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Abstract

Background: As one of the most common cancers with high mortality in the world, we are still facing a huge
challenge in the prevention and treatment of colon cancer. With the rapid development of high throughput
technologies, new biomarkers identification for colon cancer has been confronted with the new opportunities and
challenges.

Methods: We firstly constructed functional networks for each sample of colon adenocarcinoma (COAD) by using a
sample-specific network (SSN) method which can construct individual-specific networks based on gene expression
profiles of a single sample. The functional genes and interactions were identified from the functional networks,
respectively.

Results: Classification and subtyping were used to test the function of the functional genes and interactions. The
results of classification showed that the functional genes could be used as diagnostic biomarkers. The subtypes
displayed different mechanisms, which were shown by the functional and pathway enrichment analysis for the
representative genes of each subtype. Besides, subtype-specific molecular patterns were also detected, such as
subtype-specific clinical and mutation features. Finally, 12 functional genes and 13 functional edges could serve as
prognosis biomarkers since they were associated with the survival rate of COAD.

Conclusions: In conclusion, the functional genes and interactions in the constructed functional network could be
used as new biomarkers for COAD.
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Background
Colorectal cancer (CRC), which has a poor prognosis
and a high mortality rate, is the most common gastro-
intestinal malignancy and the second major cause of
deaths related to cancer in the world [1]. Overall CRC
incidence and death rates have been declining over the
past decades due to the advances in medicine, such as
screening colonoscopy, radiotherapy, adjuvant and neo-
adjuvant therapy, and targeted therapies [2]. Despite
that, approximately half of CRC patients treated with
surgical resection recurred and died within 5 years [3].

Colon adenocarcinoma (COAD) is one of the major
types of CRC.
With the development of high-throughput sequencing

technologies, it was not only used on many crucial
genetic and epigenetic alternations discovered for
cancers, but also identified meaningful cancer bio-
markers for diagnosis, prognosis and treatment predic-
tion [4–9]. Biomarkers which can serve as diagnostic
factors, prognostic indicators and drug targets for tar-
geted therapy may bring a breakthrough in improving
the prevention and treatment of CRC [10, 11]. However,
most of the existing biomarkers have not been applied
successfully in clinic. Many existing biomarkers focused
on the genes with significant differential expression and
the genes without significantly differential expression.
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However, gene expression is usually unstable, and it can
change with state and environment. Network biomarkers
usually identify gene modules from a molecular network
and focus on the overall change of gene module from
normal to disease on system level. So network-based
biomarkers are better than single molecules [12, 13], and
it can avoid the unstable factors for gene expression of a
single gene and improve the stability of results.
In this study, we identified novel biomarkers by

constructing a functional network for colon adenocar-
cinoma (COAD) based on sample-specific network
(SSN) method [14] to avoid the disadvantages of single
gene biomarkers. The results showed that our
biomarkers could be used as diagnosis and prognosis
biomarkers for COAD. What is more, we classified
COAD into six subtypes using the gene expression
profile of the biomarker genes.
To figure out the different mechanisms of each

subtype, the representative genes were identified for
each subtype; the enrichment analysis was done to gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG, https://www.kegg.jp) pathway; and the
associations among the subtypes, clinical and somatic
alteration features were also assessed. In the end, differ-
ent biomarkers were suggested for the precision
medicine of COAD.

Methods
Datasets and networks
Multiplatform genomics datasets included gene expres-
sion profiles and somatic mutation in MAF (Mutation
Annotation Format) files were downloaded from The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.
gov/). And the clinical data were obtained through the
TCGA Data Commons (https://gdc.cancer.gov/). Two
other validation datasets were downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/gds) with accession number GSE21510 and
GSE39582. Besides, it was used as a background network
that the functional association network with high confi-
dence (experiment lab score > 300) which includes direct
(physical) and indirect (functional) associations obtain-
ing from the STRING database (version 10.5, http://
string-db.org) [15].

Visualizing and summary of mutation datasets
The mutations from MAF files were visualized and
summarized through summary plots and oncoplots
using the R/Bioconductor maftools package [16].

Constructing SSN (sample-specific Network) for each
sample
An SSN for each sample was constructed by a sample-
specific network (SSN) method [14], which can infer

individual-specific networks based on the expression
data of a single sample from the following strategies.
Firstly, the normal samples were considered as reference
samples and a reference network was obtained by com-
puting Pearson correlation coefficient (PCC) of each pair
of molecules as an edge in the background network,
which was conducted from STRING protein-protein
interaction (PPI) network. And then, a perturbed net-
work was constructed by adding a single sample to the
reference samples and computing PCCs again. Finally,
edges were kept to construct an SSN for this single
sample if they showed statistically significant differential
PCCs (ΔPCCs) based on the evaluation of SSN theory
when comparing the perturbed network with the refer-
ence network.

Functional network identification for cancer
Specific SSN for each tumor sample was obtained by
deleting the edges presented in normal samples. If an
edge appeared in more than 90% SSNs of tumor
samples, the edge would be collected to form a func-
tional network for COAD. The nodes and edges in the
functional network were used as representative features
for COAD, which were named as functional genes and
functional interactions of COAD, respectively.

