
Prediction of Hot Spots at Myeloid Cell Leukemia-1−Inhibitor
Interface Using Energy Estimation and Alanine Scanning
Mutagenesis
Parthiban Marimuthu*,‡,⊥ and Kalaimathy Singaravelu§

‡Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering, Biochemistry, Åbo Akademi University,
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ABSTRACT: Myeloid cell leukemia 1 (Mcl1) is an
antiapoptotic protein that plays central role in apoptosis
regulation. Also, Mcl1 has the potency to resist apoptotic cues
resulting in up-regulation and cancer cell protection. A
molecular probe that has the potential to specifically target
Mcl1 and thereby provoke its down-regulatory activity is very
essential. The aim of the current study is to probe the internal
conformational dynamics of protein motions and potential
binding mechanism in response to a series of picomolar range
Mcl1 inhibitors using explicit-solvent molecular dynamics
(MD) simulations. Subsequently, domain cross-correlation
and principal component analysis was performed on the
snapshots obtained from the MD simulations. Our results showed significant differences in the internal conformational dynamics
of Mcl1 with respect to binding affinity values of inhibitors. Further, the binding free energy estimation, using three different
samples, was performed on the MD simulations and revealed that the predicted energies (ΔGmmgbsa) were in good correlation
with the experimental values (ΔGexpt). Also, the energies obtained using all sampling models were efficiently ranked.
Subsequently, the decomposition energy analysis highlighted the major energy-contributing residues at the Mcl1 binding pocket.
Computational alanine scanning performed on high energy-contributing residues predicted the hot spot residues. The dihedral
angle analysis using MD snapshots on the predicted hot spot residue exhibited consistency in side chain conformational motion
that ultimately led to strong binding affinity values. The findings from the present study might provide valuable guidelines for the
design of novel Mcl1 inhibitors that might significantly improve the specificity for new-generation chemotherapeutic agents.

Bcl-2 family proteins are the central regulators of apoptosis
involved in removal of unwanted, injured, or infected cells.1

Three major categories of Bcl-2 family members are (i)
antiapoptotic proteins (AAP; Bcl2, Bcl-xL, Bfl-1/A1, Bcl-w,
and Mcl1) containing four BH (Bcl-2 homologue) domains, (ii)
proapoptotic proteins (PAP; Bax, Bak, and Bok) comprising BH
domains, and (iii) BH3-only proteins (Noxa, Puma, Bid, and
Bad) constituting only BH3 domain.2 The BH domains are short
segments involved in the interactions between proteins through
homo- or heterodimerization, which ultimately determine the
lifetime of a cell. Also, they facilitate the release of apoptotic
factors by controlling the mitochondrial membrane permeabi-
lization.3

Among the Bcl2 family proteins, Mcl1 amino-terminal PEST
domain affects the most frequently amplified cancer genes and
selectivity with its binding partners.4−7 Although, Mcl1 and Bcl-
xL share common biological function, they exhibit distinct
interaction profiles, expression patterns, and regulation. Mcl1
sequesters Bak and thereby affects cytochrome c release.
Likewise, Mcl1 can bind selectively to Noxa and Bik.8 Mcl1 is
important due to its emergence in resistance to chemo-

therapeutic agents. The up-regulation of Mcl1 leads to cancer,
while the down-regulation causes apoptosis.9 Thus, Mcl1 is a key
member of the family and an ideal cancer therapeutic target.
Mcl1 comprises ∼350 residues and shares common structural

topology with Bcl2 family proteins.10,11 The presence of a C-
terminal transmembrane domain in Mcl1 helps to anchor the
protein to various intracellular membranes.10 The surface of
Mcl1 is highly conserved where it engages the α-helical BH3
domain of PAPs or chemotherapeutic agents.12−14

Several studies have been carried out for the development of
selective Mcl1 inhibitors.13,15 In order to develop inhibitors that
specifically target Mcl1, the interaction pattern with its existing
binding partners, such as BH3 peptides or available synthetic
chemical compounds, should be explored extensively to predict
the binding free energies and rank the ligands based on the
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estimated binding energies using docking and molecular
dynamics (MD) simulation techniques.
In recent years, MD simulations have evolved to the level of

predicting the binding affinities for novel lead compounds, which
helps in accessing the quality of identified lead compounds, and
mutants,16 intramolecular conformational change in pro-
apoptotic Bax,17 the molecular basis of heterodimerization of
Bak peptide with multiple antiapoptotic proteins,2 and the
molecular properties of series of chemical compounds to Bcl-
xL.18 Based on this background, the current investigation is
focused on highlighting the crucial interactions and hot spot
residues for recently discovered high affinity 2-indole amide
inhibitors that have a broad range binding affinity values.19 Here,
we subject Mcl1−inhibitor complexes to explicit solvent
molecular dynamics (MD) simulations and binding free energy
estimation approach by molecular mechanics, generalized Born
and solvent-accessible surface area (MMGBSA) techniques. The
accuracy of this powerful computational method is high,
providing valuable insights on the binding mode of Mcl1
inhibitors and helping to identify hot spot residues responsible
for binding.

