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Abstract: Respiratory viruses play an important role in asthma exacerbation, and early exposure
can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is
not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of
exacerbation in the early phase. Only a limited number of international exacerbation cohorts were
studied. Here, we have established a local pediatric exacerbation study in Germany consisting of
children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopha-
ryngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated
children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14%
were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics
(56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and
in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV
infection. Our study thus confirms HRV infection as a strong ‘biomarker’ of exacerbated asthma.
Further longitudinal studies will show the clinical progress of those children with a history of an RSV
or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently
needed to protect those high-risk children from a serious course of disease.

Keywords: human rhinovirus; respiratory syncytial virus; virus; infection; asthma; bronchitis;
exacerbation; children

1. Introduction

Asthma is still one of the most common respiratory diseases [1,2], with 262 to 340 million
cases worldwide, including 800,000 affected children living in Germany and a region-dependent
incidence [3–8] associated with a high number of undiagnosed cases [9–12]. Based on the
German national guidelines, the NVL Asthma 2020 (=Nationale Versorgungsleitlinie Asthma
2020), severe asthma exacerbation is defined by tachypnea, tachycardia, peak expiratory flow
variations, reduced oxygen saturation, or speech dyspnea [13]. In addition to environmental
factors [14,15], viral infections also play a leading role in asthma exacerbation [16–20]. Depending
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on the virus, an infection can influence the clinical course and may lead to an alarming increase
in morbidity and mortality when appropriate interventions are not successfully initiated [21–28].
Despite vastly improved therapeutic possibilities, asthma mortality still remains tragically high
with 461,000 deaths in 2019 [6].

While mortality, severity, and prevalence vary widely geographically, the prevalence
of this disease in Germany is estimated to be approximately 5% in adults and 10% in
children [29–33]. Asthma remains one of the costliest disorders and imposes a significant
burden on society and patients, resulting in 11.0 million physician visits and 1.7 million
emergency room visits, and is the leading cause of missed school days [29,34–36].

Past studies reported that human rhinovirus (HRV) [37–40] or respiratory syncytial
virus (RSV) [41,42] has a significant impact on asthma. In addition, influenza virus, boca-,
adeno-, or metapneumoviruses can also cause serious clinical courses in predisposed pa-
tients [43–45]. Moreover, HRV and RSV have been proposed to induce secondary diseases,
e.g., atopic disorders whose underlying mechanism is not fully understood yet [46–51].

Exacerbation cohorts may provide useful information on pathomolecular interac-
tions, which can be used for the definition of biomarkers [52–54]. However, data from
exacerbation cohorts of children with asthma are still scarce [52–54].

Thus, a pediatric exacerbation network, including subjects with chronic recurrent
bronchitis or asthma suffering from a respiratory exacerbation/deterioration of the general
status were recruited, and nasopharyngeal swab specimens were obtained [52]. For this
project, data of the study cohort were stratified based on demographic, clinical, and blood
variables [52].

With this project, we aimed to understand the respiratory viriome in connection to
microbiome results of exacerbated children. Observations from such a cohort may provide
important insights into the acute phase of an asthmatic child for a better understanding of
causative molecular aspects.

2. Materials and Methods
2.1. Subject Description and Sample Collection

Between the years 2017 and 2019, children and adolescents with a history of frequent
bronchitis or asthma presenting symptoms of an acute exacerbation were included. Two
diseased cohorts were categorized into ‘wheezers’ and ‘asthmatics’ [52]. The last subject
was enrolled in 2019 before the SARS-CoV-2/COVID-19 pandemic. Therefore, a comparison
between virus panel results before and during the pandemic cannot be performed. For
the present study, the cohorts were redefined based on distinct clinical and molecular
aspects, which will be explained below. In detail, children who were between three months
and five years of age with recurrent bronchitis symptoms (‘wheezers’) and with acute
respiratory complaints on the day of presentation at the study center were recruited after
obtaining informed consent. According to current asthma guidelines, wheezers cannot be
appropriately diagnosed as asthmatics since a lung function test (e.g., spirometry) cannot
be performed to confirm the diagnosis appropriately.