The enrichment analysis of GO and KEGG pathway
The enrichment analysis of GO and KEGG pathway for
functional genes were performed using DAVID web
service (https://david.ncifcrf.gov/) [17, 18] with specify-
ing a p-value< 0.05 for statistical significance.
Furthermore, genes in five known cancer gene sets

were used as a proxy for the potential cancer-related
genes including the curated gene sets in pathway in
cancer (hsa05200), colorectal cancer (hsa05210), cancer
gene census [19], pan-caner driver genes [20], and
cancer driver genes [21]. And the probability p-values
that can reflect whether functional genes are signifi-
cantly enriched in these known cancer gene sets were
calculated by the following formula [22]:

p − value ¼ 1 −
Xk − 1
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where N is the total number of genes of the human
genome, A is the number of genes in a known cancer
gene set, n is the number of functional genes, k is the
number of overlapping genes between functional genes
and the known cancer gene set. If the p-value is less
than 0.05, then it means that the functional genes are
significantly enriched in the known cancer gene set. And
then Venn diagrams were used to display the
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relationship between functional genes and the five
known cancer gene sets.

Functional genes as diagnostic biomarkers
To check whether functional genes can be used as diag-
nostic biomarkers for colon adenocarcinoma, 5-fold
cross-validation was conducted to perform normal/
tumor classification by a support vector machine (SVM),
which was implemented in R with function ‘ksvm’ in
‘kernlab’ package. And the receiver operating character-
istic (ROC) curve was drawn by R using the ‘ROCR’
package. In detail, TCGA data were used as training and
test set, and GSE21510 data were used as an independ-
ent external validation dataset. To settle the problem of
data imbalance, TCGA tumor data were divided into
subgroups to make sure each subgroup had almost the
same sample size with TCGA normal dataset. And then
SVM model with 5-fold cross-validation was performed
for each tumor subgroup and normal samples. Further-
more, hierarchical clustering was performed by using the
gene expression of functional genes in both tumor and
normal samples. And then heat maps were used to show
the results.

Colon adenocarcinoma subtypes and survival analysis
Colon adenocarcinoma samples were divided into
subtypes by consensus clustering algorithm [23] using
the expression data of functional genes. Consensus
clustering was performed by ConsensusClusterPlus R-
package using 1000 iterations, 80% sample resampling
from 2 to 10 clusters, Ward linkage and the distance of
Pearson correlation coefficient. Then one clustering so-
lution was selected as a subtype solution. Differentially
expressed genes (DEGs) associated with each subtype
were identified by carrying out a two-sided t-test for
each gene by comparing this subtype with the rest
subtypes, and then the unique top 100 upregulated
DEGs and downregulated DEGs with the lowest p-value
were selected as representative genes for each subtype.
Then their enriched biological processes and KEGG
pathways were compared using the R package ‘cluster-
Profiler’ [24] which can compare biological themes
among gene clusters. Subtype-specific clinical features
and somatic alteration features were also assessed.
Besides, Kaplan-Meier survival curves were drawn for
subtypes and log-rank p-values were computed using
the R package ‘survival’ [25].

Prognostic prediction of COAD using functional genes
and interactions
Association of functional genes and interactions with
patients’ overall survival were assessed by Kaplan-Meier
survival curves and the log-rank tests. Based on the
expression level of functional genes or ΔPCCs of

interactions, samples were divided into two subgroups
with low- and high- expression. And then a univariate
Cox regression analysis was done for each functional
gene and interaction. Furthermore, a multivariate Cox
regression analysis was further done to investigate and
control the influences of the confounders on functional
genes or interactions with p-value less than 0.05 in the
univariate Cox regression analysis. The confounders in-
cluded sex information, pathologic stages, retrospective
collection indicator, race, the year of initial pathologic
diagnosis, age at initial pathologic diagnosis and micro-
satellite status. Functional genes and interactions were
identified as prognosis biomarkers for cancer when they
showed significant differences between the low- and
high- expression subgroups in both univariate and
multivariate cox analysis. The function ‘coxph’ in R was
used to do this job.

Results
Summary of datasets
There were 20,501 genes in 454 tumor and 41 normal
samples for the dataset of gene expression of COAD in
TCGA. The genes were removed if they did not express
in more than 50% samples, and then 17,914 genes were
left for further study. The first validation set (GSE21510)
included 123 tumor samples and 25 normal samples.
The second validation set (GSE39582) included 585 tu-
mors among which 579 tumors had survival information
and 19 patients had adjacent nontumor tissues.
The clinical data were matched to the gene expression

profile. Among the 454 patients, 450 patients had
clinical information with 395 patients alive and 45
patients dead. However, due to missing data of our
selected confounders, only 258 samples were kept for
the multivariate Cox regression analysis. The overall
information of the 258 patients was listed in Table S1.
The summary of the mutation was drawn by maftools