■ MATERIALS AND METHODS

Starting Structure Preparation. Five recently discovered
Mcl1 inhibitors (Figure 1) and their bioactivity values were
obtained from the literature.19 The X-ray crystal structures of
Mcl1 complexed with compounds 2 (PDB ID 5IEZ; 2.6 Å; Chain
A) and 5 (PDB ID 5IF4; 2.39 Å; Chain A)19 were retrieved from
Protein Data Bank (https://www.rcsb.org/pdb/home/home.
do). Further, compounds 1, 3, and 4 were sketched in 2D
representation using ChemDraw.20 To maintain consistency, the
crystal structure of Mcl1 complexed with compound 2 was used

to build other complexes. In the current study, docking
calculations were performed using AutoDock4.2.21 Initially, to
test the reproducibility of the binding poses by the docking
algorithm, compound 2 was “redocked” by manual removal of
compound 2 from the crystal structure and docked using
cocrystallized ligand as the grid center. Subsequently, the
coordinates of Mcl1 and compound 2 were prepared using
MGL Tools.21 Gasteiger-Marsili partial charges were added to all
polar hydrogen atoms. One hundred docking cycles were
performed using AutoDock 4.2 with 500 000 evaluation steps.
Consequently, three independent docking calculations were
performed for compounds 1, 3, and 4 with the redocking
parameters used previously.

Molecular Dynamics Simulations on Mcl1−Inhibitor
Complexes. The MD parameters used for the current
investigation was adapted from our previous studies2,18,22,23

and are summarized here. Six (Mcl1 protein in ligand free (apo)
form and Mcl1 protein complexed with five different 2-indole
amide inhibitors (holo)) independent systems were used as the
starting structures for MD simulations. All MD simulations were
carried out using NAMD24 with standard Amber-ff03 force
field.25 The ligand topologies for all five different compounds
were generated using the antechamber program, available in
Ambertools 17.25 Subsequently, five independent systems were
built using the following steps forMD simulations: addition of (i)
force field parameters for Mcl1 and inhibitors, (ii) hydrogen
atoms, (iii) counterions to neutralize the system, and (iv)
approximately 30 000 transferable intramolecular potential
three-point (TIP3P) water molecules. Then, the system was
placed in a cubic periodic box extended by 10 Å in every
dimension from the surface of the solute. Subsequently, a step-
by-step equilibration was carried out as follows. Initially, the

Figure 1. 2D-chemical structures of high affinity 2-indole amide inhibitor series.19
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water molecules, counterions, and amino acid side chains were
subjected to 50 000 steps of minimization, while the Cα atoms
were restrained by the harmonic force of 5 kcal/mol Å2. This
permits the solvent and counterions to move freely and also
removes the clash within the system. Next, a constraint-free
minimization was carried out for 250 000 steps, which removes
plausible remaining bad contacts. Further, the complete setup
was subjected to 25 ns equilibration under constant pressure.
Subsequently, a 100 ns unrestrained production run was carried
out with time step integration set to 2 fs. The system temperature
was maintained at 300 K. The system pressure was maintained
using Nose−Hoover Langevin piston26 for 1 atm, while the
oscillation and damping time scale was set to 200 and 100 fs,
respectively. The Langevin damping coefficient of 5 ps−1 of
simulation time was set to all non-hydrogen atoms. The SHAKE
algorithm27 was applied for bond constraints. The long-range
electrostatics was computed using the particle mesh Ewald
(PME) approach,28,29 while the short-range electrostatics was
calculated using 12 Å cutoff. The periodic boundary conditions
were applied to all dimensions.
Trajectory Analysis. The trajectories obtained from the MD

simulations on Mcl1−inhibitor complexes were analyzed using
the cpptraj script available in Amber. Initially, the structural
stability of the simulation was analyzed by calculating the root-
mean-squared-deviation (rmsd) and root-mean-squared fluctua-
tion (rmsf, thermal fluctuation calculated using B = 8π2/3⟨Δr2⟩)
values. The Cα atoms of all five different Mcl1−inhibitor
complexes were used to calculate the rmsd and rmsf values with
reference to the starting structure.
Domain Cross-Correlation Analysis (DCCA). The structural

correlation motion of Mcl1 due to inhibitor binding was
investigated by domain cross-correlation [C(i,j)] analysis using
all pairs of Cα atoms. The cross-correlation analysis was
computed using 500 snapshots obtained from the last 20 ns of
the MD trajectory with an even interval of 40 ps with the
following formula:

= ⟨Δ Δ ⟩ ⟨Δ Δ ⟩C r r r r/ ( )i j i j i j( , ) (1)

where C(i,j) represents the cross correlation values. The Δri
correspond to the deviation of Cα atoms estimated from the
mean position of the ith residue, while the values of C(i,j) range
between −1 and +1. The negative and positive values of the C(i,j)
represent the anticorrelated and correlated motion of the ith and
jth residue of Mcl1, respectively. Higher C(i,j) values highlight
more correlated (lower values anticorrelated) motion between
two Cα atoms of Mcl1.
Principal Component Analysis (PCA). The conformational

transition of Mcl1 due to inhibitor binding was generally
estimated using PCA. Here, PCA was calculated using 500
snapshots obtained from the last 20 ns of the MD trajectory with
an even interval of 40 ps. The covariance matrix, Ci,j, of atomic
coordinates was constructed as follows;

= − ⟨ ⟩ − ⟨ ⟩ =C x x x x i j N( )( ) ( , 1, 2, 3, ...3 )i j i i j j, (2)

where xi is a Cartesian coordinate of the ith Cα atom, ⟨xi⟩
represents the average time over all the configurations selected in
the simulations, and N is the number of Cα atoms. The
diagonalization of C yields the eigenvalues λi and the
corresponding eigenvectors Vi, that is, the principle components.
Binding Free Energy (BFE) Estimation (in kcal/mol) for

Mcl1−Inhibitors. The postprocessing trajectory analysis techni-
que, BFE estimation, was carried out on all the simulated Mcl1−

inhibitor complexes using the MMPBSA.py30 script available in
Amber 16.25 Three different GB models, developed by Tsui and
Case (igb = 1)31 and Onufriev et al. (igb = 2 (α = 0.8, β = 0.0, γ =
2.909) and igb = 5 (α = 1.0, β = 0.8, γ = 4.85),32,33 were used to
compute BFEs for all five Mcl1−inhibitor complexes using
molecular mechanics generalized Born and solvent-accessible
surface area approach (MMGBSA).30,33,34 The α, β, and γ
correspond to rescaling parameters used to represent solvation
effects. The BFEs were computed for 500 snapshots obtained
from the last 20 ns of the MD trajectory with an even interval of
40 ps.
For all Mcl1−inhibitor complexes, the BFEs were calculated as

follows:

Δ = − −G G G Gbind complex protein Inhibitors (3)

where ΔGbind is the BFE and Gcomplex, Gprotein, and Ginhibitors

represents the energies of the Mcl1−inhibitor complex, Mcl1,
and inhibitors, respectively.
Further, the BFEs were calculated using the following

equation,

Δ = Δ + Δ + Δ − ΔG E G G T Stotal MM GB/PB nonpolar (4)

where ΔEMM is the gas phase interaction energy for Mcl1−
inhibitor complexes and was estimated using the sander program,
ΔGGB and ΔGnonpolar correspond to polar and nonpolar
components of BFE, and −TΔS corresponds to the change of
conformational entropy due to inhibitor binding. Generally, the
entropy is estimated with normal-mode analysis (NMA) or
quasi-harmonic analysis (QHA)35 of the vibration frequencies.
Here, the conformational entropy calculation was ignored due to
(i) high computational costs,22,23 (ii) overestimation of entropy
values by NMA,36 (iii) a good convergence of the entropy being
hardly reached by QHA,37−39 and (iv) the main goal of the
current investigation being to obtain relative BFE comparisons
with the experimental values and not to compute the absolute
BFE value. The ΔGGB/PB corresponds to the polar solvation free
energy calculated using GB/PB equations embedded in Amber,
while theΔGnonpolar corresponds to the nonpolar contribution to
the solvation free energy.
Further, the nonpolar component was calculated using the

following equation:

γ βΔ = +G SASAnonpolar (5)

where γ represents the surface tension and is set to 0.0072 kcal/
(mol·Å2), β is set to 0.92 kcal/mol, and SASA is the solvent-
accessible surface area. The default dielectric parameters were set
to 1 and 80 for interior solute and exterior solvent, respectively.

Free Energy Decomposition (FED) for Mcl1−Inhibitor
Complexes. The FED analysis was performed using the same
snapshots obtained from the last 20 ns of the MD trajectory used
for the BFE calculations. To clearly highlight the BFEs of crucial
residues involved in the complex formation, the decomp30

module available in the Amber suite was used to calculate FED
analysis for each residue in Mcl1−inhibitor complexes. Four
important energy components, van der Waals contribution
(ΔGvdW), electrostatic contribution (ΔGele), polar solvation
contribution (ΔGele,sol), and nonpolar solvation contribution
(ΔGnonpol, sol), were involved in calculating BFEs of each residues
in Mcl1−inhibitor complexes.
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Δ = Δ + Δ + Δ

+ Δ
−G G G G

G

inhibitor residue vdW ele ele,sol

nonpol,sol (6)

Here, MMPBSA.py30,33,34 script in Amber was used to calculate
vdW and electrostatic interactions between Mcl1−inhibitor
complexes, where as the contribution of polar solvation energy
(ΔGele,sol) was calculated using generalized Born (GB)
parameters and was computed based on SASA. Potential energy
contributing residues were selected based on energy value greater
than −1 kcal/mol.
Alanine Scanning. Computational alanine scanning was

performed on the higher energy contributing residues in the
Mcl1 binding pocket obtained from decomposition analysis.
Here, the compounds with higher binding affinity values
(compounds 3, 4, and 5) were alone considered as appropriate
for the analysis. Consequently, each potential residue that
exhibited higher energy was mutated to alanine using Maestro
9.6v suite (Schrödinger Inc. NY), and saved individually as
“mutated Mcl1−inhibitor complex”, respectively. Furthermore,
every mutated complex were subjected to 100 ns MD
simulations, using same parameters used previously. The BFE
values for the mutational complexes were obtained using the
MMPBSA.py script.25,30 The energy differences between the
wild-type and mutated complexes were calculated using the
following equation:

Δ = Δ − Δ− G GGmmgbsa
ala scan

ala wild (7)

where ΔGmmgbsa
ala‑scan corresponds to total BFE calculated for the

alanine mutational complex, ΔGala corresponds to Mcl1−
inhibitor complexes mutated with single alanine residue, and
ΔGwild corresponds to wild-type Mcl1−inhibitor complex. Total
BFEs with negative values were considered as favorable effects
due to mutation, whereas the energies with positive values were
considered as unfavorable effects due to mutation. Subsequently,
the representative hot spot residues were categorized based on
the residue contributing differences in BFE greater than−1 kcal/
mol.

■ RESULTS AND DISCUSSION
Molecular Docking. In order to gain structural insight on

the plausible binding mode of potential inhibitors interacting
with Mcl1, docking studies were performed. Initially, to ensure
reproducibility of the binding poses from the docking algorithm,
compound 2 was redocked to the X-ray crystal structure of Mcl1
(PDB ID 5IEZ), which produced 100 conformational poses. The
ensemble of docked poses was examined closely, and the best
conformation was selected based on (i) docking score (−9.48
kcal/mol), (ii) graphical inspection, and (iii) potential polar
contacts between binding site residues and the inhibitors.
Interestingly, docking reproduced all desirable residue inter-
actions that were observed in X-ray coordinates (Figure 2). The
final redocked compound 2 was surrounded by residues H224,
A227, F228, M231, L246, V249, M250, V253, F254, N260,
T266, L267, and F270 with favorable hydrophobic interaction at
the binding site of Mcl1. Additionally, the comparison of the
binding pose of redocked compound 2 and the X-ray coordinates
showed 0.22 Å rmsd. Moreover, closer inspection of the binding
pocket revealed potential charge−charge interactions between
polar atoms of the carboxylate of compound 2 and the
guanidinium of R263 from Mcl1. Particularly, the O20 atom of
compound 2 forms a potential hydrogen bond interaction with
NE and NH2 atoms of the guanidinium side chain from R263.

