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This is the first study to use a high-throughput metagenomic shotgun approach to explore the biosynthetic potential of soil met-
agenomes from different pristine environments of northwest Argentina. Our data sets characterize these metagenomes and pro-
vide information on the possible effect these ecosystems have on their diversity and biosynthetic potential.
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Soil microbiota produce many of the most important pharma-
ceutical drugs, including antibiotics and cancer drugs (1).

Nevertheless, the traditional approach for characterizing the bio-
synthetic capacity of environmental bacteria, i.e., culturing them
in the laboratory, has provided access to only a small fraction of
this potential (2, 3). Recent analyses of soil microbiomes from
around the world revealed a vastly unexplored biosynthetic diver-
sity which was associated with soil types (4–7). In general, arid
soils showed the richest biosynthetic diversity (5) and, similarly,
bacterial diversity was highest in neutral soils (generally arid and
semiarid ecosystems) and lower in acidic soils (generally tropical
forest ecosystems) (7).The purpose of this study was to character-
ize soil metagenomes from different pristine environments us-
ing a metagenomic shotgun approach, giving special emphasis
to the biosynthetic potential of each soil type. For this, four soil
samples collected in northwest (NW) Argentina were analyzed.
Sampling sites were chosen at different altitudes from the Yun-
gas (YU) and Argentine Northwest Monte and Thistle of the
Prepuna (NWMT) regions, with soils of varying pHs, namely:
1) YU (Montane Forest District) at 1,500 m above sea level
(MASL) in Tafí del Valle (Tucumán, Argentina) (named Soil_TV;
S27°01.123=; W65°39.807=; pH 5.35); 2) YU (Montane Cloud-
forest District) at 850 MASL in Rosario de la Frontera (Salta, Ar-
gentina) (Soil_RF; S25°50.143= W64°55.524=; pH 8.01); 3)
NWMT at 1,600 MASL in Cafayate (Salta) (Soil_CA; S26°03.885=
W65°56.506=; pH 7.05); and 4) NWMT at 1,600 MASL in Que-
brada de las Conchas (Cafayate Department, Salta) (Soil_QC;
S26°01.123= W65°49.429=; pH 8.92). For the extraction of DNA,
the three samples that contained more organic material (Soil_TV,
Soil_RF, and Soil_CA) were processed with the QIAamp stool
minikit (Qiagen), whereas Soil_QC was processed according to
reference 8, treated with RNase (Invitrogen), and precipitated
with LiCl and ethanol. High-throughput pyrosequencing of the
samples was performed using a Roche GS FLX (Macrogen, Inc.,

South Korea), yielding ~1.15 Gb of metagenomic reads with
lengths of 40 to 1,074 bases (nt) (520 nt average).

Raw sequence reads were trimmed using a custom application
for removing nucleotides derived from the amplification primers
(9, 10), and then processed with CD-HIT-454 (11). The nonre-
dundant protein sequence NCBI database (DB:nr) was down-
loaded locally, and RAPSearch2 (12) was used to perform the pro-
tein homology search of the trimmed clustered reads against DB:
nr. The taxonomic and functional content of the data sets was then
analyzed with MEGAN (13, 14). Metagenomes consisted of 65.6%
to 61.5% bacteria, 1.9% to 0.36% archaea, 1.6% to 0.17% eu-
karyota, and 0.1% to 0.01% viruses. Statistical analysis (P � 0.05,
Fisher’s exact test [15]) indicated significant differences between
all samples. Diversity (Shannon-Weaver index) was highest in
Soil_CA, followed by Soil_RF and Soil_TV, whereas Soil_QC
showed the lowest diversity.

This is the first study to use a metagenomic shotgun approach
to generate soil metagenome data sets from different pristine en-
vironments of NW Argentina. These data sets indicate the pres-
ence of bacteria, archaea, eukaryota, and viruses in all the samples
and provide information on the potential effects of ecosystem
types (including pH and altitude) on the composition, diversity,
and biosynthetic potential of these soil metagenomes.

Nucleotide sequence accession numbers. Nucleotide se-
quences were submitted to the NCBI Sequence Read Archive
(SRA) under the accession numbers SRX1058163, SRX1058164,
SRX1058165 and SRX1058166.
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