(Figure S1). There were 9 types of mutations in the
MAF file. The number distribution for each type of
mutation was shown by a bar plot and the one with the
maximum frequency was Missense_Mutation; SNP was
the most common variant type; the most common SNV
type was C > T; variants per sample distribution were
presented by a stacked barplot; variant types were
displayed as a boxplot summarized by Variant_Classifi-
cation; the top 10 genes (TTN, APC, MUC16, SYNE1,
TP53, FAT4, KRAS, RYR2, PIK3CA, and ZFHX4) with
the most mutations were shown by a stacked barplot
(Figure S1).
STRING PPI data with lab score > 300 includes 15,436

genes and 217,626 interactions. After mapping 17,914
genes with expression information on PPI, a background
network was constructed for the study, which involved
13,235 genes and 164,115 interactions.
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SSN analysis reveals a functional network for cancer
Through the sample-specific network (SSN) method,
SSNs were constructed for every tumor and normal
sample with all 41 normal samples as reference
samples (Fig. 1). Then, specific SSN for each tumor
sample was constructed by deleting edges presented
in SSNs of any normal samples. Finally, a functional
network involving 1063 genes and 1440 edges was
formed for COAD by collecting edges that appeared
in more than 90% specific SSNs of tumor samples
(Fig. 2a). The 1063 genes and 1440 edges in the
functional network were regarded as functional genes
and interactions, respectively. A histogram plot was
drawn to show the distribution of node degrees in
the functional network (Figure S2). Particularly, 185
genes with node degree over 3 were chosen as core
functional genes (Fig. 2a).

Enrichment analysis of functional genes
Functional genes were submitted for further enrich-
ment analysis of GO and KEGG pathways with DAVI
D, respectively. The GO analysis of functional genes
suggested that they were significantly enriched in
rRNA processing, negative regulation of transcription
from RNA polymerase II promoter, positive regulation
of transcription from RNA polymerase II promoter,
positive regulation of transcription, DNA-templated,
G1/S transition of mitotic cell cycle, canonical Wnt
signaling pathway and so on (Fig. 2b and Supplemen-
tary Table S2). In the KEGG pathway analysis,
functional genes were significantly enriched in path-
ways in cancer, proteoglycans in cancer, cell cycle,
Hippo signaling pathway, and Wnt signaling pathway
(Fig. 2c and Supplementary Table S3). From both

functional and pathway enrichment analysis, we can
see that our identified functional genes are related to
cancer.
GO and KEGG pathway analysis were also carried out

for the 185 core functional genes. And it was shown for
GO analysis that they were significantly enriched in
rRNA processing, positive regulation of telomerase RNA
localization to Cajal body, positive regulation of telomere
maintenance via telomerase, positive regulation of
protein localization to Cajal body, positive regulation of
transcription from RNA polymerase II promoter and so
on (Supplementary Table S4). KEGG pathway enrich-
ment analysis suggested that the core functional genes
were mainly related to ribosome biogenesis in eukary-
otes, cell cycle, HTLV-I infection, Wnt signaling
pathway, progesterone-mediated oocyte maturation and
so on (Supplementary Table S5). The results suggested
that the 185 core functional genes are likely to play
important roles in COAD.
Furthermore, the p-values were calculated using the

hypergeometric distribution (1) for different top N
ranked functional gene sets enrichment analysis with the
five known cancer gene sets including the curated gene
sets in pathway in cancer, colorectal cancer, cancer gene
census, pan-caner driver genes, and cancer driver genes.
The different functional gene sets which were ranked by
node degree included: top 11 functional genes with node
degree over 19; top 52 functional genes with node de-
gree over 9; top 79 functional genes with node degree
over 7; top 109 functional genes with node degree over
5; top 185 functional genes with node degree over 3; top
457 functional genes with node degree over 1; and all
1063 functional genes. The results showed that almost
every functional gene set was enriched in all the five

Fig. 1 The pipeline of our method
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known cancer gene sets except that the top 52
functional genes set was not enriched in colorectal
cancer and pan-caner driver genes sets; top 108
functional gene set was not enriched in colorectal cancer
set (Fig. 3a). Particularly, the 1063 functional genes were
enriched in pathway in cancer (p-value = 0), colorectal
cancer (p-value = 3.26 × 10− 5), cancer gene census (p-
value = 3.17 × 10− 10), pan-caner driver genes (p-value =
1.16 × 10− 7), and cancer driver genes (p-value = 3.94 ×
10− 10) (Fig. 3a). A Venn diagram was drawn to show the
comparison of 1063 functional genes and the five known
cancer gene sets (Fig. 3b). The results showed that 526
genes in pathway in cancer were obtained from KEGG,
92 of which appeared in functional genes; eighty-six

genes in colorectal cancer were obtained from KEGG, 15
of which appeared in functional genes; six hundred and
ninety-nine known cancer genes were obtained from the
Cancer Gene Census database, 77 of which appeared in
functional genes; four hundred and thirty-five pan-
cancer driver genes were obtained from a pan-cancer
study, 50 of which showed in functional genes; two
hundred and ninety-nine driver genes were obtained
from a comprehensive study of driver genes, 44 of which
displayed in functional genes. And the 185 core func-
tional genes were also enriched in pathway in cancer,
colorectal cancer, cancer gene census, pan-caner driver
genes, and cancer driver genes with p-value of 1.42 ×
10− 6, 7.60 × 10− 3 1.47 × 10− 6, 8.92 × 10− 8, 1.84 × 10− 5,

