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Toxoplasma gondii is a zoonotic intracellular protozoan with worldwide distribution.

Acute and severe toxoplasmosis are commonly reported in patients who suffer from

acquired/congenital immune deficiency. This study aimed to synthesize mannosylated

paromomycin-loaded solid lipid nanoparticles (PM-SLN-M) and to evaluate them on

acute toxoplasmosis. SLN was synthesized and then loaded by 7 mg/mL paromomycin

sodium. Mannose coating was performed, and after washing, the size, zeta potential,

and loading percentage were calculated. To evaluate the cell toxicity, an MTT assay was

performed on Vero cells by different concentrations (log 10−1) of SLN, PM-SLN-M, and

PM-SLN. In addition, the anti-Toxoplasma effects were also evaluated using trypan-blue

staining and scanning electron microscopy (SEM). An MTT assay was also employed

to evaluate the effects of PM and PM-SLN-M on intracellular Toxoplasma. A 6-month

stability test of PM-SLN and PM-SLN-M represented that the characteristics all remained

constant. The cell viability assay demonstrated that PM-SLN-M had lower cell toxicity

(<20%) compared to PM-SLN (<30%) and PM (<40%). Statistical analysis showed that

PM-SLN-M significantly killed ∼97.555 ± 0.629 (95% CI: 91.901 to 103.209; P < 0.05)

of T. gondii tachyzoites. More than 50% of Toxoplasma-infected Vero cells remained

viable in concentrations more than 0.07µg/mL and 7µg/mL of PM and PM-SLN-M,

respectively. SEM analysis showed that T. gondii tachyzoites were changed in both

size and morphology facing with PM-SLN-M. Our findings indicated that synthesized

PM-SLN-M had anti-Toxoplasma activity without significant host cell toxicity at the

highest concentration. Our study demonstrated that PM was able to kill intracellular

Toxoplasma in lower concentration in comparison to PM-SLN-M, although PM-SLN-M

showed lower cytotoxic effects on Vero cells.
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INTRODUCTION

Toxoplasma gondii is a zoonotic obligate intracellular protozoan
parasite that infects a broad range of warm-blooded animals
from birds to humans. Global estimation shows 30–50% of
the world’s population are serology positive for toxoplasmosis
(Robert-Gangneux and Darde, 2012; Flegr et al., 2014; Aguirre
et al., 2019). The prevalence rates 0–100% were reported
for toxoplasmosis regarding the methods of detection and
geographical regions (Robert-Gangneux and Darde, 2012; Liu
et al., 2015; Rostami et al., 2018).

T. gondii has three main stages during its life cycle, including
the tachyzoite, tissue cyst (bradyzoite), and oocyst phases, of
which tachyzoite is responsible for cell invasion, and acute
phase of the disease (Kato, 2018). Although ingestion of mature
oocyst via food and water is the main route of infection (Hill
and Dubey, 2016), consumption of raw meat containing cysts,
needle injection (particularly in research laboratory), congenital
infection, blood transfusion (particularly white blood cells), and
organ transplantation from an infected person are the other
potential routes of transmission (Montoya and Liesenfeld, 2004).

Pathogenesis of T. gondii may differ based on its
genotypes/strains; however, it seems that toxoplasmosis
is asymptomatic in more than 80% of immunocompetent
subjects (Montoya and Liesenfeld, 2004). Toxoplasmosis in
immunocompromised patients who do not properly respond to
the infection is the main challenge. Accordingly, acute infection
due to toxoplasmosis ranks high on the list of fatal diseases in
HIV/AIDS patients (Hill and Dubey, 2002; Ahmadpour et al.,
2019). Indeed, acute and severe toxoplasmosis are commonly
reported from transplant recipients (Martina et al., 2011;
Paccoud et al., 2019; Schmidt-Hieber et al., 2019), cancer
patients (Fox et al., 2017; Bajnok et al., 2019; Melchor and
Ewald, 2019), and patients who suffer from acquired/congenital
immunodeficiency (Vijaykumar et al., 2018; McDermott et al.,
2019). Taken together with the complications due to acute
toxoplasmosis in immunocompromised patients, more recently,
the potential role of activated toxoplasmosis in response to the
immunomodulatory drugs during inflammatory bowel diseases
(IBD) and its pathogenesis was suggested (Mirjalali et al., 2019).
Therefore, prescription of a standard drug regimen with low side
effects is an important issue during acute toxoplasmosis.