Additionally, the complex stability was improved by the
formation of cation−π stacking between the guanidinium of
R263 and the phenyl group of compound 2. Thus, the structural
stability was maintained through the hydrophobic and polar
interactions between compound 2 and Mcl1. Overall, these
crucial interactions are well conserved between X-ray and
redocked complexes. Therefore, the redocking result provided
good confidence to use the same parameters to dock other
compounds 1, 3, and 4 to the binding pocket of Mcl1.
Next, three independent docking calculations were performed

with compounds 1, 3, and 4 at the binding pocket of Mcl1, which
produced 100 conformations each. The best-docked pose was
selected using the same criteria described previously (compound
1 = −8.73; 3 = −10.11, and 4 = −10.53 kcal/mol). The docking
results showed that compounds 1, 3, and 4 (i) occupied the
hydrophobic binding pocket, (ii) covered a large area of
surrounding residues similar to the crystal structure, and (iii)
conserved the charge−charge interactions from the crystal
structure (Figure 2). Particularly, the NE atom from the
guanidinium side chain of R263 forms hydrogen bonds with
the oxygen atom from the carboxylate of compounds 1, 3, and 4,
respectively. To compare the docked conformation of
compounds 1, 3, and 4, the selected final docked poses were
clustered with the X-ray crystal structure ofMcl1 (PDB ID 5IEZ)
(Figure 3). Based on these results, the selected docked pose and
crystal structure conformations were subjected to MD
simulations.

MD Simulations. To gain insights on the stability of the
docked complexes and the contributions of different inhibitors to
binding free energy of Mcl1 over a period of time, six (one apo
(ligand free) and five ligand bound (holo) conformations) MD
simulations were performed for 100 ns, individually.

Structural Stability Analysis of Mcl1−Inhibitor Complexes.
Root Mean Squared Deviation (rmsd). The structural deviation
of Cα atoms during the MD simulation for Mcl1 in apo (ligand
free) and five Mcl1−inhibitor (holo) complexes were calculated
for each time point throughout the simulations by rmsd analysis
(Figure 4). The rmsd values for the apo system showed higher
deviation as expected, due to absence of inhibitor at the binding

Figure 2. (a) The overlay of low energy poses of 2-indole amide
inhibitor series19 bound to the hydrophobic binding pocket of Mcl1
(left) obtained from docking studies. The magnified image shows the
docking cluster of 2-indole amide inhibitor series (right). (b) Relative
binding position of compound 5 to BimBH3 peptide (2PQK) at the
hydrophobic binding pocket (blue) ofMcl1 (light gray). The compound
5 interacts to the P2 subpocket present in the hydrophobic groove of
Mcl1.
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site. Contrastingly, the simulation reached equilibrium after 40 ns
for Mcl1 complexed with compounds 1 and 3; whereas the
simulation reached equilibrium after 50 ns for Mcl1 complexed
with compound 4. Conversely, for Mcl1 complexed with
compounds 2 and 5, simulation reached equilibrium after 20
ns, provided that these coordinates are crystal structures. The
rmsd graph show that all Mcl1−inhibitor complexes rapidly
reached the equilibrium phase after the initial relaxation period,
approximately between 1.25−1.5 Å deviations from its starting
structure. Particularly, the rmsd values for compounds 1 and 2
were∼1.6 Å, whereas those for 3 and 4 were∼1.5 Å, and that for
5 was 1.25 Å during the last 20 ns of the MD simulations. This
suggested that the trajectory obtained from the last 20 ns of the
MD simulations was reliable and could be used for further energy
estimation analysis. Additionally, the diameter of the binding
pocket for initial and the average structure was measured using
EBI-PDBSum server40 and its volume is tabulated (Table 1) for
compounds 1−5. The dimensions of the binding pocket for

compounds 1−5 after MD simulation showed converging
variations in the volume in comparison with the initial structure.

Root Mean Squared Fluctuations (rmsf). The structural
flexibility for all Cα atoms of apo and holo complexes was
calculated during the MD simulation by rmsf analysis (Figure 5).
The apo form showed higher fluctuation, due to absence of
inhibitor. Contrastingly, the rmsf graphs of holo forms showed
(i) higher fluctuations at the loop and termini regions, as
expected, and (ii) clear variations in backbone fluctuations
among the inhibitors, particularly at the binding site region of
Mcl1. Additionally, the residue range∼230 to 260 showed higher
to lower levels of fluctuations from compound 1 to 5, which is in
agreement with the binding energy values. This clearly explains
that the inhibitors with weak binding affinity values showed
moderate or weak interaction to the binding site residues, which
resulted in more fluctuation. Contrastingly, the inhibitors with
strong binding affinity showed tight and stable interaction to
binding site residues, which resulted in reduced or less
fluctuation of Mcl1.

Domain Cross Correlation Analysis (DCCA). To calculate the
internal dynamics of Mcl1 due to inhibitor binding, cross-
correlated matrices were computed from the equilibrated
snapshots obtained from the last 20 ns of the MD simulations
rendered using the cpptraj41 program in Amber. The cross-
correlated matrices have the ability to clearly highlight the
internal dynamics of the residues involved in interaction with the
binding partners using highly positive (+1) and negative (−1)
values, which in turn explains the strong correlated and
anticorrelated motions (Figure 6). Different colors can be used
to highlight the variations in the correlated motions that

Figure 3. Binding mode of 2-indole amide inhibitor series (stick
representation) interacting with the hydrophobic groove of Mcl1
(molecular surface representation).19 All five inhibitors occupied the
shallow P2 subpocket present in the hydrophobic groove of Mcl1. The
charged region over Mcl1 surface is highlighted by blue (positive) and
red (negative) color.