Fig. 2 Functional network analysis of COAD. a Left panel: a functional network constructed for COAD with 1063 nodes (functional genes) and
1440 edges (functional interactions), which purple red nodes indicate the 185 core functional genes; right panel: the network formed by the core
functional genes. b The top 20 significant enriched Gene Ontology for the 1063 functional genes. c The top 20 significant enriched KEGG
pathways for the 1063 functional genes
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respectively. Venn diagrams were drawn to show the
comparison of 185 core functional genes and known
cancer gene sets (Fig. 3c). From the results, we are
confident to conclude that our identified functional
genes are indeed correlated with cancers.

Classification between tumor and normal samples by
functional genes
To investigate the ability of the 185 core functional
genes to classify normal and tumor samples, we used an
SVM model with 5-fold cross-validation to discriminate

Fig. 3 The relationship between functional genes and the five known cancer gene sets. a The p-value distribution for different top N ranked
functional gene sets enrichment analysis with the five known cancer gene sets including the curated gene sets in pathway in cancer, colorectal
cancer, cancer gene census, pan-caner driver genes, and cancer driver genes. Three stars (***) marks functional gene set whose p-value < 0.001,
two stars (**) for functional gene set with p-value < 0.01, one star (*) for functional gene set with p-value < 0.05, and no stars for the one whose
p-value > 0.05. b Venn plots for 1063 functional genes and the five known cancer gene sets. c Venn plots for the 185 core functional genes and
the five known cancer gene sets
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tumor samples from normal samples based on the ex-
pression profile of 185 core functional genes for both
the training dataset (TCGA dataset) and independent
validation dataset (GSE21510 dataset). ROC curves
were drawn to show the prediction accuracy of the
185 core functional genes to discriminate tumor sam-
ples from normal samples (Fig. 4a-b). The results
showed that the 185 core functional genes had a high
area under the curve (AUC) for both the training
dataset (AUC = 0.99994) and validation dataset
(AUC = 1), indicating that the 185 core functional
genes were potential biomarker candidates for COAD
diagnosis.
Furthermore, hierarchical clustering was also per-

formed using gene expression data of the 185 core
functional genes for both the TCGA and validation
datasets. The clustering results showed a high degree of
separation of the tumor and normal samples by using
the 185 core functional genes (Fig. 4c-d) in both the
training and validation datasets. And the heatmap for

1063 functional genes in TCGA dataset was also drawn
in Figure S3, which showed similar results with the 185
core functional genes. The classification results further
confirmed that functional genes could be used as
diagnostic biomarkers for COAD.

SSN analysis uncovers major subtypes of COAD
Using gene expression of the core functional genes, con-
sensus clustering method obtained 2 to 10 clusters.
Then the k = 6 clustering solution was selected for
further investigation. For the k = 6 clustering solution
formed six different subtypes, referred to here as “c1”
through “c6” (Table 1). The six subtypes of COAD in-
cluded: c1 subtype with 38 cases (comprising 8.37% of
tumor samples); c2 subtype with 138 cases (30.40%); c3
subtype with 99 cases (21.81%); c4 subtype with 85 cases
(18.72%); c5 subtype with 38 cases (8.37%) and c6
subtype with 56 cases (12.33%) of COAD cases. The six
subtypes could provide useful information about person-
alized medicine.

Fig. 4 The results of classification between tumor and normal samples by 185 core functional genes. The figure shows ROC in the (a) training set
(TCGA dataset) and (b) validation set (GSE21510 dataset). AUC: area under the curve. Heat maps show different expression patterns of 185 core
functional genes between tumor and normal samples for (c) training set (TCGA dataset) and (d) validation set (GSE21510 dataset). The columns
represent individual tissue samples covering the tumor (red) and normal samples (green). The rows represent individual genes. The heat map
indicates up-regulation (yellow) and down-regulation (blue)
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The above subtypes were each characterized by
different molecular patterns. For each of the six sub-
types, the top 100 upregulated DEGs and top 100 down-
regulated DEGs were identified by comparing each
subtype with the rest subtypes. For these detected top
up- and down-regulated DEGs, the one which appeared
in only one subtype was kept for each subtype. Finally,
there were in all 1003 DEGs, including 161 up- and 157
down-regulated DEGs for subtype c1, 101 up- and 19
down-regulated DEGs for subtype c2, 108 up- and 31
down-regulated DEGs for subtype c3, 6 up- and 76
down-regulated DEGs for subtype c4, 51 up- and 130
down-regulated DEGs for subtype c5, 22 up- and 141
down-regulated DEGs for subtype c6. The heat map of
the 1003 DEGs displayed different expression patterns
for different subtypes (Fig. 5a). Finally, we used R
packages clusterProfiler to compare these representative
DEGs for each subtype by their enriched biological
processes and KEGG pathways, with the cutoff of p-
value< 0.05. As illustrated in Figure S4, representative
DEGs for different subtypes related to different bio-
logical processes, such as representative DEGs for
subtype c1 related to cell cycle, subtype c2 related to
the regulation of GTPase activity, subtype c3 related
to the regulation of cell division, subtype c4 related
to the regulation of mRNA polyadenylation, subtype
c5 related to autophagy and subtype c6 related to
development. Furthermore, as shown in Fig. 5b,
representative DEGs for different subtypes related to
different KEGG pathways. Representative DEGs for
subtype c1 were enriched in DNA replication, cell
cycle, mismatch repair, and p53 signaling pathway
and so on; representative DEGs for subtype c2 were
enriched in mTOR signing pathway and MAPK sig-
naling pathway; representative DEGs for subtype c3
were enriched in spliceosome, antigen processing and
presentation, estrogen signaling pathway and mRNA
surveillance pathway; representative DEGs for subtype