Pyrimethamine and sulfadiazine are standard drugs of choice
in the case of acute toxoplasmosis. However, because of their
adverse and side effects, the need for a new treatment plan
has been highlighted (Martins-Duarte et al., 2006; Alday and
Doggett, 2017).

Paromomycin (aminosidine; PM) is an aminoglycoside–
aminocyclitol antibiotic with a broad-spectrum toxicity against
bacteria, as well as some parasites such as Giardia, Leishmania,
and Entamoeba histolytica (Kappagoda et al., 2011). This drug
faces many challenges, such as quick renal excretion and short
half-life in the blood circulation. Indeed, this drug is hydrophilic
and has a high molecular weight that makes its uptake difficult
(Ghadiri et al., 2012; Afzal et al., 2019). However, PM can be a
good option for treatment of parasitic disease due to its safety,
low cost, and short course therapy.

Over the years, drug delivery systems have been experienced
as a way to enhance the effectiveness of some drugs such as
PM (Ghadiri et al., 2012; Gaspar et al., 2015). So far, liposomes
have been used as a drug delivery system in many studies
where the results indicated improved penetration properties and
therapeutic effects of PM (Gaspar et al., 2015; Heidari-Kharaji
et al., 2016a). The current study aimed to evaluate the cell toxicity
and anti-Toxoplasma potency of PM-SLN-M, in vitro.

METHODS

Preparation of Uncoated SLNs Loaded by
PM (PM-SLN)
SLN was prepared by solvent injection method according to
the procedure reported by Schubert and Muller-Goymann with
slight modifications (Schubert and Muller-Goymann, 2003).
Briefly, tristearin (1% w/v) and soya lecithin (PC; 0.3% w/v) were
dissolved in a 10-mL mixture of acetone and ethanol (1:1 v/v) at
70◦C. Then, stearyl amine (SA) was added into the mixture with
the ratio of 10mol % of soya lecithin. Temperature was kept at
70◦C during the process. The melt was rapidly injected through
a syringe at a flow rate of 5 mL/min into a stirred aqueous phase
(with 0.2% w/v Tween 80) containing PM (0.1% w/v) maintained
at the same temperature. The suspension was stirred at 4,000
rpm for 1 h, sonicated for 5min, and then was filtered through
membrane filter (0.45µm) to remove any excess lipid. After this
process, the PM-SLNs were ready for coating with mannose.

Preparation of Mannosylated SLNs Loaded
by PM (PM-SLN-M)
Mannose coating was carried out in accordance with the
previously reported method (Kumar et al., 2006). D-mannose
(8µM) was dissolved in sodium acetate buffer (pH 4.0;
0.1M) and was added to uncoated SLNs. The mixture was
continuously stirred using magnetic stirrer at room temperature
for 3 days. Mannosylated nanoparticles were then subjected to
extensive dialysis (dialysis bag; MWCO 12–14 kDa, Himedia,
India) against double distilled water (DDW) for 30min to
remove uncoated mannose and other impurities (Ghadiri et al.,
2011). Figure 1 schematically overviews the preparation of
PM-SLN-M (Figure 1).

Drug Content Determination
Photon correlation spectroscopy was employed to measure the
size, pumulates mean size (z-potential), and the polydispersity
index (PDI) of the particles (Zetasizer Nano Series, Malvern, UK)
at 25◦C. The amount of PM in supernatant was determined by
high performance liquid chromatography (HPLC) as mentioned
elsewhere (Pick et al., 1997).