Figure 4. Root-mean-square deviation (rmsd) values obtained for the Cα atoms of ligand free and ligand bound states of Mcl1 relative to its initial
coordinates during MD simulations.

Table 1. Comparison of the Dimension of the Mcl1 Binding
Pocket Using the Initial and the Average Structure of
Compounds 1−5 Using EBI-PDBSum40

compd initial coordinates (Å3) MD average structure (Å3)

1 1192.22 1065.23
2 1192.22 1273.22
3 1258.88 1179.98
4 1258.88 1201.50
5 1258.88 1348.31
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correspond to the positive or negative values. Here, strong
correlated and anticorrelated regions are depicted using blue and
red colors, respectively. Overall, Figure 6 explains two key
features: (i) the global dynamics of the simulated system
exhibited similar patterns, and (ii) the overall secondary structure
of Mcl1 remains unchanged due to inhibitor binding in all cases.
Further, closer investigation of the cross correlation maps

clearly exhibited major differences between the complexes due to
inhibitor binding. In each DCCA map, the diagonal region
showed strong correlation (blue color) for each residue relative
to itself. Conversely, distinct red spots highlighting strong
anticorrelated regions were also observed. Particularly, the
DCCA maps displayed more anticorrelated regions for binding
site residues (Figure 6) for the inhibitor with weak binding
affinity, compound 1, Ki = 55 nM,19 whereas reduced or no
anticorrelated regions were observed for the inhibitor with strong
binding affinity (compound 5; Ki = 0.5 nM). This explains that

the inhibitor with weak binding affinity values (compound 1)
exhibited moderate or unstable binding with Mcl1 and favored
more conformational flexibility for binding site residues, whereas
the inhibitor with strong binding affinity (compound 5) showed
tight and stable binding with Mcl1, thereby permitting less
conformational flexibility. This result was in agreement with rmsf
results.

Principle Components Analysis (PCA). PCA is a powerful
MD analysis technique, which is widely used to probe the
internal conformational changes of protein.16,23,42 Therefore, in
the current study PCA was carried out to investigate the internal
conformational motion of Mcl1 due to inhibitor binding using
the snapshots collected from the last 20 ns of the MD
simulations. A two-dimensional PCA plot and its corresponding
fluctuation are depicted for all Mcl1−inhibitor complexes
(Figure 7). The PCA plot displays eigenvalues versus eigenvector
indices obtained from the diagonalization of the covariance

Figure 5. Root-mean-squared fluctuation (rmsf) values obtained for the Cα atoms of ligand free and ligand bound states of Mcl1 relative to its initial
coordinates during MD simulations.

Figure 6.Domain cross correlation analysis performed on all Cα atom pairs of Mcl1 complexed with 2-indole amide inhibitor series of compound 1 to 5
(a−e).
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matrices for all the atomic coordinates (Figure 7a). Figure 7a
shows first that few eigenvalues alone project the concerted
motion of atomic coordinates of Mcl1 due to inhibitor binding.
Particularly, the first 14 PCs accounted for 76.25%, 70.71%,

63.58%, 62.67%, and 60.63% of the total concerted motions
observed in the last 20 ns of the MD trajectories for compounds
1, 2, 3, 4, and 5, respectively. The subsequent concerted motions
showed a rapid decrease in amplitude and reachedmore localized
fluctuation and were thus ignored. Also, significant variations
were observed for these concerted motions between the five
Mcl1−inhibitor complexes. However, it is important to point out
that the magnitude of PC1 is significant for the inhibitor with
strong binding affinity (compound 5) in comparison with the
inhibitor with weak binding affinity (compound 1).
To understand how inhibitor binding influences the internal

fluctuations of Mcl1 protein, the displacement of PC1 was
separately depicted in Figure 7b. The result revealed that (i) the
loop and (ii) the N′ and C′ terminal regions of Mcl1 experienced
conformational fluctuations as expected. Additionally, Figure 7b
clearly depicts significant fluctuation at residues∼215 and 260 of
Mcl1 due to inhibitor binding. Particularly, the inhibitors with
weak binding affinity values (1 in blue color and 2 in red color)
showed higher fluctuation, whereas the inhibitor with strong
binding affinity (5 in green color) values showed low or reduced
fluctuation. This result indicates that the inhibitors with strong
binding affinity values can influence the conformational motion
of binding site residues in terms of tight binding. These results
were consistent with rmsf analysis.

Mechanism of Interaction Based on BFE Calculation. In
order to predict the binding strength between protein and its
binding partners, BFE can be computed using the MMGBSA
approach available in the Amber program.25 In the present
investigation, relative BFE values have been estimated for five
different Mcl1−inhibitor complexes. Three different GB
parameters were used to calculate BFE with snapshots obtained
from last 20 ns of the MD trajectories. The predicted BFEs were
then compared with experimental values (Table 2 and Figure 8).
The BFEs obtained by predicted (ΔGmmgbsa) and experimental
(ΔGexpt) values were negative for all Mcl1−inhibitor complexes.
Figure 8 exhibits the magnitude of the predicted energy value
increases with increase in experimental binding affinity values for
all three GB sampling parameters. The igb = 1 model exhibited
correlation coefficient (R2 = 0.80) for predicted versus and
experimentalΔG value. Additionally, to explore more conforma-
tional space for the simulated complexes two more igb
parameters, developed by Onufriev et al.32 (igb = 2 and igb =
5) were also considered. The correlation coefficient values
obtained for igb = 2 and igb = 5 models were R2 = 0.93 and R2 =
0.73, respectively. Nevertheless, the magnitude of the energy
values showed sequential increase; reduced R2 values were
observed for igb = 1 and igb = 5 models in comparison with igb =
2 model. This might be due to significant intervals observed
between the predicted BFE values (ΔGmmgbsa) obtained for
compounds 4 and 5 using igb = 1 and igb = 5 models, in
comparison with igb2 model, respectively.