c4 were enriched in viral carcinogenesis and spliceo-
some, and so on; representative DEGs for subtype c5
were enriched in Rig-I-like receptor signaling path-
way, FoxO signaling pathway, autophagy-animal,
insulin signaling pathway, toxoplasmosis, and focal
adhesion, and so on; and representative DEGs for
subtype c6 were enriched in glycosaminoglycan
biosynthesis-heparan sulfate, tight junction, circadian
rhythm, ECM-receptor interaction and so on. There-
fore, the six subtypes showed different pathological
mechanisms, which implied that they should be
treated with different methods.
Most samples in subtype c4-c6 were retrospective

samples, while many samples in subtype c2 were not
retrospective samples (Fig. 5c). Most patients in subtype
c1 showed mss (MicroSatellite stability), while many pa-
tients in subtype c3 showed msi-h (MicroSatellite
Instability-High) feature (Fig. 5c). Many patients in both
subtype c2 and c3 were white people (Fig. 5c). The six
subtypes had a totally different meaning of tumor stages
(Fig. 5c). The mutations of OBSCN (Obscurin), MYCBP2
(MYC Binding Protein 2), RYR2 (Ryanodine Receptor 2)
and TTN (Titin) were most frequent in subtype c3 (Fig.
5c). Copy loss of TCF7L2 (Transcription Factor 7 Like
2) and RPL18P1 (Ribosomal Protein L18 Pseudogene 1)
were frequent in subtype c1, while copy loss of ARHG
EF28 (Rho Guanine Nucleotide Exchange Factor 28),
BIN2P2 (Bridging Integrator 2 Pseudogene 2) and
SLC25A5P9 (Solute Carrier Family 25 Member 5
Pseudogene 9) were frequent in subtype c6 (Fig. 5c). It
will provide recommendations for the treatment of the
six subtypes of COAD with these identified subtype-
specific clinical and somatic alteration features.
Survival analysis was performed on 450 tumor samples

with clinical data (Fig. 6a). Significant survival differ-
ences between the six subtypes were observed (Fig. 6a,
p-value = 3.05 × 10− 3, log-rank), suggesting that the
classification showed biological significance. To further

Table 1 Subtypes of COAD in TCGA Cohort

Subtype Description Therapeutic implications

c1 Cell cycle dysregulation; p53 signaling pathway; loss of TCF7L2 and RPL18P1 Cell cycle; p53; TCF7L2; RPL18P1

c2 mTOR signing pathway and MAPK signaling pathway dysregulation mTOR; MAPK

c3 Spliceosome; antigen processing and presentation; estrogen signaling
pathway and mRNA surveillance pathway dysregulation; msi-h; high
frequent OBSCN, MYCBP2, RYR2 and TTN mutations

Spliceosome; antigen processing and presentation;
estrogen; NMD; msi-h; OBSCN; MYCBP2; RYR2; TTN

c4 Viral infections dysregulation; spliceosome Antiviral drugs; spliceosome

c5 Rig-I-like receptor signaling pathway; FoxO signaling pathway; autophagy;
insulin signaling pathway; focal adhesion

Rig-I-like receptor signaling pathway; FoxO signaling
pathway; autophagy; insulin signaling pathway; focal
adhesion

c6 Glycosaminoglycan biosynthesis-heparan sulfate; tight junction; circadian
rhythm; ECM-receptor interaction; dysregulation; loss of ARHGEF28, BIN2P2
and SLC25A5P9

Glycosaminoglycans; protein Claudin-2; circadian rhythm;
ECM-receptor interaction; ARHGEF28; BIN2P2; SLC25A5P9
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validate the results, survival analysis was further per-
formed in an external dataset (GSE39582), which also
showed survival differences between six subtypes (Fig.
6b, p-value = 2.21 × 10− 4, log-rank). Both results
suggested that patients in different subtypes had differ-
ent survival rates, which may help doctors develop
rational treatments for patients based on the subtypes to
which they belong.