Cell Culture
In the present study, African green monkey kidney cells (Vero)
were used for in vitro assay. Accordingly, Vero cells were grown
in Dulbecco’s Modified Eagle Medium (DMEM; Gibco BRL,
USA) supplemented with 10% fetal bovine serum (FBS; Gibco
BRL) and 1% penicillin/streptomycin (Gibco BRL) at pH 7.2,
37◦C, and 5% CO2.
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FIGURE 1 | Schematic protocol describing the processing of PM-SLN-M synthesis.

Parasite
Tachyzoites of T. gondii (RH strain), which had been passaged
in BALB/c mice (8–10-week-old, 20–25 g weight) using
intraperitoneal (IP) injection, were washed with sterile
phosphate-buffered saline (PBS; pH 7.4). After counting
by hemocytometer slide, 1.5 × 106 tachyzoites per mL was
incubated with ∼105 Vero cells [multiplicity of infection (MOI)
= 10], cultivated in DMEM supplemented with 10% FBS and 1%

penicillin/streptomycin for mass cultivation. Every 3–5 days, the
cells were checked to investigate the Toxoplasma growth. After
maximum cell rupture and releasing tachyzoites, the parasites
were harvested for further analyses.

Cell Cytotoxicity Assay
To evaluate the toxicity effects of the synthesized
nanocomponents, the viability rate of Vero cell against six
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log−10 concentrations (7 mg/mL−70 ng/mL) of SLN, PM-SLN,
and PM-SLN-M was evaluated using MTT assay. Briefly, 2.38 ×
105 Vero cells in the exponential growth stage were seeded in
a 96-well cell plate containing DMEM supplemented with 10%
FBS for 48 h without any antibiotics. Then, the cells were treated
with SLN, PM-SLN, PM-SLN-M, and PM sodium (log−10 from
7 mg/mL to 70 ng/mL). A well of Vero cells without treatment
was considered as negative control. After 48 h incubation, the
culture supernatant was removed and 15% (v/v) of MTT solution
(5 mg/mL) was directly added to the wells, and the plate was
incubated for 4 h at 37◦C in 5% CO2. Formazan extraction was
performed by incubation with Me2SO (150 µL/well) at 37◦C for
10min, and the absorbance of the plates at 570 nm was read with
ELISA reader (LX800; Biotec, Winooski, VA, USA).

Toxicity effects of the defined concentrations were
calculated according to the following equation. The minimum
concentrations that inhibited an average of 50% of the parasites
and host cells were considered as inhibitory concentration (IC50)
and cytotoxic concentration (CC50), respectively.

Viable microorganisms %= [(AT – AB) / (AC – AB)]× 100
Nonviable microorganisms % = 100 – Viable
microorganisms %
AT is the OD of treated well, AC is the OD of negative control,

and AB is the OD of the blank well. A well of Vero cells without
treatment and a well with only the media were considered as
negative control and blank, respectively. Mean ± SD of the
experiments was reported for each sample.

Parasite Toxicity Assay
To study the anti-Toxoplasma activity of PM-SLN-M, six
concentrations of PM (as positive control) and PM-SLN-M
(log−10 from 7 mg/mL to 70 ng/mL) were added to 105

parasites per well of a 96-well cell culture plate containing
DMEM supplemented with 10% FBS without antibiotic. After 2 h
incubation in 37◦C and 5%CO2, the number of alive Toxoplasma
tachyzoites was counted using vital staining (trypan-blue) and
hemocytometer slide.

Viability and Non-viability data was calculated using the
following equation:
Nonviable microorganisms %= (PT / NT)×100
Viable microorganisms % = 100 – Nonviable
microorganisms %
∗PT is the number of parasite in each test well; NT is the

number of parasite in a well without treatments. Mean ± SD of
the experiments was reported for each sample.

Ratio
To determine the best concentration of PM-SLN-M and compare
the results to PM, the anti-Toxoplasma effects and the cell
viability percentage were calculated using the following formula.
The concentration closer to 1 was considered as the best dosage.

