseu-
domonas aeruginosa in order to identify differences between
strains and predict the involvement of biological processes based
on low-level gene expression differences. The same research group
generated an ensemble ADAGE that integrates stable biological
patterns, enables cross-experiment comparisons and can highlight
measured but undiscovered relationships [47].

Authors of D-GEX provide a deep learning architecture to infer
the expression of target genes from the expression of landmark
genes [48]. D-GEX trained a multi-layer feedforward deep neural
network with three hidden layers using 111,000 public expression
profiles from Gene expression Omnibus®. The DL models provide
better accuracy than linear regression in inferring the expression
of the human genes (about 21000) based on a set of landmark genes
(about 1000). Even though the DL model provided better accuracy
than existing ML models it still displayed poor performance indicat-
ing that there is room for improvement in the architecture of the
model.

The DeepChrome CNN method [49] automatically learns combi-
natorial interactions among histone modification marks in order to
predict the gene expression. DeepChrome proved the improvement
of the prediction accuracy over existing methods such as Support
Vector Machines (SVM) and Random Forests (FR) for Boolean
(high/low) gene expression prediction using histone modifications
as input. The same research team also provided the
AttentiveChrome [50], an LSTM DL model to further enhance

2 https://www.ncbi.nlm.nih.gov/geo/
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DeepChrome using a unified architecture to interpret dependen-
cies among chromatin factors for controlling gene regulation.

DeepVariant [51] is a CNN variant caller that proved to outper-
form all the non-DL state-of-the-art variant callers. Furthermore,
authors proved that DeepVariant generalizes beyond its training
data using different versions of the human genome built as train
and test datasets. Also when DeepVariant was trained using
human reads and tested against a mouse dataset achieved accu-
racy that outperforms training on the mouse data itself. DeepFIGV
[52] is a DL model able to predict locus-specific signals from epi-
genetic assays using DNA sequence. DeepFIGV models quantita-
tive variation in the epigenome using many experiments from
the same cell type and assay and integrates whole genome
sequencing to create a personalized genome sequence for each
individual.

Sakellaropoulos et al [53] implemented a DL model for predict-
ing response therapy in cancer. The authors used a pharmacoge-
nomics database of 1001 cancer cell lines to train the model in
order to predict drug response and proved that DL outperforms
the current state in machine learning frameworks for the specific
task. Liang et al. [54] provided a multimodal deep belief network

Table 1

1469

able to integrate DNA methylation, gene and miRNA expression
data for the identification of cancer subtypes. The proposed
method exploits both deep intrinsic statistical properties of each
input modality and complex cross-modality correlations among
multi-platform input data. Another multi-modal DL model in geno-
mics is the DeePathology [55], a DL method that is capable of
simultaneously infer various properties of biological samples,
through multi-task and transfer learning. The model encodes the
whole transcription profile and can accurately predict tissue and
disease type.

Yuan et al [56] introduced a convolutional neural network for
coexpression (CNNC) that improves upon prior methods in infer-
ring gene relationships from single-cell expression data tasks.
The method can be used for a wide range of -omics research ques-
tions ranging from predicting transcription factor targets to identi-
fying disease-related genes to causality inference. DeepCpG [57] is
another computational approach for low-coverage single-cell
methylation data using a CNN model. DeepCpG predicts missing
methylation states and detects sequence motifs that are associated
with changes in methylation levels and cell-to-cell variability bet-
ter than the state of the art ML methods.

. List of deep learning methodologies in genomics. From left to right the columns represent the DL model acronym (if any), the respective publication, DL model, omics data used
as input, prediction/research question, evaluation metrics and the comparison with other classic ML methods (if any).