Figure 7. Principle Component Analysis for Mcl1−inhibitor complexes.
(a) The eigenvalues plotted against eigenvector indices from the Cα
covariance matrices. (b) Internal fluctuation obtained for first
eigenvector obtained for Mcl1−inhibitor complexes. Superposition of
Mcl1 (light brown) complexed with compound 5 (cyan color) over (c)
Mcl1 (green) with compound 1, (d) Mcl1 (pink) with compound 2, (e)
Mcl1 (purple) with compound 3 and (f) Mcl1 (yellow) with compound
4.

Table 2. BFE (*ΔGmmgbsa in kcal/mol) Values Calculated for Mcl1−Inhibitor Complexes Obtained from Last 20 ns of the MD
Simulationsa

method compd 1 compd 2 compd 3 compd 4 compd 5

ΔGmmgbsa(igb=1) −44.97 ± 0.20 −45.07 ± 1.05 −46.52 ± 0.14 −52.16 ± 0.15 −53.64 ± 0.16
ΔGmmgbsa(igb=2) −51.19 ± 0.12 −52.51 ± 0.16 −53.21 ± 0.23 −54.33 ± 0.15 −54.53 ± 0.15
ΔGmmgbsa(igb=5) −42.63 ± 0.19 −42.26 ± 0.98 −43.25 ± 0.13 −48.49 ± 0.15 −50.08 ± 0.17
ΔGexpt −9.863 −10.377 −11.789 −12.438 −12.636
Ki (nM) 55 23 2.1 0.7 ± 0.1 0.5 ± 0.09

aThe experimental binding free energies (ΔGexpt) were converted using −RT ln(Ki).
19
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In general, the energy values obtained by MD based
MMGBSA approach fail to converge consistently. Therefore, it
is suggested that several repeated simulations could obtain
reliable BFE values.22 In the current study, the MD simulations
were repeated five times to obtain good estimate of BFE values
for Mcl1−inhibitor complexes.
In summary, the BFE values obtained byMD basedMMGBSA

approach were in good agreement with experimental values. In
general, the correlation coefficient (R2) values are used as a
primary measure to quantify the consistency of the computed
BFE values from the MD trajectories. In the current study, good
correlation values were observed for first two igb models.
Additionally, the correlation coefficient approach was used to
rank the binding affinity values. Overall, this clearly indicates that

first two igb models can be preferred for further evaluation, as
there are studies reporting a similar trend.22

Identification of the Key Residues Responsible for the
Complex Formation. Per-residue decomposition analysis was
performed to probe the energy differences among the interface
residue due to inhibitor binding using the MMPBSA.py30 script
with 500 snapshots obtained from the last 20 ns of the MD
trajectory with an even interval of 40 ps (Figure 9). The
decomposition analysis provided valuable insight on the major
energy contributing residues that were in contact with inhibitor.
Closer investigation at the binding site of Mcl1 revealed that an
ensemble of hydrophobic and polar residues exhibited significant
variations in energy profiles (Figure 10).

Figure 8. Correlation coefficient (R2) values plotted for experimental (ΔGbind =−RT ln(Ki)) versus predicted (ΔGmmgbsa in kcal/mol) BFE values. The
predicted BFE values were produced using three different igb parameters.

Figure 9. Comparison of BFEs (kcal/mol) for Mcl1 interfacing residues with 2-indole amide series of inhibitor.19 Mean values ± SD from
decomposition analysis of MD simulations.

Figure 10. Binding site residues of Mcl1 complexed with 2-indole amide inhibitor series.19
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The decomposition analysis revealed an ensemble of 11
residues, H224, F228, M231, V249, M250, V253, N260, R263,
T266, L267, and F270, that contributed approximately greater
than −1 kcal/mol to the free energy of binding. To gain more
insight on the relative energy contribution among the contact
residues, the BFEs obtained for all five inhibitor complexes were
compared (Figure 9 and Table 3). The predicted BFEs for all the
complexes showed that the core indole acid group of the
inhibitors acts as the central stabilizing factor, anchored to the
interior of hydrophobic binding pocket of Mcl1 very well.
From Figure 10, one can observe that the residue F270 located

proximal to the parent indole acid group of the inhibitor
contributed predominantly to the binding free energy with
−3.07,−3.2,−3.22,−3.32, and−3.43 kcal/mol, for complex 1 to
5, respectively (Figure 9 and 11). In addition, three hydrophobic

residues, M231, V253, and L267, provided large energy
contributions. The cumulative energies for these residues were
−4.68, −5.07, −5.40, −6.00, and −5.66 kcal/mol for complex 1
to 5, respectively. Furthermore, F228, M250, and T266
generated moderate energies. The combined energies for these
residues were−4.34,−4.6,−3.64,−4.09, and−5.41 kcal/mol for
complex 1 to 5, respectively. Similarly, N260 and R263, residues
highly conserved among the Bcl2 family members, also
contributed moderate energies. Particularly, N260 contributed
−1.12, −1.25, −1.04, −1.25, and −1.26 kcal/mol for complex 1
to 5, respectively. Closer investigation revealed that N260 of
complex 5 produced higher energy in comparison to the other
complexes. To probe the reason behind this higher energy
contribution by N260, the binding pocket of Mcl1 was inspected.
The result showed that N260 interacts with the methyl-pyrrazole
group of the inhibitor improving the binding affinity in complex
5. This is in agreement with the experimental results.19 Likewise,
R263 forms polar interactions with inhibitors contributing
−1.26,−1.28,−1.45,−1.45, and−1.4 kcal/mol, for complex 1 to
5, respectively. Closer inspection at the binding site revealed that
the complex stability was further strengthened by a cation−π
interaction between the guanidinium group of R263 and the 3-
benzoic acid of inhibitors. H224 and V249 provided only meager
energy contributions. Their combined energies were −1.2,
−1.26, −1.31, −1.38, and −1 kcal/mol for complex 1 to 5,
respectively (Figures 9−11). This suggests that H224 and V249
play less important roles in complex formation. Likewise, M250
shows less energy for compound 3 in comparison with other
compounds, which implies less importance. Overall, the
decomposition analysis suggests that F270 is the major energy-
contributing residue for the 2-indole amide Mcl1 inhibitor series.