Ratio =
Killed Toxoplasma (%)

Viable Vero cells (%)

Intracellular Anti-Toxoplasma Activity
In order to investigate the effects of PM-SLN-M on the
intracellular Toxoplamsa, 105 Vero cells were seeded in a 96-
well cell culture plate containing DMEM supplemented with
10% FBS without antibiotics. After ∼70–80% confluency, 105

tachyzoites of Toxoplasma (MOI = 1) were inoculated in each
well, and the plate was incubated at 37◦C and 5% CO2 for
24 h. Then, the wells were checked by inverted light microscope
to confirm the maximum cellular invasion by the parasites.
Afterwards, the culture supernatant was removed, and wells were
washed twice by sterile PBS to remove cell debris, dead cells, and
extracellular tachyzoite. The cells were then treated with PM-
SLN-M and PM sodium (log−10 from 7 mg/mL to 70 ng/mL),
together with DMEM supplemented with 10% FBS for 48 h.
Finally, the culture supernatant was removed and MTT assay
was performed.

Scanning Electron Microscopy (SEM)
To evaluate the anti-Toxoplasma effects of PM-SLN-M
formulation, after 2-h exposure of 105 Toxoplasma tachyzoites
with the nanodrug, tachyzoites were attached on a slide, fixed
with 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1M
sodium cacodylate buffer (pH 7.4) and washed in cacodylate
buffer. Then, the slide was post-fixed for 2–4 h using 1–2%
osmium tetroxide in 0.1M phosphate buffer (pH 7.2) at room
temperature and dehydrated in graded ethanol dilutions (70,
80, 90, and 100%). Cells were dried using critical point method,
mounted on stubs, coated with gold (20–30 nm), and then
observed using SEM.

Statistical Analysis
One-sample t-test incorporated in GraphPad Prism software
(version 8.0.2) was employed to calculate mean± SD, confidence

TABLE 1 | Specific properties of synthesized nanoparticles.

Formulation Polydispersity

index

Zeta

potential (mV)

Size (nm)

PM-SLN 0.26 ± 0.4 +31.3 ± 1.5 187 ± 14

PM-SLN-M 0.8 ± 0.02 +25.6 ± 1.7 246 ± 32

FIGURE 2 | The sustainability results of PM-SLN-M during 6-month evaluation.
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FIGURE 3 | Cell toxicity assay of (A) PM, (B) SLN-BLANK, (C) PM-SLN, and (D) PM-SLN-M on Vero cell line.

TABLE 2 | Vero cell viability against different concentrations of PM, PM-SLN, and PM-SLN-M.

Concentrations

(µg/mL)

PM PM-SLN PM-SLN-M P < 0.05

Mean ± SD (%) 95% CI (%) Mean ± SD (%) 95% CI (%) Mean ± SD (%) 95% CI (%)

7,000 56.85 ± 0.255 54.563–59.137 71.345 ± 0.431 67.469–75.220 78.96 ± 0.07 78.325–79.595 *

700 68.84 ± 0.240 66.680–71 74.155 ± 0.176 72.566–75.743 94.815 ± 0.290 92.210.3–97.420

70 74.655 ± 0.488 70.271–79.039 95.62 ± 0.608 90.156–101.083 103.06 ± 0.085 102.298–103.822

7 98.165 ± 0.219 96.195–100.134 117.49 ± 0.692 111.263–123.716 103.9 ± 0.297 101.232–106.568

0.7 116.055 ± 0.078 115.356–116.754 117.93 ± 0.678 111.831–124.028 109.03 ± 0.255 106.743–111.317

0.07 120.485 ± 0.728 113.941–127.029 118.845 ± 0.219 116.875–120.814 124.57 ± 0.608 119.106–130.34

*Statistically significant.

interval, and statistical correlation between concentration and
components. P < 0.05 was considered as statistically significant.