Name Publication DL omics data Purpose | Prediction accuracy performance gap over other methods
model
DeepTarget [40] RNN miRNA-mRNA pairing  target prediction 0,96 +25% f-measure
DeepMirGene [41] LSTM positive pre-miRNA miRNA target 0.89 sensitivity +4% f-measure
and non-miRNA
DeepNet [43] ANN RNA-Seq control-cases ~0.7 same or worst AUC from LASSO
[44] AE time-series gene pre-processing step for Better than PCA
expression clustering
[45] AE cDNA microarrays Predict the organization - significant overlap with previous
of transcriptomic studies
machinery
ADAGE [47] AE gene expression identification/ - significant overlap with post-hoc
reconstruction of analysis KEGG
biological signals
eADAGE [47] AE gene expression identification of - significant overlap with post-hoc
biological patterns analysis KEGG
D-GEX (48] RNN expression of Gene expression overall error Outperforms Linear Regression(LR)
landmark genes inference 0.3204 + 0.0879 (+15.33%) and KNN-GE in most of the
target genes
DeepChrome [49] CNN histone modifications classify gene expression  Average area under the  (+5%) from support vector machines
curve (AUC) = 0.80 (SVM), (+21% from random forest (RF)
AttentiveChrome  [50] LSTM histone modifications  classify gene expression  Average AUC = 0.81 Marginally better than DeepChrome
Multimodal deep  [54] DBN gene expression, DNA  Identification of Key average correlations -
belief methylation and Genes and miRNAs 0.91, 0.73 and 0.69 for
network miRNA expression the GE, DM and ME
DeepVariant [51] CNN whole-genome variant caller 99,45% F1 produced more accurate results with
sequence greater consistency across a variety of
quality metrics
[53] ANN cell-line with drug predict drug response 0.65 AUC Outperformed FR 0.54 AUC and elastic
response nets 0.51 AUC
DeepFIGV [52] CNN whole-genome predict quantitative z-scores DNase
sequence epigenetic variation rho = 0.0802, P = 5.32e-
16
DeePathology [55] Multiple  mRNA and miRNA predict tissue-of-origin,  99.4% accuracy for 95.1% for SVM
AEs normal or disease state cancer subtype
and cancer type
DeepCpG [57] CNN Single cell predicts missing 89% AUC 86% AUC for Random Forest
methylation methylation states and
detects sequence motifs
CNNC [56] CNN scRNA-seq predicting transcription ~ ~70% accuracy for Outperformed GBA (guilt by
factor target multiple experiments association) and DNN (fully connected
DL) across a variety of experiments
DanQ [22] CNN and DNA-seq predicting the function AUC score ~ 70% Outperformed LR and DeepSEA (CNN
RNN of DNA directly from DL), with over 10% improvement in AUC
sequence alone
FBGAN [17] GANs DNA-seq optimize the synthetic Train accuracy 0.94 test  Outperformed kmer and Wasserstein

gene sequences

accuracy 0.84

GAN trained directly on AMPs
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It is evident that DL architectures have also been applied to
genomics lately with promising results. Table 1 summarizes the
discussed DL models in the genomics domain, highlighting the
omics data used, the research question, the DL model and the eval-
uation results.

3. Results and discussion

Deep learning models are considered the state of the art for
classification and clustering when we deal with big data such as
the -omics area. Nevertheless, we are still far from providing DL
models for -omics data that can be used in the precision medicine
since the proposed methodologies have not been validated yet in
the clinical practice. The success of DL depends on finding an archi-
tecture to fit the research question and be capable to handle the
respective data. Over the years, various DL methods introduced
making the selection of the most appropriate method a non-
trivial path [68]. For example, LSTM networks are an advanced ver-
sion of RNN, capsNets try to overcome limitations of CNNs such as
the viewpoints of the data and GANs provide promising results for
automatically training a generative model by treating the unsuper-
vised problem as supervised.

3.1. Limitations of DL in genomics

DL models are in its infancy in the genomics area and still far
from complete. In the following, we provide five major limitations
of the DL models in the genomics area:

1. Model interpretation (the black box): One of the major issues
for DL architectures in general, is the interpretation of the model
[58]. Due to the structure of the DL models it is difficult to under-
stand the rational and the learned patterns if one would like to
extract the causality relationship between the data and the out-
come. This is more evident in the bioinformatics domain, given
that researchers prefer ‘white-box’ approaches to ‘black-box’
approaches [59]. The use of explainable Al techniques [60] has
start to gain momentum in the genomics area [61].

2. The curse of dimensionality: The most pronounced limitation
of artificial intelligence in the genomics is the so-called “curse
of dimensionality” of the -omics data [62]. Even though
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genomics is considered a big data domain in terms of volume,
the genomic datasets usually represent a very large number of
variables and a small number of samples. This is a known prob-
lem in genomics not only for DL but also for less demanding (in
terms of samples) ML algorithms [63]. Fortunately, in the geno-
mics area there are repositories that provide access to public
data and one can combine datasets from multiple sources. Nev-
ertheless, in order to collect a representative cohort for DL
training, a lot of preprocessing and harmonization is needed.

3. Imbalanced classes: Most of the DL and ML models for geno-
mics deal with classification problems e.g. discrimination
between disease and healthy samples. It is well-known that
genomics trials and data gathered from various sources are usu-
ally inherently class imbalanced and ML/DL models cannot be
effective until a sufficient number of instances per class has
been fitted. Fortunately, transfer learning can provide a solution
to tackle the class imbalanced problem since the model can be
initially trained to a general dataset [64].

4. Heterogeneity of data: The data in most of the genomic appli-
cations is heterogeneous since we deal with subgroups of the
population. Even in the individual level, genomic data include:
(i) sequencing of genes or non-coding transcripts, (ii) quantita-
tive gene expression profiles (iii) gene variants (iv) genome
alternations and (v) gene interactions in the system’s biology
level. One of the obstacles in integrating different data is the
covariates between the underling interdependencies among
these heterogeneous data. Bioinformatics community, taking
advantage of the plethora of data sources, have provide many
analysis tools but in most of the cases this combination is trou-
bling researchers to use the available resources effectively [65].