Asthmatics who were five to seventeen years old and suffering from an acute exacer-
bation were also recruited based on the national/international recommendations for the
diagnosis of asthma. Acute airway symptoms, including cough, tachy-dyspnea, chest tight-
ness, etc., are included in the Asthma Control Test/GINA (=Global Initiative for Asthma)
score (e.g., https://www.asthma.com/understanding-asthma/severe-asthma/asthma-
control-test/, accessed on 10 December 2021) [52,55,56] and reflect an ‘exacerbation’ for
both diseased cohorts (asthma/wheezers) in this prospective observational trial. Moreover,
healthy controls between 3 months to 17 years of age without any acute febrile infection
within the last few weeks before study inclusion and without any chronic disorders were
also recruited [52].

The stratification of the atopic status was defined according to the following criteria:
ImmunoCAP class ≥ 3, eosinophils, allergic rhino-conjunctivitis, and allergic dermatitis.

https://www.asthma.com/understanding-asthma/severe-asthma/asthma-control-test/
https://www.asthma.com/understanding-asthma/severe-asthma/asthma-control-test/
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The steroid status was set as positive when a steroid or leukotriene receptor antagonist
intake were present within the last months. Moreover, epidemiological and clinical pa-
rameters were recorded in order to perform correlation analyses. Among the biomaterials,
nasopharyngeal swabs using Copan eSwabsTM versatile liquid Amies media were deep
frozen at −80 ◦C upon collection for further analyses [52,57].

2.2. FilmArray Respiratory Panel Testing

For the automated simultaneous detection of different pathogens of the upper respira-
tory tract (Table 1), the BioFire® FilmArray® Respiratory 2.1 plus panel (Biomerieux) was
used according to the manufacturer’s recommendations [58].

Table 1. Respiratory virus and bacteria panel for studying the pathogenome of nasopharyngeal swab
specimens of the study cohort.

AdV 2
AdV 3
AdV 6

AdV 7.1
AdV 8

CV 229E
CV HKU1
CV NL63
CV OC43

MERS-CoV
SARS-CoV2 HMPV HRV/HEV Influenza A

Influenza B

PIV 1
PIV 2
PIV 3
PIV 4

RSV

B. p.
B. pp. C. pneumoniae M. pneumoniae

Abbreviations: AdV = adenovirus; CV = coronavirus; MERS-CoV = Middle East respiratory syndrome coro-
navirus; HMPV = human metapneumovirus; HRV/HEV= human rhinovirus/enterovirus; PIV = parain-
fluenza virus; RSV = respiratory syncytial virus; B. p. = Bordetella pertussis; B. pp. = Bordetella parapertussis;
C. pneumoniae = Chlamydia pneumoniae; M. pneumoniae = Mycoplasma pneumoniae; SARS-CoV2 = severe acute
respiratory syndrome-coronavirus type 2.

Briefly, approximately 300 µL of the raw sample was applied to the FilmArray pouch
in an aseptic environment using sterile filter pipet tips. The pouch contains all materials and
chemicals required for isolation, purification, amplification, and detection of the targeted
nucleic acids. After mechanical lysis and purification using bead beating and magnetic
bead technology, respectively, the total nucleic acid extract was applied to a first step
multiplex PCR including reverse transcription of targets originating from RNA genomes.
Subsequently, a second stage single plex PCR within a multi-well array was performed. To
identify targets from positive PCR results, high resolution melting analysis was carried out
harnessing the fluorescence emitted by the LCGreen Plus dye, which was captured by a
charge-coupled device camera. Finally, the results of the measurement run were processed
and presented by the BioFire, FilmArray 2.0, software version 2.1.336.0.