RESULTS

PM-SLN-M Characterization and
Properties
Specific properties of prepared PM-SLN-M such as size,
polydispersity index, percentage of PM loading, and zeta
potential of the particles are summarized in Table 1. The average
size of the particles was 246 ± 32 nm, and the stability of the
formulation (accelerated, 6 months), which was evaluated based
on protocol ISCH-Q6 and stored in the refrigerator, showed
good results (Figure 2). The release of drug from the PM-SLN-
M formulation was slow and lasted for 24 h in the aqueous

media. Indeed, the average entrapment efficiency of PM-SLN-M
was 47–48%.

Nanocomponent Toxicity Assay
Toxicity assay of nanoformulations showed that more than 78.96
± 0.07% (95% CI: 78.325–79.595%) of Vero cells remained viable
at the highest concentration (7 mg/mL) of PM-SLN-M (CC50
> 7 mg/mL) while almost 56.85 ± 0.255% (95% CI: 54.563–
59.137%) of the cells dead using the same concentration of PM (P
< 0.05; CC50 > 7 mg/mL). Comparison of cytotoxicity effects of
PM-SLN with PM-SLN-M showed that mannosylation reduced
the cell toxicity of the nanodrug from ∼30 to 20% of Vero cells
at the highest concentration. Indeed, toxicity effects of only SLN
was evaluated that showed this component was not toxic for Vero
cell, even at the highest concentration (Figure 3; Table 2).
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Anti-Toxoplasma Effects of PM-SLN-M
The results of vital staining showed that at the highest
concentration, PM-SLN-M was able to kill 97.555 ± 0.629%
(95% CI: 91.901–103.209%) of tachyzoites, in comparison
to PM (92.065 ± 1.322% [95% CI: 80.185–103.945%]; IC50
> 0.07µg/mL). In addition, at the lowest concentration
(0.07µg/mL), PM-SLN-M killed 85.895 ± 0.148% (95% CI:
84.561–87.229%), while PM was toxic for 79.55 ± 0.636%
(95% CI: 73.832–85.268%) of Toxoplasma tachyzoites (IC50 >

0.07µg/mL) (Figure 4; Table 3).

Anti-intracellular Toxoplasma Effects of
PM-SLN-M
The results represented that at least 50% of the infected Vero cells
treated by the concentration higher than 7µg/mL of PM-SLN-M
remained viable (IC 50 > 7µg/mL). Moreover, PM was able to
kill Toxoplasma in the infected Vero cells by concentrations more
than 0.07µg/mL (IC 50 > 0.07µg/mL; Figure 5; Table 4).

Ratio Analysis
The comparison of the efficacy to the safety of PM-SLN-M and
PM, ratio analysis was performed that the results showed PM-
SLN-M at the concentration 700µg/mL and ratio 0.963 had the

FIGURE 4 | Comparison of anti-Toxoplasma activity of PM and PM-SLN-M

according to different concentrations.

highest and lowest toxicity for Toxoplasma tachyzoites and Vero
cells, respectively. Indeed, PM showed the highest and lowest
toxicity for Toxoplasma tachyzoites and Vero cells, respectively,
at the concentration 70µg/mL with ratio 1.11 (Figure 6).

Scanning Electron Microscopy
Morphological analysis of T. gondii tachyzoites treated with PM-
SLN-M represented a non-crescent shape with abnormal surface,
while tachyzoites in control group remained normal in shape and
size with a smooth surface (Figure 7).

DISCUSSION

Acute severe toxoplasmosis in immunocompromised patients
and women who are infected by T. gondii during the first
pregnancy is the main challenge of physicians (Montoya and
Liesenfeld, 2004). Although there are single or combined
drug regimens facing with acute toxoplasmosis, most of the
recommended drugs are not effective enough or may lead to

FIGURE 5 | The effects of different concentrations of PM and PM-SLN-M on

intracellular Toxoplasma.

TABLE 3 | Anti-Toxoplasma activity of different concentrations of PM and PM-SLN-M and the ratio value of anti-parasite activity per Vero cell viability.