5. Parameters and hyper-parameters tuning: One of the most
difficult steps for DL is the tuning of the model. Careful analysis
of initial results may prove really helpful during tuning since
the tuning is correlated with the dataset and the research ques-
tion. The main tuning hyper-parameters for every DL architec-
ture are the learning rate, the batch size, the momentum, and
the weight decay. Learning rate is a tuning parameter that
determines the step size at each iteration while moving toward
a minimum of a loss function, batch size is the number of train-
ing samples used in each iteration, momentum tries to find the
optimal training path and weight decay is a process where after
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Fig. 2. Multi level and multi scale -omics models.
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each update, the weights are multiplied by a factor. These
hyper-parameters act as knobs which can be tweaked during
the training of the model. A wrong setting in any of these
parameters may result to under-fitting or over-fitting [66].

3.2. Future directions

In bioinformatics and computational biology, the methods for
heterogeneous data and sources integration are in rapid evolution.
The ability of describing and representing biomedical findings on
different data layers is already a state-of-art. A multi-layer model
approach has been motivated by the very nature of systems biol-
ogy [67], and it is an accepted basis for system approaches towards
precision medicine. Multi-scale dynamic modelling approaches
have been recently explored to model the human body as a single
complex dynamical system.Although exciting, this global
approach has proven challenging with statistical methods [68].
Deep learning has the ability to deal with multimodal data effec-
tively and genomics offers extremely heterogeneous data. The
notion of precision medicine is based on the multimodal data anal-
ysis and a typical example of multi-level and multi scale genomics
data is depicted in Fig. 2.

DL models have an advantage over other genomics algorithms
in the preprocessing steps that traditionally are manually curated,
error prone and time consuming. DL is fed with all the data and the
abstraction ability of the model can select or define features that
often increase predictive power. Zou et al [69] provides a guide
for the design of deep learning systems for genomics that best aug-
ment and complement human experience in making medical deci-
sions, while Eraslan et al [70] proposes DL models based on the
research question in the domain of genomics. Nevertheless, in
many cases genomics data do not conform to the requirements
posed by most of the DL architectures [71]. An example comes
from the text mining DL architectures for chatbots or text auto-
completion that at first sight one could imagine to be a solution
for single-nucleotide polymorphism (SNP) analysis and prediction
using each SNP as one word. Unfortunately, such DL architectures
currently cannot handle ‘dictionaries’ larger than a few hundred of
thousand ‘words’ and the known SNPs for the human genome are
about 90 million.

Irrespective of the genomics modeling methodologies, the pro-
cess of translating the knowledge acquired in genomics research
into clinically useful tools has been extremely slow. This is in part
due to the requirements for validation and standardization, which
are sometimes slow to fulfill due to the fragmentation of genomics
research and inadequacies of analysis set-ups and platforms. Fortu-
nately, FDA is considering a regulatory framework for computa-
tional technologies that would allow modifications to be made
from real-world learning and adaptation, while still ensuring that
the safety and effectiveness of the software as a medical device
is maintained®.

Availability of patient data for precision medicine, especially
the small information-rich data sets, are often not representative
for the overall population whilst most models in DL need a lot of
data to be able to generalize findings and predict on future classes
of patients. Genomics data often comprise features of heteroge-
neous data types (numerical, categorical, and possibly other data
types like functions), which are only handled adequately when
using correspondingly different dissimilarities [72] Models that
are capable of such an integration are however often not easy to
be interpreted by human experts; and whilst being sometime suc-
cessful in classifying patients to groups they are often complex and

3 https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intel-
ligence-and-Machine-Learning-Discussion-Paper.pdf

difficult to grasp for medical and biological experts. The notion of
explainable-Al is still far from complete in the bioinformatics
domain [73].

4. Conclusions

In this mini review we discuss the concepts of DL models in
genomics while we outline the most prominent DL architectures
in the area of genomics and as DL is practically a new methodology,
the studies discussed, have been proposed the last years. Based on
our research, it is evident that DL models can provide higher accu-
racies in specific tasks of genomics than the state of the art
methodologies. In addition, deep learning has the ability to deal
with multimodal data effectively and genomics offers extremely
heterogeneous data making them an excellent candidate for the
realization of precision medicine. Nevertheless, the process of
translating the knowledge acquired in genomics research into clin-
ically useful tools has been extremely slow. More efforts should be
made to analyze and combine datasets (private and public) in
order to enhance the role of DL genomics in prediction and progno-
sis. Furthermore, explainable DL models can pave the way for iden-
tifying not only novel biomarkers but also regulatory interactions
in different pathology conditions such as tissues and disease states.
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