2.3. Statistical Analyses

Statistical analyses were performed with R [59] with the packages A Grammar of Data
Manipulation (dplyr) [60] and Visualizing Categorical Data (VCD) [61]. Plots were drawn
using the ggplot2 package [62]. Categorical data (infection or atopy status) were compared
using Fisher’s exact test for 2 × 2 contingency tables or chi-square independence test for
larger contingency tables. In three-dimensional contingency tables, Woolf’s test was used
to assess if the stratifying variable influenced the odds ratio of the other two parameters.
Quantitative data was analyzed using one or two-ways ANOVA tests, or Mann–Whitney U
tests in the case of pairwise comparisons. In each analysis involving at least 10 comparisons
or correlations, p-values were corrected using the FDR method. The significance threshold
was set at p < 0.05.

3. Results
3.1. Patient Characteristics

Multiplex virus panel testing was performed in a total of 141 study subjects (n = 37 healthy
controls, n = 50 wheezers, and n = 54 asthmatics). The mean age of the asthmatics was 9.8 years,
2.1 years in the wheezer group, and 8.2 years in the healthy control groups. The proportion
of females in the diseased groups (asthmatics/wheezers) was similar (33.3% vs. 32.0%). In
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addition, 76.5% of asthmatics were atopic; this number was 23.4% in the wheezer group.
Moreover, 42.9% of the asthmatics had reported a positive steroid intake in the past 12 months,
whereas wheezers were steroid positive in 26.5% of the cases. A detailed presentation of
additional clinical parameters is summarized in Table 2.

Table 2. Descriptive summary of patient characteristics.

Asthmatics Wheezers Healthy Controls

Population (n) 54 50 37
Age (years)

average (minimum-maximum) 9.8 (5.29–17.27) 2.1 (0.43–4.48) 8.2 (1.39–16.30)

Female (%) 33.3 32.0 45.9
Positive atopic status (%) 76.5 (n = 51) 23.4 (n = 47) 8.1

Negative steroid status (%) 57.1 (n = 49) 73.5 (n = 49) 0
Breast feeding (%) 76.7 (n = 43) 72.9 (n = 48) 91.2 (n = 34)

Maternal alcohol/tobacco abuse (%) 20.5 (n = 44) 22.9 (n = 48) 5.9 (n = 34)
Pet owner (%) 23.3 (n = 43) 21.3 (n = 47) 29.4 (n = 34)

Mold exposition (%) 50.0 (n = 42) 28.3 (n = 46) 17.7 (n = 34)
Traffic exposition (%) 39.5 (n = 43) 34.0 (n = 47) 14.7 (n = 34)

3.2. Rhinovirus and Respiratory Syncytial Virus Are Frequently Associated with
Pediatric Exacerbation

The most frequent viruses within the study population were HRV/HEV (41.1% of
all subjects were infected) and RSV (13.5%). HRV/HEV was particularly prevalent in the
asthmatics group (55.6%, significant difference with age-matched controls) and RSV in
the wheezers group (30%). Figure 1 shows the distribution of these viruses per group
(asthmatics, wheezers, healthy controls <5 years, and healthy controls >5 years). In total,
13 subjects (9.2%) suffered from multiple infections by two viruses, 79 (56%) were infected
by a single virus, and 49 (34.8%) were virus-free.
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Figure 1. Frequency of infection in different groups. The frequency of infection with each of the
studied viruses was compared between asthmatics or wheezers and age-matched controls. Rhinovirus
infection levels are significantly higher in asthmatics than in older healthy controls. There is also a
substantial difference in RSV infection levels between wheezers and younger controls. The pairwise
comparisons were conducted with Fisher’s exact test, then the p-values were corrected using the FDR
method. *** p < 0.001. Abbreviations: AdV = adenovirus, CoV = coronavirus, HRV/HEV = human
rhinovirus/human enterovirus, MPV = metapneumovirus, RSV = respiratory syncytial virus).
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3.3. The Atopy Level Influences the Susceptibility of HRV Infection