Concentrations

(µg/mL)

PM PM-SLN-M P < 0.05

Mean ± SD (%) 95% CI (%) Ratio Mean ± SD (%) 95% CI (%) Ratio

7,000 92.065 ± 1.322 80.185–103.945 1.62 97.555 ± 0.629 91.901–103.209 1.23 **

700 85.575 ± 0.615 80.048–91.102 1.24 91.365 ± 0.516 86.727–96.003 0.963*

70 83.135 ± 0.049 82.690–83.580 1.11* 89.95 ± 0.071 89.315–90.585 0.872

7 82.23 ± 0.325 79.308–85.152 0.837 90.985 ± 0.290 88.380–93.59 0.875

0.7 80.945 ± 0.078 80.246–81.644 0.697 88.45 ± 0.636 83.732–94.168 0.811

0.07 79.55 ± 0.636 73.832–85.268 0.66 85.895 ± 0.148 84.561–87.229 0.689

*The ratios closer to 1 show the best concentrations of drugs with highest anti-Toxoplasma activity and lowest Vero toxicity.

**Statistically significant.
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TABLE 4 | Anti-intracellular Toxoplasma activity of different concentrations of PM and PM-SLN-M.

Concentrations

(µg/mL)

PM PM-SLN-M P < 0.05

Mean ± SD (%) 95% CI (%) Mean ± SD (%) 95% CI (%)

7,000 102.506 ± 1.728 98.214–106.799 84.996 ± 3.204 77.038–92.955 *

700 101.203 ± 2.250 95.614–106.792 82.95 ± 4.927 70.71–95.19

70 53.223 ± 2.273 47.577–58.869 57.93 ± 2.437 51.8840–63.989

7 62.286 ± 3.019 54.786–69.787 39.446 ± 1.37 36.042–42.851

0.7 55.106 ± 2.465 48.982–61.231 36.336 ± 2.139 31.024–41.649

0.07 44.096 ± 3.349 35.776–52.417 26.506 ± 5.417 13.051–39.962

*Statistically significant.

FIGURE 6 | Ratio analysis of (A) PM and (B) PM-SLN-M shows that PM-SLN-M at the higher concentration than that in PM (700 vs. 70µg/mL) revealed highest and

lowest anti-Toxoplasma activity and Vero cell toxicity, respectively.

side effects (Alday and Doggett, 2017). However, sulfadiazine-
pyrimethamine, spiramycin, clindamycin, and atovaquone are
known the drugs of choice, despite being of different efficacy and
probable side effects (Alday and Doggett, 2017; Montazeri et al.,
2017). It was claimed that the combination of sulfadiazine and
pyrimethamine, recommended drugs for acute toxoplasmosis,
may lead to immunosuppression and anemia due to clampdown
of bone marrow production despite of its good efficacy
(Crespo et al., 2000; Faucher et al., 2011). Indeed, although
parasitocidal effects of atovaquone on protozoan parasites have
been demonstrated, the need for high dosage due to low
bioavailability is the main challenge in oral prescription of this
drug (Pentewar et al., 2015; Darade et al., 2018).

Notably, different nanoformulations and nanomaterials have
been used in practice and the results are promising. In addition,
it was strongly claimed that utilizing nanomaterials in either
combination or formulation of the conventional drugs not only
decreases the probable side effects, but also increases their
efficiency (Barabadi et al., 2019).

Although many nanoformulations of available drugs were
tested either in vivo or in vitro, there is no data representing
efficiency of PM and its nanoformulations on toxoplasmosis.
Gaafar et al. (2014) worked on chitosan and silver nanoparticles
either singly or in a component against Toxoplasma and reported
significant reduction in the parasite count in the infected mice.