Specific functional genes and edges associated with
survival
To further investigate the potential of functional genes
and interactions as prognosis biomarkers for COAD. All
1063 functional genes and 1440 functional interactions
were analyzed for their prognostic significance of overall
survival. For each functional gene, all COAD patients
were classified into the low- or high- expression group,

Fig. 6 Survival analysis results for six subtypes of COAD. a Survival curves for six subtypes of COAD in TCGA dataset. b Survival curves for six
subtypes of COAD in the external dataset (GSE39582)

Fig. 5 The six subtypes of COAD. a Differential gene expression patterns of a set of 1003 up- and down-regulated DEGs help to distinguish
between the six subtypes. b Comparison of the enriched KEGG pathways of representative DEGs for different subtypes. c Different subtypes with
different clinical and somatic alteration features. ‘Retros’ indicates ‘retrospective collection indicator’ (yes or no); microsatellite status (mss,
MicroSatellite stability; msi-h, MicroSatellite Instability-High; msi-l, MicroSatellite Instability-Low); amp, amplification
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according to the median expression level. For each func-
tional edge, patients were also classified into the low- or
high- ΔPCCs group based on the median ΔPCCs level
for the functional edge. Functional genes and interac-
tions with p-value less than 0.05 in the log-rank test for
both univariate analysis and multivariate analysis were
selected as prognosis biomarkers for COAD. Survival
analysis suggested that 12 functional genes and 13
functional interactions were associated with the overall
survival of patients of COAD (Fig. 7 and Figure S5,
Tables S6-S7), which demonstrates that they could be
prognosis biomarkers for COAD.

Discussion
Our study constructed a functional network of COAD
based on sample-specific network theory. The results
showed that the nodes in the functional network which
we denoted as functional genes had the potential roles
in discriminate tumor samples from normal samples,
COAD subtyping and prognosis. And the edges in the
functional network which we called functional interac-
tions could be prognosis biomarkers for COAD.

The enrichment analysis for the 1063 functional genes
revealed some key biological processes and pathways
which could play roles in pathogenesis and progression
of cancer (Figure S6). Specifically, among the top 5 most
enriched GO terms (Figure S6A), rRNA processing as
the most enriched one involved in 42 functional genes
that were upregulated in COAD compared with normal
samples. And upregulation of rRNA processing genes
was reported to be connected with CRC, which can
overproduce the matured ribosomal structures in CRC
[26]. The next three most enriched GO terms included
“negative regulation of transcription from RNA polymer-
ase II promoter”, “positive regulation of transcription
from RNA polymerase II promoter” and “positive regula-
tion of transcription, DNA-templated”, play important
roles in regulating the process of transcription. The term
“G1/S transition of mitotic cell cycle” contained 25
functional genes. And 23 of the 25 functional genes were
significantly up-regulated in COAD, such as CDK1,
CDK2, CDK4, CDK6, and CDK7, which can cause
uncontrolled proliferation and may serve as promising
targets in cancer therapy [27]. The top 5 most enriched

Fig. 7 The survival plots for 12 functional genes
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KEGG pathways were shown in Figure S6B. Among
them, pathways in cancer, proteoglycans in cancer, and
cell cycle are correlated with cancers. The deregulation
of Hippo signaling pathway was found in CRC and the
interaction between Hippo and Wnt signaling play
crucial roles in CRC development [28]. Wnt signaling
pathway plays important roles in CRC and could be a
potential target of revolutionary therapeutic treatments
for CRC [29]. Therefore, the references confirmed the
importance of the 5 most enriched GO and KEGG
pathways of the 1063 functional genes.
Furthermore, our results demonstrated that the 1063

functional genes were enriched in the five known cancer
gene sets including the curated gene sets in pathway in
cancer, colorectal cancer, cancer gene census, pan-caner
driver genes, and cancer driver genes, which also implied
the important roles of the 1063 functional genes in
COAD.
Literature searches were conducted to further investi-

gate the functions of the top 20 functional genes with
the highest node degree, which found that 11 genes were
related to CRC (Table S8). In addition, four genes
(CCND1, WNT2, MET, and HDAC2) of the 11 genes
were contained by the five known cancer gene sets
(Table S8). Specifically, CyclinD1 (CCND1) polymor-
phisms were associated with CRC [30]; WNT2, a
member of the WNT gene family, is involving in a
signaling pathway which can promote colorectal cancer
progression [31]; MET (MET Proto-Oncogene) may act
as prognosis biomarkers for CRC [32]; HDAC2 (Histone
Deacetylase 2) was found to be a potential target in CRC
[33]. Besides, literature searches found that our method
could also identify new biomarkers not contained by the
five know cancer gene sets. For example, UBE2I, the
small ubiquitin-like modifier (SUMO) E2 ligase, was
reported as a critical factor in sustaining the transform-
ation growth of KRAS mutant colorectal cancer cells,
which suggested that UBE2I could be a drug target for
the treatment of KRAS mutant colorectal cancers; LIM
Protein JUB was reported as a novel target for the ther-
apy of metastatic CRC since it is a tumor-promoting
gene which can promote Epithelial-mesenchymal transi-
tion (EMT) [34]; ubiquitin-conjugating enzyme E2S
(UBE2S) was reported as a potential target for CRC
therapy since it plays an important role in determining
malignancy properties of human CRC cells [35]; the
atypical cyclin CNTD2 which can promote colon cancer
cell proliferation and migration, was reported as a new
prognostic factor and drug target for CRC [36]; it has
been found that TRIB3 (Tribbles Pseudokinase 3) may
act as prognosis biomarker for CRC [32]; BOP1 (BOP1
Ribosomal Biogenesis Factor) is responsible for the
colorectal tumorigenesis [37]; GTPBP4 (GTP Binding
Protein 4) is involved in the metastasis of CRC [38]. The