The patient’s atopic phenotype may influence the susceptibility to viral infection. We
tested this hypothesis in our cohort by detection of HRV/HEV and RSV, the two most
prevalent viruses in our cohort. For this, all HRV-infected atopic asthmatics and wheezers
were grouped together and compared with those who did not have atopy but were also
HRV positive. Interestingly, when all subject groups were combined, atopy was significantly
and positively correlated with infectibility (p = 0.000031) (Figure 2).
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Figure 2. Subjects infected by HRV or by RSV as a function of atopy status. (a) The correlation between
infection and atopic status was tested within each group or with all groups combined using Fisher’s
exact test. Additionally, Woolf tests were conducted to assess if the odds ratio of infection versus
atopy status differed between asthmatics and healthy controls older than 5 or between wheezers and
healthy controls younger than 5. After all the tests, p-values were corrected using the FDR method.
Atopy significantly increased HRV infection levels in all groups combined (p = 0.000031). (b) There
was no significant correlation between atopy status and RSV infection levels. *** p < 0.001.

3.4. Rhinovirus Infection Influences Blood Lymphocyte Levels

Currently, one of the widest and best characterized endotypes is allergic eosinophilic
asthma with type 2 immune response inflammation, which stands for the type 2 T-helper
cell lymphocyte (Th2) [30,63]. Chronic lower airway inflammation in asthma is caused by
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infiltration of inflammatory cells, including eosinophils, neutrophils, and T-helper cells,
as well as mast cell activation, IgE production triggered by B lymphocytes, and epithelial
cell damage [32,63,64]. We then analyzed if the group and/or viral infections influenced
lymphocytes and eosinophils, which are known to be involved in atopic diseases. Results
were either expressed in percentage of total leukocytes or titer per nanoliter. We restricted
our analyses to HRV/HEV and RSV, the only two viruses that infected enough subjects to
conduct relevant statistical analyses. Finally, we separated our dataset between asthmatics
and healthy controls older than five and between wheezers and age-matched controls.
Therefore, we conducted a series of 16 2-ways ANOVA tests to assess if the patients’
group, the viral infection status, or the interaction of both correlated with the selected cell
subsets. p-values were corrected using the FDR (false discovery rate) multiple comparison
correction. The percentage of lymphocytes among leucocytes was significantly correlated
with HRV/HEV infection in the younger cohort (p = 0.0014) and asthmatic status in the
older cohort (p = 3.4 × 10−11) (Figure 3).
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Figure 3. Lymphocytes decreased in HRV/HEV-infected subjects. Post-hoc pairwise comparisons of
infected versus non-infected subjects were conducted within each group using the Mann–Whitney U,
non-parametric test. *** = p < 0.001.

Interestingly, the fact that a significant negative correlation was observed when all
young children are combined but not within wheezers or within young controls probably
indicates that the difference was related to the higher number of infected subjects within
the wheezer group. This may be due to both the effects of the groups (wheezers have less
lymphocytes) and of HRV infection (infected subjects have less lymphocytes), but more
data need to be accumulated to be certain at this level. Furthermore, lymphocyte numbers
may vary with age.

3.5. House Dust Mite Allergy Increases the Susceptibility to Rhinovirus Infection

Our data and other studies suggest that patients with allergies or atopic diseases have
an increased susceptibility to virus infections [65–69]. Therefore, we hypothesized that
patients with house dust mite allergies had an increased rate of HRV positive test results.
Here, we observed that patients with high serologic levels were at a significantly higher
risk of being infected with HRV/HEV than those who showed decreased ImmunoCAP
values (Figure 4).
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Figure 4. Patients with house dust mite allergies are susceptible for rhinovirus infection. We
hypothesized that dust mite allergy levels, as measured by ImmunoCAP, influence the susceptibility
to viral infections. We restricted our analysis to HRV/HEV and RSV and to wheezers and asthmatics
since too few healthy controls accepted to undertake ImmunoCAP. For each group and each virus,
we conducted a Mann–Whitney U test to assess if the viral infection status correlated with dust
mite allergy levels. We found that dust mite allergies increased in HRV/HEV infected asthmatics
compared with non-infected asthmatics (p = 0.031). * p < 0.05.