Anti-Toxoplasma activity of different molecular weights and
concentrations of chitosan was then evaluated by Teimouri
et al. (2018), who reported significant anti-Toxoplasma toxicity
of all molecular weights and concentrations. Azami et al.
(2018a) assessed nanoemulsion of atovaquon for treatment of
both chronic and acute toxoplasmosis and revealed that this
component was toxic for both tachyzoites and brain cysts of
Toxoplasma. At the same time, Azami et al. (2018b) evaluated
curcumin nanoemulsion (CR-NE) on both chronic and acute
toxoplasmosis and demonstrated that CR-NE can be considered
a promising compound for the treatment of toxoplasmosis.
However, in these studies, host cell toxicity was not assessed on
the cell lines to reveal a ratio of anti-Toxoplasma effect to host
cell toxicity. In the current study, PM-SLN-M showed highest
anti-Toxoplasma activity and lowest host cell toxicity at the
concentration 700µg/mL, in comparison to PM, which showed
highest anti-Toxoplasma activity and lowest host cell toxicity
at the concentration 70µg/mL. This finding suggests that SLN
mannosylation not only increases anti-Toxoplasma activity, but
also decrease host cell toxicity of PM.

Our results confirmed the previous studies showing non-
toxicity of SLN-PM either in vitro or in vitro. PM is a
broad-spectrum, well-known antibiotic whose bactericidal and
parasiticidal properties are shown satisfactory. Although the
hydrophilic structure of this drugmakes penetration of PM to the
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FIGURE 7 | The results of SEM analysis reveals changes in size and morphology of Toxoplasma tachyzoites in two magnifications. (A1,A2) show untreated

tachyzoites, and (B1,B2) show PM-SLN-M treated tachyzoites.

target cells difficult, there are a number of studies that reported
satisfactory outcomes that resulted from the nanoformulation of
PM. Up to now, nanoformulation of PM was mostly practiced on
different types of leishmaniasis. Heidari-Kharaji et al. (2016a,b)
showed that PM-SLN was a non-toxic compound that increased
the anti-Leishmania toxicity of PM.

Notably, short half-life and specific drug delivery of PM
are the main challenges during clinical practices. It was
demonstrated that SLN carriers can increase the half-life of
PM through controlling the drug release. Ghadiri et al. (2012)
examined entrapment efficiency and release profile of PM-loaded
SLN using statistical modeling and showed that SLN led to
gradually efficient prolonged release of PM. Interestingly, in
immunocompromised patients, chronic cysts of Toxoplasmamay
rupture due to insufficient immune responses; thus, activated
tachyzoites can lead to lethal complications. Therefore, since SLN
controls efficient prolonged release of PM, it seems PM-SLN can
remain effective for a long time.

Additionally, macrophages are the first line of defense during
acute toxoplasmosis (Kato, 2018; Lima and Lodoen, 2019);
therefore, increasing the drug uptake by macrophages is the most

important challenge during treatment of acute toxoplasmosis.
Mannose receptor, known as CD206, is mostly expressed by
macrophages and dendritic cells. This receptor binds with
mannose that usually covers outer surface of microbes and
leads to scavenging pathogens (Azad et al., 2014). Notably,
macrophages are the central host cells which are infected by
intracellular pathogens such as Leishmania and Toxoplasma,
and it was well-established that mannosylated PM-SLN not
only increase the bioavailability of PM, but also mannosylation
enhance uptaking PM by macrophages (Frenz et al., 2015). In
the study conducted by Afzal et al. (2019), the maximum uptake
was observed in macrophages that were treated by mannosylated
thiolated chitosan-coated PM-loaded PLGA nanoparticles.

As a result, PM was able to kill intracellular Toxoplasma in
lower concentration than PM-SLN-M. Nonetheless, regarding
the lower cell toxicity of PM-SLN-M in comparison to PM, it
seems that PM-SLN-M could be a better choice particularly in
long-term therapy.

In summary, our findings demonstrate that although PM
is usually used for therapy of giardiasis, leishmaniosis, and
amoebiasis, nanoformulation of this drug may make it a useful
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drug for acute toxoplasmosis. Indeed, PM-SLN-M showed higher
anti-Toxoplasma toxicity in comparison to conventional PM and
mannosylation may increase up taking the drug by macrophages.
Taken together, it seems that nanoformulation not only increases
efficiency of available commercial drugs, but also decreases the
cytotoxicity of them against host’s cell.
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