Computational Alanine Scanning. To validate the predicted
energy values of the crucial residues obtained from per residue
decomposition analysis, computational alanine scanning was
performed. According to decomposition analysis, the residues
M231, V253, L267, and F270 produced more energy

Table 3. BFE (kcal/mol) Values Obtained for the Key Residues in Contact with 2-Indole Amide Series of Inhibitor from
Decomposition Analysis

residues compd 1 compd 2 compd 3 compd 4 compd 5

H224 −0.49 ± 0.3 −0.79 ± 0.4 −0.44 ± 0.1 −0.65 ± 0.2 −0.81 ± 0.1
F228 −1.26 ± 0.0 −1.31 ± 0.2 −1.79 ± 0.1 −1.43 ± 0.0 −1.99 ± 0.1
M231 −1.24 ± 0.4 −1.60 ± 0.1 −1.87 ± 0.4 −2.48 ± 0.4 −2.11 ± 0.4
V249 −0.71 ± 0.3 −0.46 ± 0.1 −0.85 ± 0.3 −0.72 ± 0.2 −0.19 ± 0.1
M250 −1.87 ± 0.4 −1.48 ± 0.2 −0.61 ± 0.4 −1.30 ± 0.4 −1.61 ± 0.4
V253 −1.67 ± 0.2 −1.56 ± 0.0 −1.92 ± 0.1 −1.66 ± 0.1 −1.65 ± 0.3
N260 −1.12 ± 0.0 −1.25 ± 0.4 −1.04 ± 0.2 −1.25 ± 0.3 −1.23 ± 0.0
R263 −1.26 ± 0.1 −1.28 ± 0.1 −1.45 ± 0.4 −1.45 ± 0.1 −1.40 ± 0.1
T266 −1.21 ± 0.4 −1.80 ± 0.2 −1.25 ± 0.1 −1.36 ± 0.1 −1.80 ± 0.2
L267 −1.76 ± 0.3 −1.91 ± 0.3 −1.61 ± 0.4 −1.85 ± 0.0 −1.90 ± 0.4
F270 −3.07 ± 0.1 −3.20 ± 0.1 −3.22 ± 0.3 −3.32 ± 0.1 −3.43 ± 0.1

Figure 11. Distribution of BFE (kcal/mol) values depicted over the
residues at the P2 binding pocket of Mcl1 (molecular surface
representation) complexed with compound 5.

Table 4. The BFE (kcal/mol) Values Obtained from Computational Alanine Scanning (ΔGmmgbsa
ala‑scan ) Approach for Major Energy

Contributing Residues

compd 3 compd 4 compd 5

residue ΔGwild ΔGala ΔGmmgbsa
ala‑scan ΔGwild ΔGala ΔGmmgbsa

ala‑scan ΔGwild ΔGala ΔGmmgbsa
ala‑scan

M231 −1.87 ± 0.4 −1.25 ± 0.2 −0.62 ± 0.2 −2.48 ± 0.4 −0.89 ± 0.3 −1.59 ± 0.1 −2.11 ± 0.4 −1.83 ± 0.4 −0.28 ± 0.0
V253 −1.92 ± 0.1 −0.89 ± 0.3 −1.03 ± 0.0 −1.67 ± 0.1 −1.24 ± 0.2 −0.43 ± 0.0 −1.66 ± 0.3 −1.40 ± 0.3 −0.26 ± 0.0
L267 −1.61 ± 0.4 −0.74 ± 0.2 −0.87 ± 0.2 −1.85 ± 0.0 −1.18 ± 0.2 −0.67 ± 0.0 −1.90 ± 0.4 −0.82 ± 0.2 −1.08 ± 0.2
F270 −3.22 ± 0.3 −0.98 ± 0.3 −2.24 ± 0.0 −3.32 ± 0.1 −1.05 ± 0.3 −2.27 ± 0.0 −3.43 ± 0.1 −0.97 ± 0.1 −2.46 ± 0.0
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contributions with inhibitors (Figure 9). To further substantiate
these high energy residues, computational alanine scanning
(ΔGala) was performed (Table 4). Consecutively, residues were
mutated to alanine for compounds 3, 4, and 5, which exhibited
high experimental values (ΔGexpt). The selected three complexes
were subjected to 100 ns MD simulations. Furthermore,
decomposition analysis was performed for residues in the
complex (ΔGala), and the energies were compared with residues
in the wild-type complex (ΔGwild). Subsequently, the differences

in the BFE (ΔGmmgbsa
ala‑scan ) obtained between wild-type (ΔGwild) and

the mutant complex (ΔGala) were used to determine the hot spot
residues.
The BFEs obtained for all the complexes were negative (Figure

12). For compound 3, the BFEs for the four mutated residues,
ΔGM231A, ΔGV253A, ΔGL267A, and ΔGF270A, were −1.35, −0.89,
−0.74, and −0.93 kcal/mol, respectively (Figure 12a).
Consequently, the differences in BFE (ΔGmmgbsa

ala‑scan ) between
wild-type (ΔGwild) and the mutant complex (ΔGala) were −0.62,

Figure 12. In silico alanine screening performed on major energy contributing residues (a−c). The bar graph plotted for BFEs (kcal/mol) obtained for
wild-type and the in silico mutants. (d) Comparison of energy difference between wild-type and in silico mutants. Consistency in energy pattern, high
energy, observed for F270 in all three complexes, in comparison with other three mutants. Mean values ± SD from decomposition analysis of MD
simulations.