3.6. The Bacterial Colonization in the Nose or Pharynx Was Not Influenced by Asthma Phenotype
among Virus-Infected Subjects

To determine to what extent the microbiome profile interacts with HRV or RSV, we
compared our previously published microbiome dataset [57], reanalyzed with the current
virus results. We tested for the presence of different bacteria in the pharyngeal and nasal
microbiome profiles of our cohort. As also described before, the most frequent bacteria
were Haemophilus parainfluenzae, Haemophilus influenzae, Staphylococcus aureus, Streptococcus
pneumoniae, and Moraxella catarrhalis [57]. Out of 137 tested subjects, 115 (84.4%) were
colonized by at least one bacterium, and 80 (58.4%) had virus–bacteria coinfections.

We hypothesized that the prevalence of these bacteria may vary between groups in
RSV-infected or HRV/HEV-infected patients. However, no significant correlation between
group and bacterial infection status was found in any subset of the cohort. We then
compared the colonization levels of the selected bacteria in the nose or in the pharynx
using the same cohort subsets and detected significant differences in RSV-infected patients
(p = 1.45 × 10−4), HRV-infected patients (p = 3.68 × 10−9), and HRV-infected atopic patients
(p = 1.30 × 10−8) (Figure 5a). Interestingly, pharyngeal Haemophilus (para-)influenza were
detected in more patients than all other bacteria and were also more prevalent than nasal
Haemophilus (para-)influenza.
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Figure 5. Bacterial profiles in patients with human rhinovirus (HRV) or respiratory syncytial virus
(RSV) infections (a,b). In each cohort subset, we compared bacteria colonization between groups for
each selected bacteria and location and between bacteria and location with all groups combined. We
used chi-square tests of independence and corrected all p-values using the FDR method. Pairwise
comparisons were conducted using Fisher’s exact test (Haemophilus influenzae = Haemophilus influenzae
+ Haemophilus parainfluenzae, S. aureus = Staphylococcus aureus, S. pneumonia = Streptococcus pneumonia,
M. catarrhalis = Moraxella catarrhalis). * p < 0.05; ** p < 0.01; *** p < 0.001.

We also asked the question of whether colonization by pathogenic bacteria was
associated with HRV/HEV or virus infection. For each of these two viruses, we com-
pared virus infection counts in patients colonized by Haemophilus influenzae/parainfluenzae,
Staphylococcus aureus, Streptococcus pneumoniae, or Moraxella catarrhalis in the nose, in the
pharynx, or in any of these two locations. We found that RSV infection was significantly
increased in subjects with nose colonization (p = 0.016, fisher’s exact test) (Figure 5).
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4. Discussion

Asthma is categorized into different phenotypes and endotypes [70]. Substantial efforts
are made to prevent subjects from developing atopic disorders and even predict a severe
course or an exacerbation [71–79]. The novel therapeutic alternatives have significantly
improved the clinical course of asthma symptoms [80–83]. Beside the allergen aspects as
triggering factors for exacerbation, viruses play a major role in seasonal exacerbations,
e.g., in winter [17,55,77,84–87]. An infection with HRV or RSV may be associated with life-
threatening events and affect disease development and progression [88–95]. Interestingly,
in our cohort, HRV and RSV were the most prevalent viruses, which were detected in the
nasopharyngeal swab specimens obtained during an exacerbation. It can be proposed that
these viruses are the causative pathogens of the current exacerbation.