results proved that our identified functional genes not
only contained the known cancer genes but also
included the important genes related to CRC.
Gene expression data can be used to realize the classi-

fication between tumor and normal samples, which may
suggest targeted therapy options. We carried out a
classification of COAD tumor from normal samples
using the gene expression data of functional genes. The
high prediction accuracy reached by the 185 core
functional genes to discriminate tumor from normal
samples in both TCGA dataset and independent
validation dataset, and it suggested that functional genes
were potential diagnostic biomarkers for COAD.
Six subtypes of COAD were detected by using consen-

sus clustering method based on the expression profile of
185 core functional genes, including subtype c1 (n = 38),
subtype c2 (n = 138), subtype c3 (n = 99), subtype c4
(n = 85), subtype c5 (n = 38) and subtype c6 (n = 56). For
subtype c1, 318 DEGs (161 up-regulated and 157 down-
regulated) were associated with subtype c1, enriched in
many important pathways such as DNA replication, cell
cycle, mismatch repair, and p53 signaling pathway, and
so on, which suggested that subtype c1 had abnormal
cell cycle process and p53 signaling pathway dysregula-
tion. Besides, subtypes c1 had the characteristic of high
frequent copy loss of TCF7L2 which can promote migra-
tion and invasion of human colorectal cancer cells re-
ported by the latest study [39]. High frequent copy loss
of RPL18P1 was also found in subtype c1, which could
also play important roles in subtype c1. Consequently,
our founding suggested that we can focus on cell cycle,
p53, TCF7L2, RPL18P1 when finding therapeutic drugs
for subtype c1. For subtype c2, 120 DEGs (101 up-regu-
lated and 19 down-regulated) were detected as
representative genes, which were enriched mTOR sign-
ing pathway and MAPK signaling pathway. It is well
known that both mTOR signing pathway and MAPK
signaling pathway are two of the most implicated cellular
pathways in cancers. In addition, Todd M.P. et al. dem-
onstrated that the combination of a PI3K/mTOR and a
MAPK inhibitor can enhance anti-proliferative effects
against CRC cell lines [40] and Wang H. et al. reported
that targeting mTOR suppresses colon cancer growth
[41], which suggested that mTOR and MAPK could be
therapeutic targets for subtype c2. For subtype c3, 139
DEGs (108 up-regulated and 31 down-regulated) were
identified as representative genes, which were enriched
in spliceosome, antigen processing and presentation,
estrogen signaling pathway and mRNA surveillance
pathway. The spliceosome pathway was reported as a
target for anticancer treatment [42] and displayed phase-
shifted circadian expression in CRC [43]. Downregulated
antigen processing and presentation were reported in
CRC [44]. Estrogen signaling pathway was reported as a
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target for colorectal cancer [45]. mRNA surveillance
pathway is to detect and degrade abnormal mRNAs.
Nonsense-mediated mRNA decay (NMD) as one of
mRNA surveillance pathway has been reported as a tar-
get for colorectal cancers with microsatellite instability
[46]. Besides, many patients in subtype c3 showed msi-h
feature and had high frequent OBSCN, MYCBP2, RYR2
and TTN mutations. It was reported that msi-h could be
a potential prognostic and therapeutic factor for COAD
[47], which suggested that msi-h could play important
roles for the patients in subtype c3 with msi-h. OBSCN,
RYR2 and TTN mutations which have been reported as
drivers [48] could be biomarkers for subtype c3. And
more, MYCBP2 was reported as a potential therapeutic
target for CRC [49], which could offer treatment sugges-
tions for subtype c3. Therefore, for patients in subtype
c3, spliceosome, antigen processing and presentation, es-
trogen signaling pathway, NMD, msi-h, OBSCN,
MYCBP2, RYR2, and TTN could be the potential thera-
peutic targets. For subtype c4, 82 DEGs (6 up-regulated
and 76 down-regulated) were found as representative
genes that were enriched in viral carcinogenesis and spli-
ceosome, and so on. Viral carcinogenesis is a factor to
induce DNA damage and virus integration [50] and may
be involved in the etiology of CRC [51]. Hence, viral car-
cinogenesis and spliceosome could be the potential tar-
gets for subtype c4. For subtype c5, 181 DEGs (51 up-
regulated and 130 down-regulated) were detected and
were enriched in Rig-I-like receptor signaling pathway,
FoxO signaling pathway, autophagy-animal, insulin sig-
naling pathway, toxoplasmosis, and focal adhesion, and
so on. Among the enriched pathways, RIG-I-like recep-
tor signaling plays important roles in colon cancer [52];
FoxO signaling pathway has been reported as thera-
peutic targets in cancer [53]; autophagy was reported as
a promising target for CRC [54]; insulin signaling path-
way could be a potential CRC therapy [55]. In conse-
quence, these pathways could be the targets for subtype
c5. For subtype c6, 163 DEGs (22 up-regulated and 141
down-regulated) were identified as representative genes
and were enriched in glycosaminoglycan biosynthesis-
heparan sulfate, tight junction, circadian rhythm, ECM-
receptor interaction and so on. Glycosaminoglycans have
therapeutic value in cancer [56]; tight junction whose
protein claudin-2 has been reported as a potential target
for CRC therapy [57]; circadian rhythm plays roles in
the pathogenesis of CRC [58]; ECM-receptor interaction
may play a critical role in CRC metastasis [59]. In
addition, copy loss of ARHGEF28, BIN2P2, and
SLC25A5P9 were frequent in subtype c6, which sug-
gested that they may be the potential biomarkers. There-
fore, glycosaminoglycans, protein Claudin-2, circadian
rhythm, ECM-receptor interaction, ARHGEF28, BIN2P2,
and SLC25A5P9 could provide information for the