Figure 13. Dihedral angle (chi (χ1), deg) measured for the side chain residue F270 in complex 1−5 during MD simulation.
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−1.03, −0.87, and −2.29 kcal/mol (Figure 12d). For compound
4, the BFEs for the mutated residues were −0.89, −1.24, −1.18,
and −1.05 kcal/mol (Figure 12b), and the energy differences
with wild-type residues were −1.59, −0.43, −0.67, and −2.27
kcal/mol (Figure 12d). Similarly, for compound 5, the BFEs for
mutated residues were−1.83, −1.40,−0.82, and−0.97 kcal/mol
(Figure 12c), and their change in energies from wild-type
residues were −0.28, −0.26, −1.08, and −2.46 kcal/mol (Figure
12d).
As the current study comprises the same series of chemical

compounds that bind to the hydrophobic binding pocket ofMcl1
(Figure 10) and exhibit a conserved binding pattern of
interactions, we assume that the energies exhibited by the
potential residues can be on a similar scale. Considering these
factors, results from the Table 4 and Figure 12d reveal that the
BFEs (ΔGmmgbsa

ala‑scan ) obtained for the in silico mutants (M231A,
V253A, and L267A) failed to display consistency. Therefore, the
feasibility of the obtained energies is somewhat doubtful. Despite
the fact that the compounds 3−5 interact with the common
residue pattern, M231A (helix 3), V253A (helix 4), and L267A
(helix 5) residues in the Mcl1 binding pocket, inconsistency in
BFEs could plausibly be due to the following reasons: a crucial
portion of the chemical compound (a) is prevented from
important surrounding interactions or (b) exhibits weak
interactions with the surrounding residues in the binding pocket
leading to negligible energy contributions, or (c) there is a
cooperative interacting effect of this residue pattern with the
inhibitors that might tend to exhibit strong energies, while the
point mutations on these residues affected the BFEs. This
prediction can be further validated by experimental approaches.
Contrastingly, the differences in BFE (ΔGmmgbsa

ala‑scan ) obtained for
the mutant F270A were as high as −2.2, −2.27, and −2.46 kcal/
mol for compounds 3, 4, and 5, respectively. From this strong
evidence, we were able to make a plausible assumption that F270
might serve as a hot spot residue for 2-indole amide inhibitor
series.
Conformational Mobility Analysis. To explore the reason

behind the tight binding, the evolution of the χ1 dihedral angle of

the F270 side chain was measured for all five complexes over time
(Figure 13). According to decomposition and in silico alanine
scanning analysis, F270 contributed stronger binding energy
values in comparison with other interacting binding site residues.
Figure 13 show that the side chain mobility of F270 is much
stronger in all five complexes over the time. Likewise, the χ1
dihedral angle of F270 is located in the range∼162° to 167° in all
complexes.
Energy landscape maps generated using the ψ and φ angle

values of a particular residue can clearly emphasize the
differences in conformational change between the complexes.
Therefore, to further probe the conformational change of F270
residue the free energy landscape maps were plotted using ψ and
φ angle values (Figure 14). The result shows that the ψ and φ
angles of F270 exhibited similar conformational orientation for
all complexes. The ψ and φ angles of F270 are −39.98° and
−63.83° for complex 1, −37.13° and −68.86° for complex 2,
−39.39° and −65.18° for complex 3, −38.45° and −65.51° for
complex 4, and −38.85° and −65.04° for complex 5. The above
results suggest that the F270 exhibited strong interaction to the
core indole acid group of the inhibitors bymaintaining the similar
side chain conformational orientation, which significantly
contributed to the tight binding over time. This result was in
agreement with decomposition and in silico alanine scanning
mutation analysis.

■ CONCLUSION

In the current study, binding poses were predicted for 2-indole
amide Mcl1 inhibitors using docking and MD simulations. The
major differences between the inhibitors on Mcl1 were studied
extensively by (i) domain cross-correlation analysis highlighting
the differences by correlated and anticorrelated regions and (ii)
principle components analysis highlighting the observable
variations by concerted motions on the atomic coordinates.
Subsequently, multiple sampling models ofMMGBSA technique
were used to compute the BFEs between the compounds. The
calculated energies confirm that the binding energies predicted
by igb-2 model were in good agreement with experimental values

Figure 14. Energy landscape contour map depicted using the backbone angle ψ and φ for F270 in complex 1−5 (a−e) during MD simulation.
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(R2 = 0.93). Additionally, the per-residue decomposition analysis
revealed that M231, V253, L267, and F270 contributed more
energy in all complexes. This further suggests that these might be
crucial residues involved in the origin of binding for 2-indole
amide inhibitors to Mcl1. Furthermore, F228, M231, M250,
V253, T266, L267, and F270 residues provided considerable
contributions to the complex formation. Conversely, we were
able to predict the hot spot residue using computational alanine
scanning and decomposition analysis. The predicted hot spot
residue might be used as a guideline to improve the binding
quality from nanomolar to picomolar range for 2-indole amide
inhibitor. Also, the overall results obtained from the current
study might serve as valuable insights for the discovery of new
generation Mcl1 inhibitors.
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