Due to improved techniques, e.g., multiplex-PCR, it is possible to diagnose examina-
tion results rapidly, which enables earlier initiation of therapies [58,96,97]. Such techniques
also have the advantage of detecting subgroups of viruses, which can lead to important
clues about the corresponding pathomechanism [58]. Indeed, more clinical and experimen-
tal information are needed to establish vaccination strategies to counteract the prevalence
of atopic diseases. In this project, we were able to detect multiple respiratory viruses and
bacteria in the nasopharyngeal swabs of our study population during exacerbation in
panel studies, and this data can be utilized for further studies and biomarker development.
Such observations are important as they lead to insights into the exacerbation of the dis-
eased child and lay fundamental milestones for further translational projects. In detail, we
demonstrated that children with asthma have increased susceptibility to HRV. Our data
confirm previous work, and similar studies also present a correlation between HRV and
exacerbation [90,98].

HRV, as a single-stranded RNA virus, is an enterovirus and belongs to the picornavirus
family, where its capsid has four viral proteins [45,99–102]. It is classified into three species,
RV-A, -B, and -C, and it enters the airway epithelial cells through receptor-mediated endo-
cytosis by activating I-CAM 1 (RV-A/-B) and LDLR (RV-A/-B), whereas RV-C binds to the
CDHR3 receptor [99,103,104]. Upon entering, the genome is recognized by pattern recogni-
tion receptors, including Toll-like receptors. Subsequently, distinct immune responses are
induced by secreting chemokines and cytokines [99–101,105,106]. Epithelial cells infected
with HRV show a predisposition towards bacterial colonization, e.g., Staphylococcus aureus
and Streptococcus pneumoniae [99]. Asthmatics infected with HRV have a more severe course
than healthy patients, and in concordance with our work, previous studies have already
presented that an early infection is a risk factor for children with atopic predispositions
(e.g., allergic sensitization, genetic predisposition, etc.) [38,88].

In addition, an early infection with RSV or HRV can cause bronchiolitis and lead
to serious damage of the epithelium, which is also associated with an increased risk
of developing asthma in later years [17,37,107]. For example, Bergroth and colleagues
have shown that children with previous RV-A or RV-C bronchiolitis need to take asthma
medications at an early phase and several years after infection [37]. Longitudinal and
follow-up analyses of our cohort over several years should indicate whether a previous
exacerbation with RSV or HRV may have a negative impact on the course of the subjects.

The respiratory tract harbors not only viruses, but also other microorganisms, such
as bacteria and fungi [108–113]. The totality of all microorganisms is called the micro-
biome, and its pathogenic relevance is still investigated in different molecular and clinical
contexts [113–119]. Several studies have already delineated the relationship between the
airway microbiome and the pathogenesis of asthma [113,119–123]. Importantly, the first
bacterial colonization in humans occurs within 24 h post-partum and is delayed when the
child is delivered by cesarean section [113,124]. Due to various external influences, the
microbiome changes throughout the life [125]. Viral infections that have passed through
may also have an impact on the composition of the microbiome [126]. In our previous work,
we observed that the wheezer cohort showed more colonization with distinct bacteria,
including Moraxella catarrhalis and Haemophilus (para-)influenzae, whereas asthmatics had an
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increased abundance of Staphylococcus and Streptococcus in the nasopharyngeal swabs [57].
Interestingly, Teo and colleagues showed that patients with a colonization of Streptococcus,
Moraxella, and Haemophilus have an increased risk of infection with respiratory viruses,
particularly when such patients with the combination of RSV and Moraxella suffered from
severe symptoms [127]. Further works also highlighted the high risk of being hospitalized
for those patients with a Haemophilus, Moraxella, and Streptococcus colonization and an RSV
infection [128].

In addition to RSV, it was demonstrated that HRV also plays a special role in bronchi-
olitis [88,129]. Furthermore, it was shown that patients with Moraxella colonization have a
higher risk of being infected with HRV [130]. For example, Rosas-Salazar and coworkers
found that children with HRV and RSV infections were predominantly colonized with
Moraxella, Streptococcus, Corynebacterium, Haemophilus, and Dolosigranulum [130].