treatment of subtype c6. Taken together, these findings
suggested that distinct subtypes of COAD could be
treated with specific targeted therapies (Table 1).
Among the 12 functional genes which were associated

with the prognosis of COAD, high expression of TPM2,
STMN2, CHMP4C, DUSP14, and GRIA3 had poorer sur-
vival rates, while low expression of WDR1, CPT2,
KDM1A, NFE2L1, TBL3, TGFBR3, and FGFR2 had
worse survival rates. Some of the 12 functional genes
have been connected with COAD or other diseases ac-
cording to the existing research. For example, TPM2
was reported to be in implicated in CRC [60]; STMN2
might be involved in beta-catenin/TCF-mediated car-
cinogenesis in human hepatoma cells [61]; CHMP4C
was identified as a novel molecular target gene for ovar-
ian cancer [62]; GRIA3 may act as a mediator of tumor
progression in pancreatic cancer [63]; WDR1 was re-
ported as a therapeutic target in lung cancer [64]; CPT2
was identified as a potential diagnostic biomarker of
colon cancer [65]; Somatic deletion of KDM1A plays
role in advanced colorectal cancer stages [66]; NFE2L1,
also called Nrf1, was found to be associated to high-risk
diffuse large B cell lymphoma [67]; Gatza et al. reported
that TGFBR3 promotes colon cancer progression [68];
FGFR2 was shown to promote gastric cancer progres-
sion [69]. Therefore, the 12 functional genes probably
play important roles in COAD and could be the po-
tential prognosis biomarkers for COAD. There was
no obvious correlation between the expression of 12
genes (Figure S7). To find the best combination of
them, we performed LASSO Cox regression on the 12
functional genes to select the most informative gene
set for prognosis (Figure S8). Eventually, seven func-
tional genes (CHMP4C, WDR1, CPT2, DUSP14,
NFE2L1, TBL3, and TGFBR3) were selected as the
most informative gene set for prognosis. The p-value
was 3.00 × 10− 4 for the best model with the seven
genes in cox analysis which was better than only use
one gene model.
The 13 functional interactions which could be poten-

tial prognosis biomarkers provides a new suggestion for
cancer prognosis. And LASSO Cox regression was also
performed for the 13 functional edges, resulting in seven
functional interactions (ESR1_E2F1, ARRDC4_HECTD3,
SPTBN2_SPTAN1, SOX9_UBE2I, CBX8_HOXA9, PPM1
G_STMN2, E2F1_KDM1A) were selected as the most in-
formative edge set for prognosis with p-value = 4.00 ×
10− 6. It is worth pointing out that Narayanan S.P. et al.
found that KDM1A plays a role in cell proliferation
through regulating the E2F1 signaling pathway in oral
cancer [70] and CBX8 interaction with HOXA9 was
found to play an important role in MLL-AF9-Induced
Leukemogenesis [71], which suggested that they may
also play important roles in COAD.
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The main limitations of the study are: the biomarkers
and subtypes detected in this study need to be proved
with more external datasets and biological experiments;
the roles of the functional network as a whole need to
be further explained.

Conclusions
In this study, a functional network with 1063 nodes and
1440 edges was constructed for COAD by a sample-
specific network (SSN) method. The roles of the nodes
and edges of the functional network which were defined
as functional genes and interactions were further ex-
plored. The results showed that the functional genes
could be used as diagnostic biomarkers. The consensus
clustering method was used to classify COAD into six
subtypes (c1-c6). The representative genes of each
subtype could be used as potentially targetable markers
for each subtype. Different subtypes were characterized
by different molecular patterns including clinical and
mutation features which provide a therapeutic sugges-
tion for each subtype. The last but not least, 12
functional genes and 13 functional interactions that were
associated with the overall survival of COAD could serve
as prognosis biomarkers. Therefore, our study could
help to realize the personalized treatment of COAD.
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