Considering these studies, our results also support the hypothesis that a colonization
with bacteria may be associated with an increased risk of respiratory virus infections.
Here, we observed that patients with positive test results of HRV/HEV and RSV infections
also had colonizations of distinct bacteria in nasopharyngeal swabs specimens. Therefore,
compared to previously published data, the increased detection of HRV and RSV in our
cohort provides a good correlation to previous studies. Nevertheless, it is difficult to
classify the extent to which the microbiome is a platform for viral infections or whether the
microbiome level affects the infectivity, the disease duration, and the severity of respiratory
infection in a patient.

Interestingly, patients with high ImmunoCAP values (Dermatophagoides pteryonossinus)
were at higher risk of being HRV positive than those with low values. Interestingly,
for SARS-CoV-2, there are contradictory results for asthmatics. For example, Yan and
colleagues observed that patients with asthma histories suffer from severe SARS-CoV-2
courses. They observed in their Korean cohort that patients with asthma and allergic
rhinitis had a serious clinical outcome [69]. Importantly, in the review of Chatziparasidis
and Kantar, the authors summarized the fact of why children with asthma may not belong
to the high-risk groups in terms of SARS-CoV-2 infections [22]. Indeed, the majority
of the patients infected with SARS-CoV-2 were either asymptomatic or had few serious
symptoms [22]. Subsequently, Radzikowska et al. analyzed the expression of receptors
targeting SARS-CoV-2 in different samples derived from diseased patients (including
asthmatics) and healthy controls. They observed that asthmatics had a higher expression of
CD147- and ACE2-related genes in different sample types. Whether this or other factors are
the reasons for different SARS-CoV2 morbidity will be interesting to investigate in further
studies [26].

Finally, it remains to be ascertained as to what extent viral infections affect microbial
composition or, conversely, to what extent the microbiome causes an increased susceptibility
to viral infection [113]. This pathomechanism is not yet fully understood and will be part
of our follow-up work.

5. Limitations

As also discussed previously in the study protocol [52], subjects from the western part
of Germany were included here while disregarding the aspect of different living conditions,
e.g., urban vs. rural. The fact that we recruited a local cohort prevents us from investigating
potential external influences on child exacerbation pathomechanisms. Nevertheless, this
aspect implies that the cohort is more coherent with less confounding factors, which
strengthens our conclusions regarding potential mechanisms [52]. As described previously,
due to an improved and updated analysis panel, a specification of HRV and enterovirus
is still not possible and a potential cross-reaction with enteroviruses cannot be excluded
at this level [58]. Moreover, the longitudinal observational aspect of our subjects over
several years is currently missing to address whether children with a history of RSV or HRV
infection have had an atopic progression in later years of age. Nonetheless, the recruitment
of exacerbated patients is a major hurdle for clinicians and scientists. Thus, this local
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cohort provides important information on the current status of affected children, where the
obtained biomaterials are valuable to study experimental questions and to correlate these
results with the clinical dataset for the purpose of deciphering important information for
potential prevention strategies in clinical settings. Thus, further experimental work should
study the impact of HRV subtypes in nasal epithelial cell cultures obtained from patients
during exacerbation and the response against the virus in these cultures.

6. Conclusions

Asthma is a multifactorial and heterogeneous disease with different phenotypes
and endotypes. Several trigger factors are involved during asthma development and
exacerbation, and distinct models have already shown the underlying signaling processes.
Importantly, viruses are particularly involved, and HRV takes a major part in causing
an acute asthma exacerbation. Here, HRV was common in the nasopharyngeal swab
specimens of our entire cohort where patients suffered from serious exacerbation event. It
would be interesting to study the role of viral infections during the SARS-CoV-2/COVID-19
pandemic and during asthma exacerbation/wheezing. The study inclusion of the last
patient was in the year 2019 before the pandemic, so this hypothesis cannot be tested here.
Complementary, observational studies in childhood should be performed soon to analyze
both seasons. Thus, many efforts need to be invested into the development of vaccination
and prevention strategies against HRV to protect asthmatics from such a deteriorated status,
which has significant effects on the quality of life.
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